21-0: **Classes of Problems**

- Consider three problem classes:
 - Polynomial (P)
 - Nondeterministic Polynomial (NP)
 - NP-Complete

- (only scratch the surface, take Automata Theory to go in depth)

21-1: **Class P**

- Given a problem, we can find a solution in polynomial time
 - Time is polynomial in the length of the problem description
 - Encode the problem in some reasonable way (like a string S)
 - Can create a solution to the problem in time $O(|S|^k)$, for some constant k.

21-2: **Class P Example**

- Reachability
 - Given a Graph G, and two vertices x and y, is there a path from x to y in G?
 - Encode the graph as an adjacency list
 - Can solve the problem in polynomial time
 - DFS

21-3: **Euler Cycles**

- Given an undirected graph G, is there a cycle that traverses every edge exactly once?

![Euler Cycles Diagram]

21-4: **Euler Cycles**

- Given an undirected graph G, is there a cycle that traverses every edge exactly once?
21-5: **Euler Cycles**

- We can determine if a graph G has an Euler cycle in polynomial time.
- A graph G has an Euler cycle if and only if:
 - G is connected
 - All vertices in G have an even # of adjacent edges

21-6: **Euler Cycles**

- Pick any vertex, start following edges (only following an edge once) until you reach a “dead end” (no untraversed edges from the current node).
- Must be back at the node you started with
 - Why?
- Pick a new node with untraversed edges, create a new cycle, and splice it in
- Repeat until all edges have been traversed

21-7: **Class P Example**

- *Almost* every algorithm we’ve seen so far has been in P.
 - *Possible* exception: Knapsack problem
- If a problem is not in P, it takes exponential time to solve
 - Not practical for large problems

21-8: **NP**

- Nondeterministic Polynomial (NP) problems:
 - Given a solution, that solution Can be verified in polynomial time
 - If we could guess a solution to the problem (that’s the Non-deterministic part), we could verify the solution quickly (polynomial time)
 - All problems in P are also in NP
• Most problems are in NP

21-9: NP – Example

• Reachability is also in NP
• Given a graph G, and two vertices x and y, is there a path from x to y in G?
• Given a graph G and two vertices x and y, we can determine if the path does in fact connect x and y in G, in polynomial time
 • Make sure each edge in the path exists in the graph
• All problems in P are also in NP

21-10: Hamiltonian Cycles

• Given an undirected graph G, is there a cycle that visits every vertex exactly once?

21-11: Hamiltonian Cycles

• Given an undirected graph G, is there a cycle that visits every vertex exactly once?

21-12: Hamiltonian Cycles

• Given an undirected graph G, is there a cycle that visits every vertex exactly once?
 • Very similar to the Euler Cycle problem
21-13: **Satisfiability**

- A Boolean Formula in Conjunctive Normal Form (CNF) is a conjunction of disjunctions.
 - \((x_1 \lor x_2) \land (x_3 \lor \overline{x_2} \lor \overline{x_1}) \land (x_5)\)
 - \((x_3 \lor x_1 \lor x_5) \land (x_1 \lor \overline{x_5} \lor \overline{x_3}) \land (x_5)\)
- A Clause is a group of variables \(x_i\) (or negated variables \(\overline{x_j}\)) connected by ORs (\(\lor\))
- A Formula is a group of clauses, connected by ANDs (\(\land\))

21-14: **Satisfiability**

- Satisfiability Problem: Given a formula in Conjunctive Normal Form, is there a set of truth values for the variables in the formula which makes the formula true?

- \((x_1 \lor x_4) \land (\overline{x_2} \lor x_4) \land (x_3 \lor x_2) \land (\overline{x_1} \lor x_4) \land (\overline{x_2} \lor \overline{x_3}) \land (x_2 \lor x_4)\)
 - Satisfiable: \(x_1 = T, x_2 = F, x_3 = T, x_4 = F\)
- \((x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2}) \land (x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor x_2)\)
 - Not Satisfiable

21-15: **Class NP-Complete**

- A problem is NP-Complete if:
 - Problem is NP
 - If you could solve the problem in polynomial time, then you could solve *all* NP problems in polynomial time
- Reduction:
 - Given problem A, create an instance of problem B (in polynomial time)
 - Solution to problem B gives a solution to problem A
 - If we could solve B, in polynomial time, we could solve A

21-16: **Reduction Example**

- Given any instance of the Hamiltonian Cycle Problem:
 - We can (in polynomial time) create an instance of Satisfiability
 - That is, given any graph \(G\), we can create a boolean formula \(f\), such that \(f\) is satisfiable if and only if there is a Hamiltonian Cycle in \(G\)
 - If we could solve Satisfiability in Polynomial Time, we could solve the Hamiltonian Cycle problem in Polynomial Time

21-17: **Reduction Example**
• Given a graph \(G \) with \(n \) vertices, we will create a formula with \(n^2 \) variables:
 \[
 x_{11}, x_{12}, x_{13}, \ldots x_{1n} \\
 x_{21}, x_{22}, x_{23}, \ldots x_{2n} \\
 \ldots \\
 x_{n1}, x_{n2}, x_{n3}, \ldots x_{nn}
 \]

• Design our formula such that \(x_{ij} \) will be true if and only if the \(i \)th element in a Hamiltonian Circuit of \(G \) is vertex # \(j \)

21-18: Reduction Example

• For our set of \(n^2 \) variables \(x_{ij} \), we need to write a formula that ensures that:
 • For each \(i \), there is exactly one \(j \) such that \(x_{ij} = true \)
 • For each \(j \), there is exactly one \(i \) such that \(x_{ij} = true \)
 • If \(x_{ij} \) and \(x_{(i+1)k} \) are both true, then there must be a link from \(v_j \) to \(v_k \) in the graph \(G \)

21-19: Reduction Example

• For each \(i \), there is exactly one \(j \) such that \(x_{ij} = true \)
 • For each \(i \) in \(1 \ldots n \), add the rules:
 • \((x_{i1} \lor x_{i2} \lor \ldots \lor x_{in})\)
 • This ensures that for each \(i \), there is at least one \(j \) such that \(x_{ij} = true \)
 • (This adds \(n \) clauses to the formula)

21-20: Reduction Example

• For each \(i \), there is exactly one \(j \) such that \(x_{ij} = true \)

 for each \(i \) in \(1 \ldots n \)

 for each \(j \) in \(1 \ldots n \)

 for each \(k \) in \(1 \ldots n \) \(j \neq k \)

 Add rule \((\overline{x_{ij}} \lor \overline{x_{ik}})\)

• This ensures that for each \(i \), there is at most one \(j \) such that \(x_{ij} = true \)
• (this adds a total of \(n^3 \) clauses to the formula)

21-21: Reduction Example

• For each \(j \), there is exactly one \(i \) such that \(x_{ij} = true \)
 • For each \(j \) in \(1 \ldots n \), add the rules:
 • \((x_{1j} \lor x_{2j} \lor \ldots \lor x_{nj})\)
 • This ensures that for each \(j \), there is at least one \(i \) such that \(x_{ij} = true \)
 • (This adds \(n \) clauses to the formula)
21-22: Reduction Example

- For each \(j \), there is exactly one \(i \) such that \(x_{ij} = \text{true} \)

\[
\begin{align*}
\text{for each } j \in 1 \ldots n \\
\quad \text{for each } i \in 1 \ldots n \\
\quad \text{for each } k \in 1 \ldots n \\
\quad \text{Add rule } (x_{ij} \lor \overline{x_{kj}})
\end{align*}
\]

- This ensures that for each \(j \), there is at most one \(i \) such that \(x_{ij} = \text{true} \)
- (This adds a total of \(n^3 \) clauses to the formula)

21-23: Reduction Example

- If \(x_{ij} \) and \(x_{(i+1)k} \) are both true, then there must be a link from \(v_i \) to \(v_k \) in the graph \(G \)

\[
\begin{align*}
\text{for each } i \in 1 \ldots (n - 1) \\
\quad \text{for each } j \in 1 \ldots n \\
\quad \text{for each } k \in 1 \ldots n \\
\quad \text{if edge } (v_j, v_k) \text{ is not in the graph:} \\
\quad \text{Add rule } (x_{ij} \lor x_{(i+1)k})
\end{align*}
\]

- (This adds no more than \(n^3 \) clauses to the formula)

21-24: Reduction Example

- If \(x_{nj} \) and \(x_{0k} \) are both true, then there must be a link from \(v_i \) to \(v_k \) in the graph \(G \) (looping back to finish cycle)

\[
\begin{align*}
\text{for each } j \in 1 \ldots n \\
\quad \text{for each } k \in 1 \ldots n \\
\quad \text{if edge } (v_n, v_0) \text{ is not in the graph:} \\
\quad \text{Add rule } (x_{nj} \lor x_{0k})
\end{align*}
\]

- (This adds no more than \(n^2 \) clauses to the formula)

21-25: Reduction Example

- In order for this formula to be satisfied:
 - For each \(i \), there is exactly one \(j \) such that \(x_{ij} \) is true
 - For each \(j \), there is exactly one \(i \) such that \(x_{ji} \) is true
 - if \(x_{ij} \) is true, and \(x_{(i+1)k} \) is true, then there is an arc from \(v_j \) to \(v_k \) in the graph \(G \)
- Thus, the formula can only be satisfied if there is a Hamiltonian Cycle of the graph

21-26: Proving NP-Completeness

- Once you have the first NP-complete problem, easy to find more
21-27: Proving NP-Completeness

- First NP-Complete problem: Satisfiability (SAT)
 - SAT is NP-Complete
 - By reduction from the universal Turing machine
 - Reduce any algorithm that guesses and verifies to SAT
 - For the actual proof, see Automata Theory
 - Main goal of the class is to build up the formal tools needed to prove SAT is NP-Complete.

21-28: More NP-Complete Problems

- Exact Cover Problem
 - Set of elements A
 - $F \subseteq 2^A$, family of subsets
 - Is there a subset of F such that each element of A appears exactly once?

21-29: More NP-Complete Problems

- Exact Cover Problem
 - $A = \{a, b, c, d, e, f, g\}$
 - $F = \{\{a, b, c\}, \{d, e, f\}, \{b, f, g\}, \{g\}\}$
 - Exact cover exists:
 - $\{a, b, c\}, \{d, e, f\}, \{g\}$

21-30: More NP-Complete Problems

- Exact Cover Problem
 - $A = \{a, b, c, d, e, f, g\}$
 - $F = \{\{a, b, c\}, \{c, d, e, f\}, \{a, f, g\}, \{c\}\}$
 - No exact cover exists

21-31: More NP-Complete Problems

- Exact Cover is in NP
 - Guess a cover
 - Check that each element appears exactly once

- Exact Cover is NP-Complete
 - Reduction from Satisfiability
21-32: **Exact Cover is NP-Complete**

- Given any instance of Satisfiability, create (in polynomial time) an instance of Exact Cover

\[C_1 = (x_1 \lor x_2) \]
\[C_2 = (\overline{x_1} \lor x_2 \lor x_3) \]
\[C_3 = (x_2) \]
\[C_4 = (\overline{x_2} \lor \overline{x_3}) \]

- Formula: \(C_1 \land C_2 \land C_3 \land C_4 \)

Create an instance of Exact Cover

- Define a set \(A \) and family of subsets \(F \) such that there is an exact cover of \(A \) in \(F \) if and only if the formula is satisfiable

21-33: **Exact Cover is NP-Complete**

\[C_1 = (x_1 \lor x_2) \]
\[C_2 = (\overline{x_1} \lor x_2 \lor x_3) \]
\[C_3 = (x_2) \]
\[C_4 = (\overline{x_2} \lor \overline{x_3}) \]

- Formula: \(C_1 \land C_2 \land C_3 \land C_4 \)

Create an instance of Exact Cover

- Define a set \(A \) and family of subsets \(F \) such that there is an exact cover of \(A \) in \(F \) if and only if the formula is satisfiable

Directed Hamiltonian Cycle

- Given any directed graph \(G \), determine if \(G \) has a Hamiltonian Cycle

 - Cycle that includes every node in the graph exactly once, following the direction of the arrows
- The Directed Hamiltonian Cycle problem is NP-Complete
- Reduce Exact Cover to Directed Hamiltonian Cycle
 - Given any set \(A \), and family of subsets \(F \):
 - Create a graph \(G \) that has a hamiltonian cycle if and only if there is an exact cover of \(A \) in \(F \)

21-37: **Directed Hamiltonian Cycle**

- Widgets:
 - Consider the following graph segment:

![Graph Segment](image)

- If a graph containing this subgraph has a Hamiltonian cycle, then the cycle must contain either \(a \rightarrow u \rightarrow v \rightarrow w \rightarrow b \) or \(c \rightarrow w \rightarrow v \rightarrow u \rightarrow d \) – but not both (why)?

21-38: **Directed Hamiltonian Cycle**

- Widgets:
 - XOR edges: Exactly one of the edges must be used in a Hamiltonian Cycle

![Graph](image)

21-39: **Directed Hamiltonian Cycle**

- Widgets:
 - XOR edges: Exactly one of the edges must be used in a Hamiltonian Cycle

![Graph](image)
21-40: **Directed Hamiltonian Cycle**

- Add a vertex for every variable in A (+ 1 extra)

$$
\begin{align*}
\text{a}_3 & \quad \circ \\
\text{a}_2 & \quad \circ \\
\text{a}_1 & \quad \circ \\
\text{a}_0 & \quad \circ
\end{align*}
$$

$$
\begin{align*}
F_1 & = \{ \text{a}_1, \text{a}_2 \} \\
F_2 & = \{ \text{a}_3 \} \\
F_3 & = \{ \text{a}_2, \text{a}_3 \}
\end{align*}
$$

21-41: **Directed Hamiltonian Cycle**

- Add a vertex for every subset F (+ 1 extra)

$$
\begin{align*}
\text{a}_3 & \quad \circ \\
\text{a}_2 & \quad \circ \\
\text{a}_1 & \quad \circ \\
\text{a}_0 & \quad \circ
\end{align*}
$$

$$
\begin{align*}
F_0 & = \circ \\
F_1 & = \{ \text{a}_1, \text{a}_2 \} \\
F_2 & = \{ \text{a}_3 \} \\
F_3 & = \{ \text{a}_2, \text{a}_3 \}
\end{align*}
$$

21-42: **Directed Hamiltonian Cycle**

- Add an edge from the last variable to the 0th subset, and from the last subset to the 0th variable

$$
\begin{align*}
\text{a}_3 & \quad \circ \\
\text{a}_2 & \quad \circ \\
\text{a}_1 & \quad \circ \\
\text{a}_0 & \quad \circ
\end{align*}
$$

$$
\begin{align*}
F_0 & = \circ \\
F_1 & = \circ \\
F_2 & = \circ \\
F_3 & = \circ
\end{align*}
$$
21-43: Directed Hamiltonian Cycle

- Add 2 edges from F_i to F_{i+1}. One edge will be a “short edge”, and one will be a “long edge”.

21-44: Directed Hamiltonian Cycle

- Add an edge from a_{i-1} to a_i for each subset a_i appears in.
21-45: **Directed Hamiltonian Cycle**

- Each edge \((a_{i-1}, a_i)\) corresponds to some subset that contains \(a_i\). Add an XOR link between this edge and the long edge of the corresponding subset.

21-46: **Directed Hamiltonian Cycle**

\[
\begin{align*}
F_1 &= \{ a_1, a_2 \} \\
F_2 &= \{ a_3 \} \\
F_3 &= \{ a_2, a_3 \}
\end{align*}
\]

- XOR edge

21-47: **NP-Complete Problems**

- What if you need to solve an NP-Complete problem?

21-48: **NP-Complete Problems**

- What if you need to solve an NP-Complete problem?
 - If the problem is small, exponential solution is OK
 - Special case of an NP-Complete problem, that can be solved quickly (3-SAT vs. 2-SAT)
 - Approximate solution
21-49: **Approximation Ratio**

- An algorithm has an *approximation ratio* of $\rho(b)$ if, for any input size n, the cost of the solution produced by the algorithm is within a factor of $\rho(n)$ of an optimal solution

$$\max \left(\frac{C}{C^*}, \frac{C^*}{C} \right) \leq \rho(n)$$

- For a maximization problem, $0 < C \leq C^*$
- For a minimization problem, $0 < C^* \leq C$

21-50: **Approximation Ratio**

- Some problems have a polynomial solution, with $\rho(n) = c$ for a small constant c.
- For other problems, best-known polynomial solutions have an approximation ratio that is a function of n
 - Bigger problems \Rightarrow worse approximation ratios

21-51: **Approximation Scheme**

- Some approximation algorithm takes as input both the problem, and a value $\epsilon > 0$
 - For any fixed ϵ, $(1 + \epsilon)$-approximation algorithm
 - $\rho(n) = 1 + \epsilon$
- Running time increases as ϵ decreases

21-52: **Vertex Cover**

- Problem: Given an undirected graph $G = (V, E)$, find a $V' \subseteq V$ such that
 - For each edge $(u, v) \in E$, $u \in V'$ or $v \in V'$
 - $|V'|$ is as small as possible
- Vertex Cover is NP-Complete, optimal solutions will require exponential time
- Can you come up with an algorithm that will give a (possibly non-optimal) solution for the problem?

21-53: **Vertex Cover**

Approx-Vertex-Cover(V,E)

$C \leftarrow \{\}$
$E' \leftarrow E$
while $E' \neq \{\}$
 - let (u, v) be any edge in E'
 - $C \leftarrow C \cup \{u, v\}$
 - remove all edges from E' that contain u or v
21-54: Vertex Cover

\[C = \{a, c\} \]

21-55: Vertex Cover

\[C = \{a, c, d, e\} \]

21-56: Vertex Cover

\[C = \{a, c\} \]

21-57: Vertex Cover
$C = \{a, c, d, e, f, h\}$

21-58: Vertex Cover

$C = \{a, c, d, e, f, h\}$

21-59: Vertex Cover

$C = \{a, c, d, e, f, h\}$

21-60: Vertex Cover
Optimal

\[C = \{a, d, e, h\} \]

21-61: **Vertex Cover**

- Approx. Vertex-Cover is a polynomial-time 2-approximation algorithm
 - \(\rho(n) = 2 \)
- Let \(C \) be the set of vertices found by approx. algorithm
- Let \(C^* \) be the optimal set of vertices
- \(|C| \leq 2 \times |C^*| \)

21-62: **Vertex Cover**

- Let \(A \) be the set of edges selected by Approx. Vertex Cover
- Optimal vertex cover must pick at least one of the vertices for each edge in \(A \)
 - \(|C^*| \geq |A| \)
- Approx. vertex cover picked *both* vertices for each edge in \(A \):
 - \(|C| = 2 \times |A| \)
- Putting pieces together: \(|C^*| \geq |A| = |C|/2, |C| \leq 2 \times |C^*| \)

21-63: **TSP**

- Travelling Salesman problem
 - Complete, undirected graph \(G = (V, E) \)
 - Cost for each edge
 - Find a cycle that includes vertices, that minimizes total cost

21-64: **TSP w/ triangle inequality**

- TSP on plane
 - Each node has an x,y location
 - Cost bewteen nodes is the distance between nodes
• Slightly more general: TSP with triangle inequality
 • For any three vertices $v_1, v_2, v_3 \in V$, $c(v_1, v_2) + c(v_2, v_3) \geq c(v_1, v_3)$

21-65: **Approximate TSP**

Approx-TSP(V, E, c)
 - select any vertex $r \in V$ as root vertex
 - Compute MST T of graph from root r using Prim
 - $L \leftarrow$ list of vertices visited in preorder tree walk of T
 - return L

21-66: **Approximate TSP**

```
      c
    /   |
   a     b
    |
   d
```

Edges between all pairs of vertices
cost = distance between vertices

21-67: **Approximate TSP**

```
      c
    /   |
   a     b
    |
   d
```

Start with vertex a
create MST

21-68: **Approximate TSP**
Preorder Traversal of MST
a, e, g, f, b, d, c

21-69: Approximate TSP

Traversal => Tour
a, e, g, f, b, d, c

21-70: Approximate TSP

Best TSP tour
a, e, g, f, d, c, b

21-71: Approximate TSP

- Approximate-TSP finds a tour whose cost is at most twice the cost of the optimal TSP
• \(\rho(n) \leq 2 \)
• Why?

21-72: **Approximate TSP**

• Cost of TSP Tour \(\geq \) cost of MST
• Consider a “full walk” of MST (revisit vertices)

21-73:

"full walk" of MST
a,e,g,e,f,e,a,b,d,b,c,b,a

21-74: **Approximate TSP**

• Cost of “full walk” = 2 * cost MST
 • Since we are following each edge twice
• Not a valid tour
 • Repeated vertices
• Remove repeated vertices, get preorder walk
 • Cost of preorder walk \(\leq \) cost of full walk – triangle inequality

21-75: **Approximate TSP**

• Cost of approximate TSP tour \(\leq \) cost of full walk
• Cost of full walk \(\leq 2 \times \) cost of MST
• Cost of MST \(\leq \) cost of optimal TSP tour

Cost of approximate TSP tour \(\leq 2 \times \) cost of optimal tour

21-76: **General TSP**

• Alas, our algorithm does not generalize to all TSP
 • Relied on the triangle inequality
• No good approximate tours can be found in polynomial time for TSP, unless NP = P
21-77: **Randomized Approximation**

- Randomized algorithms can be used to calculate approximate solutions
 - Unsurprising, we’ve used randomized algorithms to calculate exact values – Randomized Quicksort
- Randomized Approximation Algorithms are a little different
 - Random values that are picked affect the outcome
 - Instead of an approximation ratio, we have an *expected approximation ratio*

21-78: **Randomized MAX-3-SAT**

- MAX-3-SAT
 - Satisfiability Problem,
 - Each clause contains exactly 3 variables
 - No variable is repeated in the same clause
 - Trying to maximize the number of satisfied clauses

21-79: **Randomized MAX-3-SAT**

- Algorithm is extremely simple:
 - For each variable \(x_i \):
 - Set \(x_i = \text{True} \) with Probability 0.5
 - What is an upper limit to the expected approximation ratio?

21-80: **Randomized MAX-3-SAT**

- \(Y_i = I \{ \text{clause } i \text{ is satisfied} \} \)
 - So \(Y_i = \text{true} \) if at least one of the literals in the \(i \)th clause is set to 1
 - Setting of 3 literals in each clause is independent
 - \(Pr \{ \text{clause } i \text{ is not satisfied} \} = (1/2)^3 = 1/8 \)
 - \(Pr \{ \text{clause } i \text{ is satisfied} \} = 1 - (1/2)^3 = 7/8 \)

21-81: **Randomized MAX-3-SAT**

- \(Y_i = I \{ \text{clause } i \text{ is satisfied} \} \)
 - So \(Y_i = \text{true} \) if at least one of the literals in the \(i \)th clause is set to 1
 - Setting of 3 literals in each clause is independent
 - \(Pr \{ \text{clause } i \text{ is not satisfied} \} = (1/2)^3 = 1/8 \)
 - \(Pr \{ \text{clause } i \text{ is satisfied} \} = 1 - (1/2)^3 = 7/8 \)

21-82: **Randomized MAX-3-SAT**

- \(Y_i = I \{ \text{clause } i \text{ is satisfied} \} \)
- \(Y = \text{number of satisfied clauses} = \sum_{i=1}^{m} Y_i \)
• Assuming m clauses

\[
E[Y] = E[\sum_{i=1}^{m}]
\]
\[
= \sum_{i=1}^{m} E[Y_i]
\]
\[
= \sum_{i=1}^{m} \frac{7}{8}
\]
\[
= \frac{7m}{8}
\]

• Expected number of satisfied clauses: $\frac{7m}{8}$

21-83: **Randomized MAX-3-SAT**

• Finding the expected approximation ratio:

 • Largest possible number of satisfied clauses = m.

 • Expected number of satisfied clauses = $\frac{7m}{8}$

 • Maximum expected approximation ratio: $m/(\frac{7m}{8}) = \frac{8}{7}$

 • Pick values randomly, expected approximation ratio is at most $\frac{8}{7}$

21-84: **Subset-Sum Problem**

• Subset-Sum Decision Problem

• Given:

 • A set $S = \{x_1, x_2, x_3, \ldots x_n\}$ of positive integers

 • A target t

 • Is there a subset of S that sums exactly to t?

21-85: **Subset-Sum Problem**

• Subset-Sum Optimization Problem

• Given:

 • A set $S = \{x_1, x_2, x_3, \ldots x_n\}$ of positive integers

 • A target t

 • Find a subset of S with the largest possible sum less than or equal to t
Exact-Subset-Sum(S, t)

$n \leftarrow |S|

L \leftarrow \{0\}

\text{for } i \leftarrow 1 \text{ to } n$

$L \leftarrow \text{MergeLists}(L, L + S[i])$

Remove all elements larger than t from L

return largest element in L

- $L + S[i]$ means add $S[i]$ to each element in L
- MergeLists: Merge two sorted lists, removing duplicates

21-87: Subset-Sum Problem

$S = \{1, 3, 5\}$

- $L = \{0\}$
- $L = \{0, 1\}$
- $L = \{0, 1, 3, 4\}$
- $L = \{0, 1, 3, 4, 5, 6, 8, 9\}$

21-88: Subset-Sum Problem

$S = \{1, 2, 3\}$

- $L = \{0\}$
- $L = \{0, 1\}$
- $L = \{0, 1, 2, 3\}$
- $L = \{0, 1, 2, 3, 4, 5, 6\}$

21-89: Subset-Sum Problem

- What is the worst-case running time?

21-90: Subset-Sum Problem

- What is the worst-case running time?
 - List L could be as large as 2^n
 - Running time is $O(2^n)$
 - (Polynomial if sum of all elements in L is bound by a polynomial in $|S|$)

21-91: Subset-Sum Problem

- Algorithm is exponential because L can grow exponentially large

- So, if we wanted an approximation in polynomial time, what could we do?

21-92: Subset-Sum Problem

- Algorithm is exponential because L can grow exponentially large
• So, if we wanted an approximation in polynomial time, what could we do?
 • Prune L to prevent it from getting too large
 • Removing the wrong element could prevent us from finding an optimal solution
 • How can we prune L to minimize / bound the error?

21-93: Subset-Sum Problem

• Basic idea:
 • After creating the list L, “trim” it by removing elements
 • If we have two elements that are close to each other, we remove the larger of them
 • Sum can be off by the difference of the elements

21-94: Subset-Sum Problem

• Function TRIM, takes as input a list and a δ, and trims all elements that are within $\delta \%$ of the previous element in the list:

\[
\text{TRIM}(L, \delta) \\
\quad m \leftarrow |L| \\
\quad L' \leftarrow L[1] \\
\quad \text{last} \leftarrow L[1] \\
\quad \text{for } i \leftarrow 2 \text{ to } m \\
\quad \quad \text{if } L[i] > \text{last} \times (1 + \delta) \\
\quad \quad \quad \text{append } L[i] \text{ to } L' \\
\quad \quad \quad \text{last} \leftarrow L[i] \\
\quad \text{return } L'
\]

21-95: Subset-Sum Problem

Approx-Subset-Sum(S, t, ϵ)

\[
\quad n \leftarrow |L| \\
\quad L \leftarrow \{0\} \\
\quad \text{for } i \leftarrow 1 \text{ to } n \\
\quad \quad L \leftarrow \text{MergeLists}(L, L + S[i]) \\
\quad \quad L \leftarrow \text{TRIM}(L, \epsilon / 2n) \\
\quad \quad \text{remove elements greater than } t \text{ from } L \\
\quad \text{return largest element in } L
\]

• Returns an element within $(1 + \epsilon)$ of optimal

21-96: Subset-Sum Problem

$S = \{104, 102, 201, 101\}$, $t = 308$, $\epsilon = .4$, $\delta = 0.05$

• $L = \{0\}$
• $L = \{0, 104\}$
 • (no trimming)
• $L = \{0, 102, 104, 206\}$
 • $104 < 102 \times 1.05$
• $L = \{0, 102, 206\}$
• \(L = \{0, 102, 201, 206, 303, 407\} \)
 - 206 < 201 \times 1.05
 - 407 > t
• \(L = \{0, 102, 201, 303\} \)

21-97: **Subset-Sum Problem**

\(S = \{104, 102, 201, 101\} \), \(t = 308 \)

• \(L = \{0, 102, 201, 303\} \)
• \(L = \{0, 101, 102, 201, 302, 303, 404\} \)
 - 102 < 101 \times 1.05
 - 203 < 201 \times 1.05
 - 303 < 302 \times 1.05
 - 404 > t
• \(L = \{0, 101, 201, 302\} \)

• Result: 302
• Optimal: 307 (104 + 102 + 101)
• Within 0.40 of optimal

21-98: **Subset-Sum Problem**

• Approx-Subset-Sum\((S, t, \epsilon)\)
 - Always returns a result within \((1 + \epsilon)\) of the true optimal
 - Runs in time polynomial in length of input and \(1/\epsilon\)

21-99: **Subset-Sum Problem**

• Runs in time polynomial in length of input and \(1/\epsilon\):
 - First, we’ll find a bound on how long each list \(L_i\) can be
 - After each trimming, consider successive elements \(z, z’\)
 - \(z’/z > 1 + \epsilon/2n\)
 - Largest that \(L_i\) could be:
 - 0, 1, \(\epsilon/2n\), \(2\epsilon/2n\), \(3\epsilon/2n\)...
 - size of \(L_i < \log_{1+\epsilon/2n} t + 2\)

21-100: **Subset-Sum Problem**

• size of \(L_i < \log_{1+\epsilon/2n} t\)

\[
\log_{1+\epsilon/2n} t = \frac{\ln t}{\ln(1 + \epsilon/2n)} + 2 \\
\leq \frac{2n(1 + \epsilon/2n) \ln t}{\epsilon} + 2 \\
\leq \frac{4n \ln t}{\epsilon} + 2
\]

• Bound is clearly polynnomial in size of input and \(1/\epsilon\)

21-101: **Subset-Sum Problem**

• Always returns a result within \((1 + \epsilon)\) of the true optimal
 - See text, pg. 1048