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21-0: Classes of Problems

® Consider three problem classes:
e Polynomial (P)
* Nondeterminisitic Polynomial (NP)
e NP-Complete

® (only scratch the surface, take Automata Theory to
go in depth)




21-1: Class P

® (Given a problem, we can find a solution in
polynomial time

* Time is polynomial in the length of the problem
description

* Encode the problem in some resonable way
(like a string \S)

e Can create a solution to the problem in time
O(|S|*), for some constant k.




212: Class P Example

® Reachability
® Given a Graph G, and two vertices x and vy, is
there a path from x to y in G?
* Encode the graph as an adjacency list
e Can solve the problem in polynomial time
e DFS




21-3: Euler Cycles

® Given an undirected graph G, is there a cycle that
traverses every edge exactly once?
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21-2; EUler Cycles

® Given an undirected graph G, is there a cycle that
traverses every edge exactly once?
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21-5: EUler Cycles

® We can determine if a graph GG has an Euler cycle
In polynomial time.
® A graph G has an Euler cycle if and only if:
e (5 is connected

e All vertices in G have an even # of adjacent
edges




21-6: EUler Cycles

® Pick any vertex, start following edges (only
following an edge once) until you reach a “dead
end” (no untraversed edges from the current node).

® Must be back at the node you started with
e Why?

® Pick a new node with untraversed edges, create a
new cycle, and splice it in

® Repeat until all edges have been traversead




21.7: Class P Example

® Almost every algorithm we’ve seen so far has been
in P.
* Possible exception: Knapsack problem
® |f a problem is not in P, it takes exponential time to
solve
* Not practical for large problems




21-8: NP

® Nondeterministic Polynomial (NP) problems:

e (Given a solution, that solution Can be verified in
polynomial time

* |f we could guess a solution to the problem
(that’s the Non-deterministic part), we could
verify the solution quickly (polynomial time)

e All problems in P are also in NP
* Most problems are in NP




21.0: NP — Example

® Reachability is also in NP

® Given a Graph G, and two vertices x and vy, is
there a path from z to y in G?

® Given a graph G and two verticies x and y, we can
determine if the path does in fact connect x and y
ing G, in polynomial time
 Make sure each edge in the path exists in the
graph

® All problems in P are also in NP




21-10: Hamiltonian Cycles

® Given an undirected graph G, is there a cycle that
visits every vertex exactly once?

O




21-11: Hamiltonian Cycles

® Given an undirected graph G, is there a cycle that
visits every vertex exactly once?

O




21-12. Hamiltonian Cycles

® Given an undirected graph G, is there a cycle that
visits every vertex exactly once?

* Very similar to the Euler Cycle problem
e Verifyable in polynomial time
* No known polynomial time solution




21-13; Satisfiability

® A Boolean Formula in Conjunctive Normal Form
(CNF) is a conjunction of disjunctions.

e (lel\/ﬁlfz)/\(llfg\/ﬁl?_g\/ﬁl?_l)/\(ﬁlf5)
¢ (CE’g\/CEl\/CE5)/\(CE1 \/CE_5\/CE_3)/\(CE5)

® A Clause is a group of variables x; (or negated
variables 7;) connected by ORs (V)

® A Formula is a group of clauses, connected by
ANDs (A)




21-14: Satisfiability

® Satisfiability Problem: Given a formula in
Conjunctive Normal Form, is there a set of truth
values for the variables in the formula which makes
the formula true?
® (5131 \% 5134) N\ (CE_Q \% CE’4) /N\ (333 V 332)/\
(T1 V T3) A (T2 V T3) A (29 V T4)
e Satisfiable: I = T, Loy = F, L3 = T, Ly = F
® (1 V) AT VT Az VT2) A (T1 V x5)
e Not Satisfiable




21-15: Class NP-Complete

® A problem is NP-Complete if:
* Problem is NP

e /fyou could solve the problem in polynomial
time, then you could solve all NP problems in
polynomial time

® Reduction:
e Given problem A, create an instance of problem
B (in polynomial time)
e Solution to problem B gives a solution to
problem A
 |f we could solve B, in polynomial time, we
could solve A




21-16: Reduction Example

® Given any instance of the Hamiltonian Cycle
Problem:

 We can (in polynomial time) create an instance
of Satisfiability

 That is, given any graph G, we can create a
boolean formula f, such that f is satisfiable if
and only if there is a Hamiltonian Cycle in G

® |f we could solve Satisfiability in Polynomial Time,
we could solve the Hamiltonian Cycle problem in
Polynomial Time




21.17: Reduction Example

® Given a graph GG with n vertices, we will create a
formula with n* variables:

® T11,%12, 13y ... T1p
X211, L22y L23, ... Loy
:Enlv :En27 ajn?n .« oo Lnpn

® Design our formula such that z;; will be true if and

only if the ith element in a Hamiltonian Circuit of G
IS vertex # 9




21.18: Reduction Example

® For our set of n* variables x;;, we need to write a
formula that ensures that:

* For each ¢, there is exactly one j such that z;; =
true

* For each j, there is exactly one ¢ such that x;; =
true

* If z;; and x(;+1), are both true, then there must
be a link from v; to vy in the graph G




21-19: Reduction Example

® For each i, there is exactly one j such that x;; =
frue

e Foreachzin1...n, add the rules:
° (337/1\/33@2\/\/332”)

® This ensures that for each i, there is at least one
such that x;, = true

® (This adds n clauses to the formula)




21-20: Reduction Example

® For each i, there is exactly one j such that x;; =
frue

foreachzinl...n
foreachjinl...n
foreachkinl...n j#k
Add rule (z;; V Ty)

® This ensures that for each i, there is at most one )
such that x;; = true

® (this adds a total of n° clauses to the formula)




2121: Reduction Example

® For each j, there is exactly one ¢ such that x;; =
frue

e Foreach jin1...n, add the rules:
o (lej\/ﬂfgj\/...\/ﬂfnj)

® This ensures that for each 7, there is at least one ¢
such that x;; = true

® (This adds n clauses to the formula)




21.22: Reduction Example

® For each j, there is exactly one ¢ such that x;; =
frue

foreachjinl...n
foreachiinl...n
foreach kinl...n
Add rule (7;; V Ty;)

® This ensures that for each 7, there is at most one 2
such that x;; = true

® (This adds a total of n’ clauses to the formula)




21-23: Reduction Example

® If x;; and x(;+1), are both true, then there must be a
link from v, to v;, in the graph G

foreach¢inl...(n—1)
foreachjinl...n
foreachkinl...n
if edge (v;, v.) is notin the graph:
Add rule (.CIZ_Z] \% 37(7;+1)k)

® (This adds no more than n? clauses to the formula)




21-24: Reduction Example

® |f z,, and z( are both true, then there must be a
link from v; to v, in the graph G (looping back to
finish cycle)

foreachjinl...n
foreachkinl...n
if edge (v,, vy) is notin the graph:
Add rule (:Enj \% ZCOk)

® (This adds no more than n* clauses to the formula)




21.25: Reduction Example

® |n order for this formula to be satisfied:

* For each ¢, there is exactly one j such that x;;
IS true

* For each j, there is exactly one ¢ such that z;;
IS true

* if z;; is true, and x ;.1 IS true, then there is an
arc from v, to v, in the graph GG

® Thus, the formula can only be satisfied if there is a
Hamiltonian Cycle of the graph




21-26: Proving NP-Completeness

® Once you have the first NP-complete problem,
easy to find more

e Given an NP-Complete problem P
 Different problem F’

e Polynomial-time reduction from P to P’
e P must be NP-Complete




21-27: Proving NP-Completeness

® First NP-Complete problem: Satisfiability (SAT)
e SAT is NP-Complete
* By reduction from the universal Turing machine

* Reduce any algorithm that guesses and verifies
to SAT

* For the actual proof, see Automata Theory
 Main goal of the class is to build up the formal
tools needed to prove SAT is NP-Complete.




21-28: More NP-Complete Problems

® Exact Cover Problem
e Set of elements A
e ' C 24, family of subsets

e |s there a subset of F' such that each element
of A appears exactly once?




21-20: More NP-Complete Problems

® Exact Cover Problem
¢ A — {CL?b?C?d?e?f?g}

e I'={{a,b,c},{d,e, f},{b, f,9},{g}}

e Exact cover exists:

{a7 b7 C}7 {d7 67 f}7 {g}




21-30: More NP-Complete Problems

® Exact Cover Problem
¢ A — {CL?b?C?d?e?f?g}

* F'={{a,bc},{c.d e f}{a, f g} {c}}

e No exact cover exists




21-31: More NP-Complete Problems

® Exact Coverisin NP
 (Guess a cover
* Check that each element appears exactly once

® Exact Cover is NP-Complete
* Reduction from Satisfiability

e Given any instance of Satisfiability, create (in
polynomial time) an instance of Exact Cover




21-32: EXact Cover is NP-Complete

® Given an instance of SAT:

* C) = (x1,VTy)

e Uy = (T Va3V x3)
e (5= (x)

* Cy = (72, 73)

® Formula: Cl A\ OQ N\ 03 N\ 04

® Create an instance of Exact Cover

e Define a set A and family of subsets F' such
that there is an exact cover of A in F'if and only
If the formula is satisfiable




21-33: EXact Cover is NP-Complete

01 — (331 \/SC_Q) 02: (56_1\/332\/1’3) 03: (CL’Q) 04: (SIZ‘Q\/SIZ‘g)

A = {x1,29,73,C1, Cy, Cs,Cy, p11, P12, D21, P22, P23, D31, Pa1, Pa2 }
F = {{1011}7{]?12},{p21},{p22},{p23},{p31},{p41},{p42},
Xy, f =A{%1,pui}

Xi,t ={x1,pa1}

Xo, f = {$2,p22,p31}

Xo,t = {22, P12, Pa1 }

X3, | = {$37p23}

X3, t = {23, pa2}

{0171?11}, {0171912}7 {0271921}7 {C2ap22}7 {0271923}7 {0371931}7
{04,]741}, {04,]7422}}




21.34: Directed Hamiltonian Cycle

® Given any directed graph G, determine if G has a a
Hamiltonian Cycle

e Cycle that includes every node in the graph
exactly once, following the direction of the
arrows
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21.35: Directed Hamiltonian Cycle

® Given any directed graph G, determine if G has a a
Hamiltonian Cycle

e Cycle that includes every node in the graph
exactly once, following the direction of the
arrows
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21.36: Directed Hamiltonian Cycle

® The Directed Hamiltonian Cycle problem is
NP-Complete
® Reduce Exact Cover to Directed Hamiltonian Cycle
e Given any set A, and family of subsets F':

e Create a graph G that has a hamiltonian cycle if
and only if there is an exact cover of A in F’




21.37: Directed Hamiltonian Cycle

® Widgets:
e Consider the following graph segment:
a b

N v
SN

* |f a graph containing this subgraph has a
Hamiltonian cycle, then the cycle must contain
eithera - u —v — w — bor
c — w — v — u — d—but not both (why)?

d




21.38: Directed Hamiltonian Cycle

® Widgets:
e XOR edges: Exactly one of the edges must be
used in a Hamiltonian Cycle
b
a




21-30: Directed Hamiltonian Cycle

® Widgets:
e XOR edges: Exactly one of the edges must be
used in a Hamiltonian Cycle




21.40: Directed Hamiltonian Cycle

® Add a vertex for every variable in A (+ 1 extra)

A © F={a.&}
Fo= {&}
F3= {& . &}

a, O

a, O




21.41: Directed Hamiltonian Cycle

® Add a vertex for every subset F' (+ 1 extra)

a; O O Fy

F.={a . &}
Fo= {a&}
Fs= {a& ., &}
a, O o H
a, O o F




21.42: Directed Hamiltonian Cycle

® Add an edge from the last variable to the Oth
subset, and from the last subset to the 0th variable

a3 @ » O FO F1: {al,%}
Fo= {a&}
Fs= {&,&}

a, O o Fk

a, O o P

a, O- o F3




21.43: Directed Hamiltonian Cycle

® Add 2 edges from F; to F; ;. One edge will be a
“short edge”, and one will be a “long edge”.

a; O » O, Fy

F={a .58}
Fo= {a}
Fs={&, &}
a, O <o> Fy
a, O o P
<> =

a, O O




21.44: Directed Hamiltonian Cycle

® Add an edge from a,_; to a; for each subset q;
appears in.

a; O > O, Fy

F={a .58}
Fo= {a}
Fs={&, &}
ay o ki
< F,

O

;

a, O O

aq




21.45: Directed Hamiltonian Cycle

® Each edge (a;_1, a;) corresponds to some subset
that contains a,. Add an XOR link between this
edge and the long edge of the corresponding
subset




21.46: Directed Hamiltonian Cycle

B2 72Nk A= {3, )
——> _

Fo={a&,a}
F3={a , &}

az O S o, F F,= {&}

Q >
A , O> R XOR edge
\ 4
a, Q £ O Fs
dg ) F
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21-47. NP-Complete Problems

® What if you need to solve an NP-Complete
problem?




21-48: NP-Complete Problems

® What if you need to solve an NP-Complete
problem?

* |f the problem is small, exponential solution is
OK

e Special case of an NP-Complete problem, that
can be solved quickly (3-SAT vs. 2-SAT)

e Approximate solution




21-49: Approximation Ratio

® An algorithm has an approximation ratio of p(b) if,
for any input size n, the cost of the solution
produced by the algorithm is within a factor of p(n)
of an optimal solution

- (C C*)< m)
i

® For a maximization problem, 0 < C' < C*
® For a minimizaion problem, 0 < C* < C




21-50: Approximation Ratio

® Some problems have a polynomial solution, with
p(n) = c for a small constant c.

® For other problems, best-known polynomial
solutions have an approximation ration that is a
function of n

* Bigger problems =- worse approximation ratios




21-51: Approximation Scheme

® Some approximation algorithm takes as input both
the problem, and a value ¢ > 0

e For any fixed ¢, (1 + €)-approximation algorithm
* p(n) =1+e
® Running time increases as ¢ decreases




21-52: Vertex Cover

® Problem: Given an undirected graph G = (V, E),
find a V' C V such that

e For each edge (u,v) E,ue V' orv eV’
e |V’| is as small as possible

® Vertex Cover is NP-Complete, optimal solutions
will require exponential time

® Can you come up with an algorithm that will give a
(possiblly non-optimal) solution for the problem?




21-53: Vertex Cover

Approx-Vertex-Cover(V,E)

C+—{J

F + F

while £’ #£ {}
let (u,v) be any edge in £’
C <+ CU{u,v}
remove all edges from E’ that contain

u or v




21-54: Vertex Cover

(a)—(©)




21-55: Vertex Cover




21-56: Vertex Cover

@ ©




21-57: Vertex Cover

@ © @ @

b @

C = {aacadae) }




21-58: Vertex Cover

@ © @

» @ © @

C= {a,c,d,e,f h}




21-59: Vertex Cover

/




21-60: Vertex Cover

Optimal

o

(¢)

L/

6




21-61: Vertex Cover

® Approx. Vertex-Cover is a polynomial-time
2-approximation algorithm

* p(n) =2

® | et C be the set of vertices found by approx.
algorithm

® | et C* be the optimal set of vertices
* |C] <2x|C




21-62: Vertex Cover

® | et A be the set of edges selected by Approx.
Vertex Cover

® Optimal vertex cover must pick at least one of the
vertices for each edge in A

* O] = |A
® Approx. vertex cover picked both vertices for each
edge in A:
* |C] =2x|A4]
® Putting pieces together: |C*| > |A| = |C|/2,
O] < 2% |C"




21-63: 1OP

® Travelling Salesman problem
e Complete, undirected graph G = (V, F)
* Cost for each edge

* Find a cycle that includes vertices, that
minimizes total cost




21.64: 1SP W/ triangle inequality

® TSP on plane
 Each node has an x,y location

e Cost bewteen nodes is the distance between
nodes

e Slighly more general: TSP with triangle
iInequality
- For any three vertices vy, vy, v3 € V,
c(vr, va) + c(v2,v3) = c(v1,v3)




21-65: Approximate TSP

Approx-TSP(V, E, c)
select any vertex r € V' as root vertex
Compute MST T’ of graph from root » using Prim
L < list of vertices visited in preorder tree
walk of 1T°
return L




21-66: Approximate TSP

@ B ©
C)

O

@

Edges between all pairs of vertices
cost = distance between vertices




21-67: Approximate TSP

Start with vertex a
create MST




21-68: Approximate TSP

Preoder Traversal of MST
a,e,g,t,b,d,c




21-60: Approximate TSP

Traversal => Tour
a,e,g,t,b,d,c




21-70: Approximate TSP

@ @73

(d

(e)
/
o £

Best TSP tour
a,e,g.f,d,c,b




21-71: Approximate TSP

® Approximate-TSP finds a tour whose cost is at
most twice the cost of the optimal TSP

* p(n) <2
® Why?




21-72: Approximate TSP

® Cost of TSP Tour > cost of MST
® Consider a “full walk” of MST (revisit vertices)




21-73: Approximate TSP

"full walk" of MST
a,e,g,e,teab,db,cb,a




21-74: Approximate TSP

® Cost of “full walk” = 2 * cost MST
e Since we are following each edge twice

® Not a valid tour
* Repeated vertices

® Remove repeated vertices, get preorder walk

e Cost of preorder walk < cost of full walk —
triangle inequality




21-75: Approximate TSP

® Cost of approximate TSP tour < cost of full walk
® Cost of full walk < 2 * cost of MST
® Cost of MST < cost of optimal TSP tour

Cost of approximate TSP tour < 2 * cost of optimal tour




21-76: General TSP

® Alas, our algorithm does not generalize to all TSP
* Relied on the triangle inequality
® No good approximate tours can be found in
polynomial time for TSP, unless NP = P
e See text for proof




21.77: Randomized Approximation

® Randomized algorithms can be used to calculate
approximate solutions

e Unsurprising, we've used randomized
algorithms to calculate exact values —
Randomized Quicksort

® Randomized Approximation Algorithms are a little
different

e Random values that are picked affect the
outcome

* Instead of an approximation ratio, we have an
expected approximation ratio




21-78: Randomized MAX-3-SAT

* MAX-3-SAT
e Satisfiability Problem,
* Each clause contains exactly 3 variables
* No variable is repeated in the same clause

* Trying to maximize the number of satisfied
clauses




21-79: Randomized MAX-3-SAT

® Algorithm is extremely simple:
e For each variable z;:
- Set x; =True with Probability 0.5

® What is an upper limit to the expected
approximation ratio?




21-80: Randomized MAX-3-SAT

® Y, = [{clause 1 is satisfied}
e So Y, =true if at least one of the literals in the
1th clause Is set to 1

e Setting of 3 literals in each clause is
iIndependent

e Pr{clause i is not satisfied} =




21-81: Randomized MAX-3-SAT

® Y, = [{clause 1 is satisfied}

e So Y, =true if at least one of the literals in the
1th clause Is set to 1

e Setting of 3 literals in each clause is
iIndependent

o Pr{clause i is not satisfied} = (1/2)° = 1/8
o Pr{clause i is satisfied} =1 — (1/2)° =7/8




21-82: Randomized MAX-3-SAT

® Y, = [{clause 1 is satisfied}

® Y =number of satisfied clauses = >_." , Y;
 Assuming m clauses

ElY] = E[Y)

||
1\
=
=




21-83: Randomized MAX-3-SAT

® Finding the expected approximation ratio:

e Largest possible number of satisfied clauses =
.
e Expected number of satisfied clauses = 7m /8
 Maximum expected approximation ratio:
m/(Tm/8) = 8/7
® Pick values randomly, expected approximation ratio
is at most 8/7




21-84: SUubset-Sum Problem

® Subset-Sum Decision Problem

® Given:
e Aset S ={x,x,,x3,...1,} of positive integers
e Atargett

® |s there a subset of S that sums exactly to t?




21-85: SUbset-Sum Problem

® Subset-Sum Optimization Problem

® Given:
e Aset S ={x,x,,x3,...1,} of positive integers
e Atargett

® Find a subset of S with the largest possible sum
less than or equal to ¢




21-86: SUbset-Sum Problem

Exact-Subset-Sum(S, ?)
n < |S]
L + {0}
fori < 1ton
L < MergelLists(L, L + S|i])
Remove all elements larger than ¢ from L
return largest element in L

® [+ S|t) means add S|¢] to each elementin L

® MergelLists: Merge two sorted lists, removing
duplicates




21-87: SUubset-Sum Problem

S ={1,3,5)
* L= {0}
o [ =1{0,1

o [ =1{0,1,3,4}
e 1.=10,1,3,4,5,6,8,9}




21-88: SUbset-Sum Problem

S =1{1,2,3)
* L ={0}
e [ =1{0,1)
e [ ={0,1,2,3
e [ ={0,1,2,3,4,5,6)




21-89: SUubset-Sum Problem

® What is the worst-case running time?




21-90: Subset-Sum Problem

® What is the worst-case running time?
e List L could be as large as 2"
e Running time is O(2")
* (Polynomial if sum of all elements in L is bound
by a polynomial in |S|)




21-91: Subset-Sum Problem

® Algorithm is exponential because L can grow
exponentially large

® So, if we wanted an approximation in polynomial
time, what could we do?




21-92: Subset-Sum Problem

® Algorithm is exponential because L can grow
exponentially large

® So, if we wanted an approximation in polynomial
time, what could we do?
* Prune L to prevent it from getting too large

* Removing the wrong element could prevent us
from finding an optimal solution

e How can we prune L to minimize / bound the
error?




21-93: Subset-Sum Problem

® Basic idea:

e After creating the list L, “trim” it by removing
elements

* |f we have two elements that are close to each
other, we remove the larger of them
- Sum can be off by the difference of the
elements




21-94: Subset-Sum Problem

® Function TRIM, takes as input a list and a 0, and
trims all elements that are within 0 % of the
previous element in the list:

TRIM(L, 9)
m < | L
L' < L[]
last <— L[1]
fori < 2tom
if L]i] >last (1 + 0)
append L[i] to L'
last <— L|i]
return L'




21-95: SUbset-Sum Problem

Approx-Subset-Sum(.S, £, €)
n < |L|
L + {0}
fori < 1ton
L < Mergelists(L, L + S|i)
L < TRIM(L, ¢/2n)
remove elements greater than ¢ from L
return largest element in L

® Returns an element within (1 + ¢) of optimal




21-96: SUbset-Sum Problem

S = {104, 102,201,101}, ¢t = 308,¢ = .4,5 = 0.05

® -0}
® .- 0,104}
® (no trimming)
® 1 — (0,102,104, 206}
® 104 <102 %1.05
® ;- (0,102,206}
® ;- {0,102,201,206,303,407}
® 206 < 201 % 1.05
® 407 >t

® ;- {0,102,201,303}




21-97: Subset-Sum Problem

S = {104, 102,201, 101}, ¢ = 308¢ = .4,8 = 0.05

® ;1 —{0,102,201,303}
® ; — {0,101,102,201,203,302, 303, 404}
® 102 <101%1.05
® 203 <201%1.05
® 303 <302%1.05
® 404 > ¢

® ;- {0,101,201,302}

® Result: 302
® Optimal: 307 (104 + 102 + 101)
® Within 0.40 of optimal




21-98: SUubset-Sum Problem

® Approx-Subset-Sum(S, 1, €)
* Always returns a result within (1 + €) of the true
optimal
* Runs in time polynomial in length of input and

1/€




21-99: Subset-Sum Problem

® Runs in time polynomial in length of input and 1/e:

e First, we'll find a bound on how long each list L,
can be

e After each trimming, consider successive
elements z, 2/

¢ 2'/z2>14¢€/2n
e Largest that L; could be:

- 0,1,¢/2n,2¢/2n,3¢/2n . . .
* size of L; < logy, o, t + 2




21-100: SUbset-Sum Problem

® size of L; <logy, /o, 1

Int

| t = 2
OB1+e/2n In(1 + €/2n)

2n(1 +¢€/2n)Int

€

< Anlint 5
€

® Bound is clearly polynnomial in size of input and -

= <In(l+z) <z 0<e<l1




21-101: SUbset-Sum Problem

® Always returns a result within (1 + ¢) of the true
optimal
e See text, pg. 1048
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