21-0: Classes of Problems

- Consider three problem classes:
 - Polynomial (P)
 - Nondeterminisitic Polynomial (NP)
 - NP-Complete
- (only scratch the surface, take Automata Theory to go in depth)
Given a problem, we can find a solution in polynomial time

- Time is polynomial in the length of the problem description
- Encode the problem in some reasonable way (like a string S)
- Can create a solution to the problem in time $O(|S|^k)$, for some constant k.
21-2: Class P Example

- Reachability
- Given a Graph G, and two vertices x and y, is there a path from x to y in G?
 - Encode the graph as an adjacency list
 - Can solve the problem in polynomial time
 - DFS
Given an undirected graph G, is there a cycle that traverses every edge exactly once?
Given an undirected graph G, is there a cycle that traverses every edge exactly once?
We can determine if a graph G has an Euler cycle in polynomial time.

A graph G has an Euler cycle if and only if:

- G is connected
- All vertices in G have an even # of adjacent edges
21-6: Euler Cycles

• Pick any vertex, start following edges (only following an edge once) until you reach a “dead end” (no untraversed edges from the current node).

• Must be back at the node you started with
 • Why?

• Pick a new node with untraversed edges, create a new cycle, and splice it in

• Repeat until all edges have been traversed
Almost every algorithm we’ve seen so far has been in P.

Possible exception: Knapsack problem

If a problem is not in P, it takes exponential time to solve

Not practical for large problems
Nondeterministic Polynomial (NP) problems:
 - Given a solution, that solution can be verified in polynomial time.
 - If we could guess a solution to the problem (that’s the Non-deterministic part), we could verify the solution quickly (polynomial time).
 - All problems in P are also in NP.
 - Most problems are in NP.
Reachability is also in NP

Given a graph G and two vertices x and y, is there a path from x to y in G?

Given a graph G and two vertices x and y, we can determine if the path does in fact connect x and y in G, in polynomial time.

 • Make sure each edge in the path exists in the graph

All problems in P are also in NP
Given an undirected graph G, is there a cycle that visits every vertex exactly once?
Given an undirected graph G, is there a cycle that visits every vertex exactly once?
Given an undirected graph G, is there a cycle that visits every vertex exactly once?

- Very similar to the Euler Cycle problem
- Verifyable in polynomial time
- No known polynomial time solution
A Boolean Formula in Conjunctive Normal Form (CNF) is a conjunction of disjunctions.

\[(x_1 \lor x_2) \land (x_3 \lor \overline{x_2} \lor \overline{x_1}) \land (x_5)\]
\[(x_3 \lor x_1 \lor x_5) \land (x_1 \lor \overline{x_5} \lor \overline{x_3}) \land (x_5)\]

A Clause is a group of variables \(x_i\) (or negated variables \(\overline{x_j}\)) connected by ORs (\(\lor\))

A Formula is a group of clauses, connected by ANDs (\(\land\))
Satisfiability Problem: Given a formula in Conjunctive Normal Form, is there a set of truth values for the variables in the formula which makes the formula true?

\[
(x_1 \lor x_4) \land (\overline{x_2} \lor x_4) \land (x_3 \lor x_2) \land \\
(x_1 \lor \overline{x_4}) \land (\overline{x_2} \lor \overline{x_3}) \land (x_2 \lor \overline{x_4})
\]

- Satisfiable: \(x_1 = T, \ x_2 = F, \ x_3 = T, \ x_4 = F \)

\[
(x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2}) \land (x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor x_2)
\]

- Not Satisfiable
A problem is NP-Complete if:

- Problem is NP
- *If* you could solve the problem in polynomial time, then you could solve *all* NP problems in polynomial time

Reduction:

- Given problem A, create an instance of problem B (in polynomial time)
- Solution to problem B gives a solution to problem A
- If we could solve B, in polynomial time, we could solve A
Given any instance of the Hamiltonian Cycle Problem:

- We can (in polynomial time) create an instance of Satisfiability
- That is, given any graph G, we can create a boolean formula f, such that f is satisfiable if and only if there is a Hamiltonian Cycle in G
- If we could solve Satisfiability in Polynomial Time, we could solve the Hamiltonian Cycle problem in Polynomial Time
21-17: Reduction Example

- Given a graph G with n vertices, we will create a formula with n^2 variables:
 - $x_{11}, x_{12}, x_{13}, \ldots x_{1n}$
 - $x_{21}, x_{22}, x_{23}, \ldots x_{2n}$
 - \ldots
 - $x_{n1}, x_{n2}, x_{n3}, \ldots x_{nn}$

- Design our formula such that x_{ij} will be true if and only if the ith element in a Hamiltonian Circuit of G is vertex # j
For our set of n^2 variables x_{ij}, we need to write a formula that ensures that:

- For each i, there is exactly one j such that $x_{ij} =$ true
- For each j, there is exactly one i such that $x_{ij} =$ true
- If x_{ij} and $x_{(i+1)k}$ are both true, then there must be a link from v_j to v_k in the graph G
For each i, there is exactly one j such that $x_{ij} = \text{true}$

- For each i in 1 \ldots n, add the rules:
 - $(x_{i1} \lor x_{i2} \lor \ldots \lor x_{in})$

This ensures that for each i, there is at least one j such that $x_{ij} = \text{true}$

- (This adds n clauses to the formula)
For each i, there is exactly one j such that $x_{ij} = \text{true}$ for each i in $1 \ldots n$.

for each j in $1 \ldots n$

for each k in $1 \ldots n$ \quad j \neq k

Add rule $\left(\overline{x_{ij}} \lor \overline{x_{ik}} \right)$

This ensures that for each i, there is at most one j such that $x_{ij} = \text{true}$

(this adds a total of n^3 clauses to the formula)
For each \(j \), there is exactly one \(i \) such that \(x_{ij} = \text{true} \)

For each \(j \) in \(1 \ldots n \), add the rules:

\[
(x_{1j} \lor x_{2j} \lor \ldots \lor x_{nj})
\]

This ensures that for each \(j \), there is at least one \(i \) such that \(x_{ij} = \text{true} \)

(This adds \(n \) clauses to the formula)
• For each j, there is exactly one i such that $x_{ij} = \text{true}$
 for each j in $1 \ldots n$
 for each i in $1 \ldots n$
 for each k in $1 \ldots n$
 Add rule $\left(\overline{x_{ij}} \lor \overline{x_{kj}} \right)$

• This ensures that for each j, there is at most one i such that $x_{ij} = \text{true}$

• (This adds a total of n^3 clauses to the formula)
• If x_{ij} and $x_{(i+1)k}$ are both true, then there must be a link from v_i to v_k in the graph G

for each i in $1 \ldots (n - 1)$
for each j in $1 \ldots n$
for each k in $1 \ldots n$

if edge (v_j, v_k) is not in the graph:
Add rule $(x_{ij} \lor x_{(i+1)k})$

• (This adds no more than n^3 clauses to the formula)
If \(x_{nj} \) and \(x_{0k} \) are both true, then there must be a link from \(v_i \) to \(v_k \) in the graph \(G \) (looping back to finish cycle)

for each \(j \) in 1\ldots n
for each \(k \) in 1\ldots n
if edge \((v_n, v_0) \) is not in the graph:
Add rule \((\overline{x_{nj}} \lor \overline{x_{0k}}) \)

• (This adds no more than \(n^2 \) clauses to the formula)
In order for this formula to be satisfied:

- For each \(i \), there is exactly one \(j \) such that \(x_{ij} \) is true.
- For each \(j \), there is exactly one \(i \) such that \(x_{ji} \) is true.
- If \(x_{ij} \) is true, and \(x_{(i+1)k} \) is true, then there is an arc from \(v_j \) to \(v_k \) in the graph \(G \).

Thus, the formula can only be satisfied if there is a Hamiltonian Cycle of the graph.
Once you have the first NP-complete problem, easy to find more:
- Given an NP-Complete problem \(P \)
- Different problem \(P' \)
- Polynomial-time reduction from \(P \) to \(P' \)
- \(P' \) must be NP-Complete
First NP-Complete problem: Satisfiability (SAT)
- SAT is NP-Complete
- By reduction from the universal Turing machine
- Reduce any algorithm that guesses and verifies to SAT
- For the actual proof, see Automata Theory
 - Main goal of the class is to build up the formal tools needed to prove SAT is NP-Complete.
Exact Cover Problem

Set of elements A

$F \subseteq 2^A$, family of subsets

Is there a subset of F such that each element of A appears exactly once?
21-29: More NP-Complete Problems

- Exact Cover Problem
 - $A = \{a, b, c, d, e, f, g\}$
 - $F = \{\{a, b, c\}, \{d, e, f\}, \{b, f, g\}, \{g\}\}$
 - Exact cover exists:
 \{a, b, c\}, \{d, e, f\}, \{g\}
Exact Cover Problem

- \(A = \{a, b, c, d, e, f, g\}\)
- \(F = \{\{a, b, c\}, \{c, d, e, f\}, \{a, f, g\}, \{c\}\}\)
- No exact cover exists
21-31: More NP-Complete Problems

- Exact Cover is in \mathbf{NP}
 - Guess a cover
 - Check that each element appears exactly once
- Exact Cover is \mathbf{NP}-Complete
 - Reduction from Satisfiability
 - Given any instance of Satisfiability, create (in polynomial time) an instance of Exact Cover
Given an instance of SAT:

- $C_1 = (x_1, \lor \overline{x_2})$
- $C_2 = (\overline{x_1} \lor x_2 \lor x_3)$
- $C_3 = (x_2)$
- $C_4 = (\overline{x_2}, \overline{x_3})$

Formula: $C_1 \land C_2 \land C_3 \land C_4$

Create an instance of Exact Cover

- Define a set A and family of subsets F such that there is an exact cover of A in F if and only if the formula is satisfiable.
Exact Cover is NP-Complete

\[C_1 = (x_1 \lor \overline{x_2}) \quad C_2 = (\overline{x_1} \lor x_2 \lor x_3) \quad C_3 = (x_2) \quad C_4 = (\overline{x_2} \lor \overline{x_3}) \]

\[A = \{x_1, x_2, x_3, C_1, C_2, C_3, C_4, p_{11}, p_{12}, p_{21}, p_{22}, p_{23}, p_{31}, p_{41}, p_{42}\} \]

\[F = \{\{p_{11}\}, \{p_{12}\}, \{p_{21}\}, \{p_{22}\}, \{p_{23}\}, \{p_{31}\}, \{p_{41}\}, \{p_{42}\}\} \]

\[X_1, f = \{x_1, p_{11}\} \]

\[X_1, t = \{x_1, p_{21}\} \]

\[X_2, f = \{x_2, p_{22}, p_{31}\} \]

\[X_2, t = \{x_2, p_{12}, p_{41}\} \]

\[X_3, f = \{x_3, p_{23}\} \]

\[X_3, t = \{x_3, p_{42}\} \]

\[\{C_1, p_{11}\}, \{C_1, p_{12}\}, \{C_2, p_{21}\}, \{C_2, p_{22}\}, \{C_2, p_{23}\}, \{C_3, p_{31}\}, \{C_4, p_{41}\}, \{C_4, p_{422}\}\} \]
Directed Hamiltonian Cycle

- Given any directed graph G, determine if G has a Hamiltonian Cycle
 - Cycle that includes every node in the graph exactly once, following the direction of the arrows
Given any directed graph G, determine if G has a Hamiltonian Cycle

- Cycle that includes every node in the graph exactly once, following the direction of the arrows
The Directed Hamiltonian Cycle problem is \textsc{NP}-Complete

Reduce Exact Cover to Directed Hamiltonian Cycle

- Given any set A, and family of subsets F:
- Create a graph G that has a hamiltonian cycle if and only if there is an exact cover of A in F
Widgets:

Consider the following graph segment:

If a graph containing this subgraph has a Hamiltonian cycle, then the cycle must contain either $a \rightarrow u \rightarrow v \rightarrow w \rightarrow b$ or $c \rightarrow w \rightarrow v \rightarrow u \rightarrow d$ – but not both (why)?
Widgets:
- XOR edges: Exactly one of the edges must be used in a Hamiltonian Cycle
Directed Hamiltonian Cycle

- Widgets:
 - XOR edges: Exactly one of the edges must be used in a Hamiltonian Cycle

```
  a   b
 /   /  \
/     /   \
 d  c  f  e
```

```
  f   e   d   c
```

- XOR edges:
 - Exactly one of the edges must be used.
Directed Hamiltonian Cycle

- Add a vertex for every variable in A (+ 1 extra)

$A = \{ a_0, a_1, a_2, a_3 \}$

$F_1 = \{ a_1, a_2 \}$
$F_2 = \{ a_3 \}$
$F_3 = \{ a_2, a_3 \}$
Add a vertex for every subset F (+ 1 extra)

- $F_0 = \{a_3\}$
- $F_1 = \{a_1, a_2\}$
- $F_2 = \{a_3\}$
- $F_3 = \{a_2, a_3\}$
Add an edge from the last variable to the 0th subset, and from the last subset to the 0th variable

\[F_0 = \{ a_1, a_2 \} \]
\[F_1 = \{ a_3 \} \]
\[F_2 = \{ a_2, a_3 \} \]
Directed Hamiltonian Cycle

- Add 2 edges from F_i to F_{i+1}. One edge will be a "short edge", and one will be a "long edge".

$F_1 = \{a_1, a_2\}$
$F_2 = \{a_3\}$
$F_3 = \{a_2, a_3\}$
Directed Hamiltonian Cycle

- Add an edge from a_{i-1} to a_i for each subset a_i appears in.

$$F = \{a_1, a_2\}$$
$$F = \{a_2\}$$
$$F = \{a_3\}$$
$$F = \{a_2, a_3\}$$
Directed Hamiltonian Cycle

- Each edge \((a_{i-1}, a_i)\) corresponds to some subset that contains \(a_i\). Add an XOR link between this edge and the long edge of the corresponding subset.
Directed Hamiltonian Cycle

\[F_1 = \{ a_2, a_4 \} \]
\[F_2 = \{ a_2, a_4 \} \]
\[F_3 = \{ a_1, a_3 \} \]
\[F_4 = \{ a_2 \} \]

XOR edge
• What if you need to solve an NP-Complete problem?
What if you need to solve an NP-Complete problem?

- If the problem is small, exponential solution is OK
- Special case of an NP-Complete problem, that can be solved quickly (3-SAT vs. 2-SAT)
- Approximate solution
An algorithm has an *approximation ratio* of $\rho(b)$ if, for any input size n, the cost of the solution produced by the algorithm is within a factor of $\rho(n)$ of an optimal solution.

$$\max \left(\frac{C}{C^*}, \frac{C^*}{C} \right) \leq \rho(n)$$

- For a maximization problem, $0 < C \leq C^*$
- For a minimization problem, $0 < C^* \leq C$
Some problems have a polynomial solution, with $\rho(n) = c$ for a small constant c.

For other problems, best-known polynomial solutions have an approximation ratio that is a function of n

- Bigger problems \Rightarrow worse approximation ratios
Approximation Scheme

- Some approximation algorithm takes as input both the problem, and a value $\epsilon > 0$
 - For any fixed ϵ, $(1 + \epsilon)$-approximation algorithm
 - $\rho(n) = 1 + \epsilon$
- Running time increases as ϵ decreases
21-52: **Vertex Cover**

- Problem: Given an undirected graph $G = (V, E)$, find a $V' \subseteq V$ such that
 - For each edge $\{u, v\} \in E$, $u \in V'$ or $v \in V'$
 - $|V'|$ is as small as possible

- Vertex Cover is NP-Complete, optimal solutions will require exponential time

- Can you come up with an algorithm that will give a (possibly non-optimal) solution for the problem?
Approx-Vertex-Cover(V,E)

\[C \leftarrow \{\} \]

\[E' \leftarrow E \]

while \(E' \neq \{\} \)

let \((u, v)\) be any edge in \(E' \)

\[C \leftarrow C \cup \{u, v\} \]

remove all edges from \(E' \) that contain \(u \) or \(v \)
21-54: Vertex Cover
Vertex Cover

\[C = \{a, c\} \]
21-56: Vertex Cover

\[C = \{a, c, d, e\} \]
21-57: **Vertex Cover**

\[C = \{a, c, d, e, f, h\} \]
Vertex Cover

\[C = \{a, c, d, e, f, h\} \]
21-59: Vertex Cover

\[C = \{a, c, d, e, f, h\} \]
21-60: Vertex Cover

Optimal

C = \{a, d, e, h\}
Approx. Vertex-Cover is a polynomial-time 2-approximation algorithm

- \(\rho(n) = 2 \)

Let \(C \) be the set of vertices found by approx. algorithm

Let \(C^* \) be the optimal set of vertices

\[|C| \leq 2 \times |C^*| \]
21-62: Vertex Cover

- Let A be the set of edges selected by Approx. Vertex Cover.
- Optimal vertex cover must pick at least one of the vertices for each edge in A:
 - $|C^*| \geq |A|$
- Approx. vertex cover picked *both* vertices for each edge in A:
 - $|C| = 2 \times |A|$
- Putting pieces together: $|C^*| \geq |A| = |C|/2$, $|C| \leq 2 \times |C^*|$.
Travelling Salesman problem

- Complete, undirected graph \(G = (V, E) \)
- Cost for each edge
- Find a cycle that includes vertices, that minimizes total cost
TSP w/ triangle inequality

- TSP on plane
 - Each node has an x,y location
 - Cost between nodes is the distance between nodes
- Slightly more general: TSP with triangle inequality
 - For any three vertices $v_1, v_2, v_3 \in V$, $c(v_1, v_2) + c(v_2, v_3) \geq c(v_1, v_3)$
Approx-TSP\((V, E, c)\)

select any vertex \(r \in V\) as root vertex

Compute MST \(T\) of graph from root \(r\) using Prim

\[L \leftarrow \text{list of vertices visited in preorder tree walk of} \ T\]

return \(L\)
Approximate TSP

Edges between all pairs of vertices
\[\text{cost} = \text{distance between vertices} \]
Start with vertex a
create MST
Approximate TSP

Preorder Traversal of MST
a, e, g, f, b, d, c
Approximate TSP

Traversal => Tour
a,e,g,f,b,d,c
Best TSP tour
a,e,g,f,d,c,b
Approximate TSP

- Approximate-TSP finds a tour whose cost is at most twice the cost of the optimal TSP
- $\rho(n) \leq 2$
- Why?
Approximate TSP

- Cost of TSP Tour ≥ cost of MST
- Consider a “full walk” of MST (revisit vertices)
Approximate TSP

"full walk" of MST
a, e, g, e, f, e, a, b, d, b, c, b, a
Approximate TSP

- Cost of “full walk” = 2 * cost MST
 - Since we are following each edge twice
- Not a valid tour
 - Repeated vertices
- Remove repeated vertices, get preorder walk
 - Cost of preorder walk \(\leq \) cost of full walk – triangle inequality
Approximate TSP

- Cost of approximate TSP tour \leq cost of full walk
- Cost of full walk $\leq 2 \times$ cost of MST
- Cost of MST \leq cost of optimal TSP tour

Cost of approximate TSP tour $\leq 2 \times$ cost of optimal tour
21-76: General TSP

- Alas, our algorithm does not generalize to all TSP
 - Relied on the triangle inequality
- No good approximate tours can be found in polynomial time for TSP, unless \(\text{NP} = \text{P} \)
 - See text for proof
Randomized Approximation

- Randomized algorithms can be used to calculate approximate solutions
 - Unsurprising, we’ve used randomized algorithms to calculate exact values – Randomized Quicksort

- Randomized Approximation Algorithms are a little different
 - Random values that are picked affect the outcome
 - Instead of an approximation ratio, we have an expected approximation ratio
Randomized MAX-3-SAT

- MAX-3-SAT
 - Satisfiability Problem,
 - Each clause contains exactly 3 variables
 - No variable is repeated in the same clause
 - Trying to maximize the number of satisfied clauses
Randomized MAX-3-SAT

- Algorithm is extremely simple:
 - For each variable x_i:
 - Set $x_i = \text{True}$ with Probability 0.5
- What is an upper limit to the expected approximation ratio?
Randomized MAX-3-SAT

- \(Y_i = I\{\text{clause } i \text{ is satisfied} \} \)
- So \(Y_i \) = true if at least one of the literals in the \(i \)th clause is set to 1
- Setting of 3 literals in each clause is independent
- \(Pr\{\text{clause } i \text{ is not satisfied} \} = \)
Randomized MAX-3-SAT

- \(Y_i = I\{\text{clause } i \text{ is satisfied}\} \)
 - So \(Y_i = \text{true} \) if at least one of the literals in the \(i \)th clause is set to 1
- Setting of 3 literals in each clause is independent
- \(Pr\{\text{clause } i \text{ is not satisfied}\} = (1/2)^3 = 1/8 \)
- \(Pr\{\text{clause } i \text{ is satisfied}\} = 1 - (1/2)^3 = 7/8 \)
21-82: Randomized MAX-3-SAT

- \(Y_i = I\{\text{clause } i \text{ is satisfied}\} \)
- \(Y = \text{number of satisfied clauses} = \sum_{i=1}^{m} Y_i \)
 - Assuming \(m \) clauses

\[
E[Y] = E\left[\sum_{i=1}^{m} Y_i\right]
= \sum_{i=1}^{m} E[Y_i]
= \sum_{i=1}^{m} \frac{7}{8}
= \frac{7m}{8}
\]
Randomized MAX-3-SAT

- Finding the expected approximation ratio:
 - Largest possible number of satisfied clauses = m.
 - Expected number of satisfied clauses = $7m/8$
 - Maximum expected approximation ratio: $m/(7m/8) = 8/7$

- Pick values randomly, expected approximation ratio is at most $8/7$
21-84: Subset-Sum Problem

• Subset-Sum Decision Problem
• Given:
 • A set $S = \{x_1, x_2, x_3, \ldots, x_n\}$ of positive integers
 • A target t
• Is there a subset of S that sums exactly to t?
Subset-Sum Problem

- Subset-Sum Optimization Problem
- Given:
 - A set $S = \{x_1, x_2, x_3, \ldots x_n\}$ of positive integers
 - A target t
- Find a subset of S with the largest possible sum less than or equal to t
Exact-Subset-Sum(S, t)

$n \leftarrow |S|$
$L \leftarrow \{0\}$

for $i \leftarrow 1$ to n

$L \leftarrow \text{MergeLists}(L, L + S[i])$

Remove all elements larger than t from L

return largest element in L

- $L + S[i]$ means add $S[i]$ to each element in L
- MergeLists: Merge two sorted lists, removing duplicates
Subset-Sum Problem

\[S = \{1, 3, 5\} \]

- \[L = \{0\} \]
- \[L = \{0, 1\} \]
- \[L = \{0, 1, 3, 4\} \]
- \[L = \{0, 1, 3, 4, 5, 6, 8, 9\} \]
$S = \{1, 2, 3\}$

- $L = \{0\}$
- $L = \{0, 1\}$
- $L = \{0, 1, 2, 3\}$
- $L = \{0, 1, 2, 3, 4, 5, 6\}$
What is the worst-case running time?
What is the worst-case running time?

- List L could be as large as 2^n
- Running time is $O(2^n)$
- (Polynomial if sum of all elements in L is bound by a polynomial in $|S|$)
Subset-Sum Problem

- Algorithm is exponential because L can grow exponentially large
- So, if we wanted an approximation in polynomial time, what could we do?
Algorithm is exponential because L can grow exponentially large

So, if we wanted an approximation in polynomial time, what could we do?

 * Prune L to prevent it from getting too large
 * Removing the wrong element could prevent us from finding an optimal solution
 * How can we prune L to minimize / bound the error?
Basic idea:

- After creating the list L, “trim” it by removing elements
- If we have two elements that are close to each other, we remove the larger of them
 - Sum can be off by the difference of the elements
Subset-Sum Problem

- Function TRIM, takes as input a list and a δ, and trims all elements that are within $\delta \%$ of the previous element in the list:

$$\text{TRIM}(L, \delta)$$

1. $m \leftarrow |L|$
2. $L' \leftarrow L[1]$
3. last $\leftarrow L[1]$
4. for $i \leftarrow 2$ to m
5. if $L[i] > \text{last} \times (1 + \delta)$
6. append $L[i]$ to L'
7. last $\leftarrow L[i]$
8. return L'
Approx-Subset-Sum(S, t, ϵ)

1. $n \leftarrow |L|$
2. $L \leftarrow \{0\}$
3. For $i \leftarrow 1$ to n
 1. $L \leftarrow \text{MergeLists}(L, L + S[i])$
 2. $L \leftarrow \text{TRIM}(L, \epsilon/2n)$
 3. Remove elements greater than t from L
4. Return largest element in L

- Returns an element within $(1 + \epsilon)$ of optimal
Subset-Sum Problem

\[S = \{104, 102, 201, 101\}, \ t = 308, \ \epsilon = .4, \ \delta = 0.05 \]

- \(L = \{0\} \)
- \(L = \{0, 104\} \)
 - (no trimming)
- \(L = \{0, 102, 104, 206\} \)
 - \(104 < 102 \times 1.05 \)
- \(L = \{0, 102, 206\} \)
- \(L = \{0, 102, 201, 206, 303, 407\} \)
 - \(206 < 201 \times 1.05 \)
 - \(407 > t \)
- \(L = \{0, 102, 201, 303\} \)
Subset-Sum Problem

\[S = \{104, 102, 201, 101\}, \quad t = 308, \epsilon = .4, \delta = 0.05 \]

- \(L = \{0, 102, 201, 303\} \)
- \(L = \{0, 101, 102, 201, 203, 302, 303, 404\} \)
 - \(102 < 101 \times 1.05 \)
 - \(203 < 201 \times 1.05 \)
 - \(303 < 302 \times 1.05 \)
 - \(404 > \epsilon \)
- \(L = \{0, 101, 201, 302\} \)

- Result: 302
- Optimal: 307 (104 + 102 + 101)
- Within 0.40 of optimal
21-98: Subset-Sum Problem

- Approx-Subset-Sum\((S, t, \epsilon)\)
 - Always returns a result within \((1 + \epsilon)\) of the true optimal
 - Runs in time polynomial in length of input and \(1/\epsilon\)
• Runs in time polynomial in length of input and $1/\epsilon$:
 • First, we’ll find a bound on how long each list L_i can be
 • After each trimming, consider successive elements z, z'
 • $z'/z > 1 + \epsilon/2n$
 • Largest that L_i could be:
 • $0, 1, \epsilon/2n, 2\epsilon/2n, 3\epsilon/2n \ldots$
 • size of $L_i < \log_{1+\epsilon/2n} t + 2$
21-100: Subset-Sum Problem

- size of $L_i < \log_{1+\epsilon/2n} t$

$$\log_{1+\epsilon/2n} t = \frac{\ln t}{\ln(1 + \epsilon/2n)} + 2$$

$$\leq \frac{2n(1 + \epsilon/2n) \ln t}{\epsilon} + 2$$

$$\leq \frac{4n \ln t}{\epsilon} + 2$$

- Bound is clearly polynomial in size of input and $\frac{1}{\epsilon}$

$$\frac{x}{1+x} \leq \ln(1 + x) \leq x, \ 0 < \epsilon < 1$$
Subset-Sum Problem

- Always returns a result within \((1 + \epsilon)\) of the true optimal
 - See text, pg. 1048