CS673-2016F-21 NP & Approximation Algorithms

21-0: Classes of Problems

e Consider three problem classes:

e Polynomial (P)
e Nondeterminisitic Polynomial (NP)

e NP-Complete

e (only scratch the surface, take Automata Theory to go in depth)

21-1: Class P

e Given a problem, we can find a solution in polynomial time

e Time is polynomial in the length of the problem description
e Encode the problem in some resonable way (like a string .5)

e Can create a solution to the problem in time O(|S|¥), for some constant k.
21-2: Class P Example
e Reachability

e Given a Graph G, and two vertices = and y, is there a path from x to y in G?

e Encode the graph as an adjacency list
e Can solve the problem in polynomial time
e DFS

21-3: Euler Cycles

e Given an undirected graph G, is there a cycle that traverses every edge exactly once?

O)

O
21-4: Euler Cycles

e Given an undirected graph G, is there a cycle that traverses every edge exactly once?

CS673-2016F-21 NP & Approximation Algorithms 2

3 2
T 7
6 10
9 1
41 g 8
c 1
13
O 12

21-5: Euler Cycles

e We can determine if a graph G has an Euler cycle in polynomial time.
e A graph G has an Euler cycle if and only if:

e (5 is connected

e All vertices in G have an even # of adjacent edges

21-6: Euler Cycles

e Pick any vertex, start following edges (only following an edge once) until you reach a “dead end” (no untraversed
edges from the current node).

e Must be back at the node you started with
e Why?
e Pick a new node with untraversed edges, create a new cycle, and splice it in

e Repeat until all edges have been traversed

21-7: Class P Example

e Almost every algorithm we’ve seen so far has been in P.
e Possible exception: Knapsack problem
e If a problem is not in P, it takes exponential time to solve

e Not practical for large problems
21-8: NP

e Nondeterministic Polynomial (NP) problems:

e Given a solution, that solution Can be verified in polynomial time

e If we could guess a solution to the problem (that’s the Non-deterministic part), we could verify the solution
quickly (polynomial time)

e All problems in P are also in NP

CS673-2016F-21 NP & Approximation Algorithms 3

e Most problems are in NP

[]
21-9: NP — Example
e Reachability is also in NP

e Given a Graph G, and two vertices = and y, is there a path from x to y in G?

e Given a graph GG and two verticies x and y, we can determine if the path does in fact connect = and y ing G, in
polynomial time

e Make sure each edge in the path exists in the graph

e All problems in P are also in NP
21-10: Hamiltonian Cycles

e Given an undirected graph G, is there a cycle that visits every vertex exactly once?

O

D)

O

21-11: Hamiltonian Cycles

e Given an undirected graph G, is there a cycle that visits every vertex exactly once?

O

D)

O

21-12: Hamiltonian Cycles

e Given an undirected graph G, is there a cycle that visits every vertex exactly once?

e Very similar to the Euler Cycle problem

CS673-2016F-21 NP & Approximation Algorithms 4

e Verifyable in polynomial time

e No known polynomial time solution
21-13: Satisfiability

e A Boolean Formula in Conjunctive Normal Form (CNF) is a conjunction of disjunctions.

° (:Cl \/1172)/\(173\/26_2\/:17_1)/\(265)
° (xg\/iZ?l \/$5)/\(£C1 \/117_5\/$_3)/\(1175)

e A Clause is a group of variables x; (or negated variables 7;) connected by ORs (V)

e A Formula is a group of clauses, connected by ANDs (A)
21-14: Satisfiability

o Satisfiability Problem: Given a formula in Conjunctive Normal Form, is there a set of truth values for the
variables in the formula which makes the formula true?

o (11 Vxy) A (T3 Vag) A (x5 Va2)A
(FTTVTD) A (T2 V T3) A (w2 V T7)

e Satisfiable: 1 =T, 29 =F, 23=T, 24 =F
o (z1 V) ANTTVT) A (21 VTZ) A (TTV 22)
e Not Satisfiable

21-15: Class NP-Complete

e A problem is NP-Complete if:
e Problem is NP

e [fyou could solve the problem in polynomial time, then you could solve all NP problems in polynomial
time

e Reduction:

e Given problem A, create an instance of problem B (in polynomial time)
e Solution to problem B gives a solution to problem A

e If we could solve B, in polynomial time, we could solve A
21-16: Reduction Example

e Given any instance of the Hamiltonian Cycle Problem:

e We can (in polynomial time) create an instance of Satisfiability

e Thatis, given any graph GG, we can create a boolean formula f, such that f is satisfiable if and only if there
is a Hamiltonian Cycle in G

e If we could solve Satisfiability in Polynomial Time, we could solve the Hamiltonian Cycle problem in Polyno-
mial Time

21-17: Reduction Example

CS673-2016F-21 NP & Approximation Algorithms 5

e Given a graph G with n vertices, we will create a formula with n? variables:

® T11,212,T13y---Lln
€21, T22,T23,...T2n
TnlyTn2,Ln3, .- Tnn

e Design our formula such that x;; will be true if and only if the ith element in a Hamiltonian Circuit of G is
vertex # j

21-18: Reduction Example

e For our set of n? variables 2,5, we need to write a formula that ensures that:

e For each 4, there is exactly one j such that x;; = true
e For each j, there is exactly one 7 such that z;; = true

e If x;; and x(;; 1), are both true, then there must be a link from v; to vy, in the graph G

21-19: Reduction Example

e For each 1, there is exactly one j such that z;; = true

e Foreachiin1...n, add the rules:

° (Iﬂ \/:CZQ\/\/:Cm)
e This ensures that for each i, there is at least one j such that z;; = true

e (This adds n clauses to the formula)
21-20: Reduction Example
e For each 1, there is exactly one j such that z;; = true

foreachiinl...n
foreachjinl...n
foreachkinl...n j#k
Add rule (T7; V Tix)

e This ensures that for each i, there is at most one j such that x;; = true

e (this adds a total of n? clauses to the formula)
21-21: Reduction Example

e For each j, there is exactly one ¢ such that z;; = true

e Foreach jin1...n, add the rules:

L] (:Z?lj \/ZCQj V... \/xnj)
e This ensures that for each j, there is at least one 7 such that z;; = true

e (This adds n clauses to the formula)

CS673-2016F-21 NP & Approximation Algorithms 6

21-22: Reduction Example
e For each j, there is exactly one 7 such that z;; = true

foreachjinl...n
foreachzinl...n
foreachkinl...n
Add rule (775 V Tx;)

e This ensures that for each j, there is at most one ¢ such that x;; = true

o (This adds a total of n?3 clauses to the formula)
21-23: Reduction Example

o If x;; and x(;1 1)) are both true, then there must be a link from v; to vy, in the graph G

foreachiinl...(n —1)
foreachjinl...n
foreachkinl...n
if edge (v;, vx) is not in the graph:
Add rule (Z75 V T3 1)x)

e (This adds no more than n3 clauses to the formula)
21-24: Reduction Example

e If x,,; and zy, are both true, then there must be a link from v; to v, in the graph G' (looping back to finish cycle)

foreachjinl...n
foreachkinl...n
if edge (vn,, vo) is not in the graph:
Add rule (Z,; V Tox)

e (This adds no more than n? clauses to the formula)
21-25: Reduction Example

e In order for this formula to be satisfied:

e For each 4, there is exactly one j such that ;; is true
e For each j, there is exactly one 7 such that xj; is true

o if x;; is true, and T(i41)k is true, then there is an arc from v; to vy, in the graph G

o Thus, the formula can only be satisfied if there is a Hamiltonian Cycle of the graph
21-26: Proving NP-Completeness

e Once you have the first NP-complete problem, easy to find more

CS673-2016F-21 NP & Approximation Algorithms

Given an NP-Complete problem P
Different problem P’

e Polynomial-time reduction from P to P’

e P’ must be NP-Complete
21-27: Proving NP-Completeness

e First NP-Complete problem: Satisfiability (SAT)
e SAT is NP-Complete

e By reduction from the universal Turing machine
e Reduce any algorithm that guesses and verifies to SAT
e For the actual proof, see Automata Theory

e Main goal of the class is to build up the formal tools needed to prove SAT is NP-Complete.
21-28: More NP-Complete Problems

e Exact Cover Problem

e Set of elements A
e F C 24, family of subsets

e Is there a subset of F' such that each element of A appears exactly once?
21-29: More NP-Complete Problems

e Exact Cover Problem
L d A:{a’7bacad767f7g}
o I'={{a,b,c},{d,e, f},{b, f, 9}, {g9}}

e Exact cover exists:

{a, b, ¢} {d, e, [}, {g}

21-30: More NP-Complete Problems

e Exact Cover Problem
L d A: {a’7bacad7eafag}
o F'={{a,b,c},{c,de, f},{a, f g} {c}}

e No exact cover exists
21-31: More NP-Complete Problems

e Exact Coverisin NP

e Guess a cover

e Check that each element appears exactly once
e Exact Cover is NP-Complete

e Reduction from Satisfiability

CS673-2016F-21 NP & Approximation Algorithms 8

e Given any instance of Satisfiability, create (in polynomial time) an instance of Exact Cover

21-32: Exact Cover is NP-Complete

e Given an instance of SAT:

o Oy = (11,VT3)

o Uy = (T7 Vs Vuas)
o U3 =(x2)

o C) = (T2,73)

e Formula: C1 ACy AN C3 A Cy
e Create an instance of Exact Cover

e Define a set A and family of subsets F' such that there is an exact cover of A in F' if and only if the formula
is satisfiable

21-33: Exact Cover is NP-Complete

Ci=(x1VT2) Co = (Tx Va2 Vas) Cs = (x2) Ca = (T2 V T3)

A = {z1,2z2,23,C1,C2,Cs,Cy, p11, P12, P21, P22, P23, P31, P41, P42 }

F = {{pu}, {pi2}, {p21}, {p22}, {p23}, {pa1}, {par }, {pa=},

Xl,f = {wl,pu}

X1,t ={x1,p21}

Xo, f = {x2,p22,p31}

Xo,t = {x2,p12,pa1}

X3, f = {x3,p23}

Xs,t = {x3,pa2}

{C1,p11}, {C1,p12}, {C2,pa1}, {Ca,p22}, {C2,p23}, {Cs,p31}, {Ca,par}, {Ca,paza}} 21-34: Directed Hamilto-
nian Cycle

e Given any directed graph G, determine if G has a a Hamiltonian Cycle

e Cycle that includes every node in the graph exactly once, following the direction of the arrows

p

21-35: Directed Hamiltonian Cycle

e Given any directed graph G, determine if G has a a Hamiltonian Cycle

e Cycle that includes every node in the graph exactly once, following the direction of the arrows

P

21-36: Directed Hamiltonian Cycle

CS673-2016F-21 NP & Approximation Algorithms 9

e The Directed Hamiltonian Cycle problem is NP-Complete
e Reduce Exact Cover to Directed Hamiltonian Cycle

e Given any set A, and family of subsets F:

e Create a graph G that has a hamiltonian cycle if and only if there is an exact cover of A in F'
21-37: Directed Hamiltonian Cycle
o Widgets:
o Consider the following graph segment:

a b

@)

u Vv W /
/CC\
d O O c

e If a graph containing this subgraph has a Hamiltonian cycle, then the cycle must contain either a — u —
v —w —borc— w— v — u— d-but not both (why)?

21-38: Directed Hamiltonian Cycle

e Widgets:
e XOR edges: Exactly one of the edges must be used in a Hamiltonian Cycle
a b
o Y >0
S
q°° Y O ¢

21-39: Directed Hamiltonian Cycle

o Widgets:
e XOR edges: Exactly one of the edges must be used in a Hamiltonian Cycle
a b
o o
O ﬁic fik\ O e
a b

TN

CS673-2016F-21 NP & Approximation Algorithms

10

21-40: Directed Hamiltonian Cycle

e Add a vertex for every variable in A (+ 1 extra)

a;, O
° Fi={a.%}
Fo={a}
Fa={a . &}
a, O
a, O
21-41: Directed Hamiltonian Cycle
e Add a vertex for every subset F' (+ 1 extra)
a3 (@) @) FO Fl = {ai , 32 }
Fo={a}
Fa={a . &}
a, O o k
a, O o P
a, O o Fs

21-42: Directed Hamiltonian Cycle

e Add an edge from the last variable to the Oth subset, and from the last subset to the Oth variable

CS673-2016F-21 NP & Approximation Algorithms

a; O >0 Fy

F={a.&}
Fo= {a&}
Fo={a, &}

a, O o k

a, O o R

a, O o Fs

21-43: Directed Hamiltonian Cycle

e Add 2 edges from F; to F;41. One edge will be a “short edge”, and one will be a “long edge”.

az; o >0 Fy, F,={a.3}
Fo={a&}
Fa={a.a}

a, O o, ki

a, O o F2

a, O o Fs

21-44: Directed Hamiltonian Cycle

e Add an edge from a;_; to a; for each subset a; appears in.

CS673-2016F-21 NP & Approximation Algorithms

12

as

0O
S

%<I <) F
aO < O FS

21-45: Directed Hamiltonian Cycle

Fi={a .3}
Fo= {a&}
Fs={a.a}

e Each edge (a;_1, a;) corresponds to some subset that contains a;. Add an XOR link between this edge and the

long edge of the corresponding subset

21-46: Directed Hamiltonian Cycle

).
).
).
).

a; O

F=1{a.38}
B—{a a }
Fa={a.a}
a={%}
XOR edge

SLIDE - 21-47: NP-Complete Problems

e What if you need to solve an NP-Complete problem?

21-48: NP-Complete Problems

e What if you need to solve an NP-Complete problem?

e If the problem is small, exponential solution is OK

e Special case of an NP-Complete problem, that can be solved quickly (3-SAT vs. 2-SAT)

e Approximate solution

CS673-2016F-21 NP & Approximation Algorithms 13

21-49: Approximation Ratio

e An algorithm has an approximation ratio of p(b) if, for any input size n, the cost of the solution produced by
the algorithm is within a factor of p(n) of an optimal solution

max ¢ & < p(n)
coc)=r

e For a maximization problem, 0 < C' < C*

e For a minimizaion problem, 0 < C* < C'

21-50: Approximation Ratio

e Some problems have a polynomial solution, with p(n) = ¢ for a small constant c.
e For other problems, best-known polynomial solutions have an approximation ration that is a function of n

e Bigger problems = worse approximation ratios

21-51: Approximation Scheme

e Some approximation algorithm takes as input both the problem, and a value € > 0
e For any fixed ¢, (1 + €)-approximation algorithm
e p(n)=1+e

e Running time increases as e decreases

21-52: Vertex Cover

e Problem: Given an undirected graph G = (V, E), find a V/ C V such that

e For each edge (u,v) E,u € V'orv eV’

e |V’|is as small as possible
e Vertex Cover is NP-Complete, optimal solutions will require exponential time

e Can you come up with an algorithm that will give a (possiblly non-optimal) solution for the problem?

21-53: Vertex Cover

Approx-Vertex-Cover(V,E)

C{}

E' + F

while E' # {}
let (u,v) be any edge in £’
C + CU{u,v}
remove all edges from E’ that contain

U Or v

CS673-2016F-21 NP & Approximation Algorithms

21-54: Vertex Cover

a (c)

21-55: Vertex Cover

a (c) e (2)

@ O

C= {a,c}

21-56: Vertex Cover

@ o @ @

®» @ O

C = {aa C, da e}

21-57: Vertex Cover

CS673-2016F-21 NP & Approximation Algorithms

15

@ o @6 @

®» @ O

C=1{a, cd,e,f h}

21-58: Vertex Cover

@ © @

@ ©

C=1{a,cd,e,f h}

21-59: Vertex Cover

C={a,c,d,e,f h}

21-60: Vertex Cover

CS673-2016F-21 NP & Approximation Algorithms

16

Optimal
a (c) e (2

@ O~

C= {a, d7 €, h}

21-61: Vertex Cover

e Approx. Vertex-Cover is a polynomial-time 2-approximation algorithm
e p(n)=2
e Let C be the set of vertices found by approx. algorithm
e Let C* be the optimal set of vertices
o |C| <2x|C¥|
21-62: Vertex Cover

e Let A be the set of edges selected by Approx. Vertex Cover
e Optimal vertex cover must pick at least one of the vertices for each edge in A
. || > |4
e Approx. vertex cover picked both vertices for each edge in A:
o [C]=2x]A]
e Putting pieces together: |C*| > |A| = |C|/2,|C| < 2% |C¥|
21-63: TSP

e Travelling Salesman problem

e Complete, undirected graph G = (V, E)
e Cost for each edge

e Find a cycle that includes vertices, that minimizes total cost
21-64: TSP w/ triangle inequality

e TSP on plane

e Each node has an x,y location

e Cost bewteen nodes is the distance between nodes

CS673-2016F-21 NP & Approximation Algorithms

o Slighly more general: TSP with triangle inequality

e For any three vertices v1, vy, v3 € V, ¢(v1, v2) + ¢(v2,v3) > ¢(v1,v3)
21-65: Approximate TSP

Approx-TSP(V, E, ¢)
select any vertex € V' as root vertex
Compute MST T of graph from root r using Prim
L <+ list of vertices visited in preorder tree
walk of T'
return L

21-66: Approximate TSP

@ ®
@

©

O,

Edges between all pairs of vertices
cost = distance between vertices
21-67: Approximate TSP

©

Start with vertex a
create MST

21-68: Approximate TSP

CS673-2016F-21 NP & Approximation Algorithms

Preoder Traversal of MST
a,e,g,f,b,d,c

@@G
(d)
G
(&)

Traversal => Tour
a,e,g,f,b,d,c

21-70: Approximate TSP

B

()

@
&)

@0

Best TSP tour
a7e7g7f’d7c7b

21-71: Approximate TSP

e Approximate-TSP finds a tour whose cost is at most twice the cost of the optimal TSP

CS673-2016F-21 NP & Approximation Algorithms

e p(n) <2
e Why?
21-72: Approximate TSP

e Cost of TSP Tour > cost of MST

e Consider a “full walk” of MST (revisit vertices)

21-73: Approximate TSP

"full walk" of MST
a)e:gae7fae7a7b>dabacab’a

21-74: Approximate TSP

e Cost of “full walk” =2 * cost MST
e Since we are following each edge twice
e Not a valid tour
e Repeated vertices
e Remove repeated vertices, get preorder walk
e Cost of preorder walk < cost of full walk — triangle inequality
21-75: Approximate TSP
e Cost of approximate TSP tour < cost of full walk
e Cost of full walk < 2 * cost of MST
e Cost of MST < cost of optimal TSP tour

Cost of approximate TSP tour < 2 * cost of optimal tour
21-76: General TSP

e Alas, our algorithm does not generalize to all TSP
e Relied on the triangle inequality

e No good approximate tours can be found in polynomial time for TSP, unless NP = P

CS673-2016F-21 NP & Approximation Algorithms

20

e See text for proof
21-77: Randomized Approximation
e Randomized algorithms can be used to calculate approximate solutions
e Unsurprising, we’ve used randomized algorithms to calculate exact values — Randomized Quicksort
e Randomized Approximation Algorithms are a little different

e Random values that are picked affect the outcome

e Instead of an approximation ratio, we have an expected approximation ratio

21-78: Randomized MAX-3-SAT

o MAX-3-SAT

o Satisfiability Problem,
e Each clause contains exactly 3 variables
e No variable is repeated in the same clause

e Trying to maximize the number of satisfied clauses
21-79: Randomized MAX-3-SAT

e Algorithm is extremely simple:

e For each variable z;:
e Set z; =True with Probability 0.5

e What is an upper limit to the expected approximation ratio?
21-80: Randomized MAX-3-SAT

o Y; = I{clause i is satisfied }

e So Y; =true if at least one of the literals in the ith clause is set to 1
e Setting of 3 literals in each clause is independent

e Pr{clause 7 is not satisfied } =
21-81: Randomized MAX-3-SAT

e Y; = I{clause 7 is satisfied}

e So Y; =true if at least one of the literals in the 7th clause is set to 1
e Setting of 3 literals in each clause is independent

e Pr{clause i is not satisfied} = (1/2)% = 1/8

e Pr{clause i is satisfied} = 1 — (1/2)® = 7/8

21-82: Randomized MAX-3-SAT

e Y; = I{clause i is satisfied}

e Y =number of satisfied clauses = .~ | Y;

CS673-2016F-21 NP & Approximation Algorithms

21

e Assuming m clauses

e Expected number of satisfied clauses: 7m/8
21-83: Randomized MAX-3-SAT

e Finding the expected approximation ratio:

e Largest possible number of satisfied clauses = m.
e Expected number of satisfied clauses = 7m/8

e Maximum expected approximation ratio: m/(7m/8) = 8/7
e Pick values randomly, expected approximation ratio is at most 8,/7

21-84: Subset-Sum Problem

e Subset-Sum Decision Problem
e Given:

o AsetS ={x1,x9,x3,...2,} of positive integers

o Atargett

e Is there a subset of S that sums exactly to ¢?
21-85: Subset-Sum Problem

e Subset-Sum Optimization Problem
e Given:

o AsetS ={x1,x9,x3,...2,} of positive integers

o Atargett

e Find a subset of S with the largest possible sum less than or equal to ¢

21-86: Subset-Sum Problem

CS673-2016F-21 NP & Approximation Algorithms

22

Exact-Subset-Sum(.S,)
n < |S|
L+ {0}
fori < 1ton
L + MergeLists(L, L + S[i))
Remove all elements larger than ¢ from L
return largest element in L

e L + S[i] means add S[i] to each element in L

e MergeLists: Merge two sorted lists, removing duplicates

21-87: Subset-Sum Problem

S =1{1,3,5}
o L={0}

o L=1{0,1}

o L=1{0,1,3,4}

L=1{0,1,3,4,5,6,8,9}

21-88: Subset-Sum Problem

S ={1,2,3}

o L={0}

o L=1{0,1}

o L=1{0,1,2,3}

L=1{0,1,2,3,4,5,6}

21-89: Subset-Sum Problem
e What is the worst-case running time?
21-90: Subset-Sum Problem

What is the worst-case running time?

e List L could be as large as 2"

e Running time is O(2")

e (Polynomial if sum of all elements in L is bound by a polynomial in |.S|)

21-91: Subset-Sum Problem

Algorithm is exponential because L can grow exponentially large

21-92: Subset-Sum Problem

e Algorithm is exponential because L can grow exponentially large

So, if we wanted an approximation in polynomial time, what could we do?

CS673-2016F-21 NP & Approximation Algorithms 23

e So, if we wanted an approximation in polynomial time, what could we do?

e Prune L to prevent it from getting too large
e Removing the wrong element could prevent us from finding an optimal solution

e How can we prune L to minimize / bound the error?
21-93: Subset-Sum Problem

e Basic idea:

o After creating the list L, “trim” it by removing elements
e If we have two elements that are close to each other, we remove the larger of them

e Sum can be off by the difference of the elements
21-94: Subset-Sum Problem

e Function TRIM, takes as input a list and a d, and trims all elements that are within § % of the previous element
in the list:

TRIM(L, 6)

m < |L]|

L'« L[1]

last + L[1]

fori < 2tom

if L[i] >last (1 + 9)

append L[i] to L'
last + L[]

return L'

21-95: Subset-Sum Problem

Approx-Subset-Sum(S, ¢, €)
n + |L|
L + {0}
fori < 1ton
L + MergeLists(L, L + S[i])
L + TRIM(L, ¢/2n)
remove elements greater than ¢ from L
return largest element in L

e Returns an element within (1 + €) of optimal
21-96: Subset-Sum Problem
S = {104,102, 201, 101}, t = 308, € = .4,5 = 0.05
o L ={0}
e L = {0,104}
e (no trimming)
e L = {0,102, 104, 206}
e 104 < 102 % 1.05

e L = {0,102,206}

CS673-2016F-21 NP & Approximation Algorithms

e L = {0,102, 201,206, 303, 407}

e 206 < 201 * 1.05
e 407 >t

e L = {0,102, 201, 303}
21-97: Subset-Sum Problem
S = {104, 102, 201, 101}, t = 308e = .4,5 = 0.05
e L = {0,102, 201, 303}
e L = {0,101, 102, 201, 203, 302, 303, 404}

e 102 < 101 * 1.05
e 203 < 201 % 1.05
e 303 < 302 % 1.05
e 404 > e

e L = {0,101, 201, 302}

Result: 302

Optimal: 307 (104 + 102 + 101)
Within 0.40 of optimal

21-98: Subset-Sum Problem

e Approx-Subset-Sum(.S, ¢, €)

e Always returns a result within (1 + €) of the true optimal
e Runs in time polynomial in length of input and 1/€

21-99: Subset-Sum Problem
e Runs in time polynomial in length of input and 1/e:

e First, we’ll find a bound on how long each list L; can be
e After each trimming, consider successive elements z, 2’
o Z//z>1+4¢/2n
e Largest that L; could be:
e 0,1,¢/2n,2¢/2n,3¢/2n ...
e size of L; <logyicjont+2
21-100: Subset-Sum Problem

e sizeof L; <logy /o, t

lo t = hlit_’_?

Si+e/m® = In(1+ €/2n)

2n(1+4¢/2n)Int
€

dnlnt 49

€

IN

+ 2

IN

e Bound is clearly polynnomial in size of input and %

ﬁgln(1+x)§:r,0<e<1

21-101: Subset-Sum Problem
e Always returns a result within (1 + ¢) of the true optimal

o See text, pg. 1048

