
CS673-2016F-21 NP & Approximation Algorithms 1

21-0: Classes of Problems

• Consider three problem classes:

• Polynomial (P)

• Nondeterminisitic Polynomial (NP)

• NP-Complete

• (only scratch the surface, take Automata Theory to go in depth)

21-1: Class P

• Given a problem, we can find a solution in polynomial time

• Time is polynomial in the length of the problem description

• Encode the problem in some resonable way (like a string S)

• Can create a solution to the problem in time O(|S|k), for some constant k.

21-2: Class P Example

• Reachability

• Given a Graph G, and two vertices x and y, is there a path from x to y in G?

• Encode the graph as an adjacency list

• Can solve the problem in polynomial time

• DFS

21-3: Euler Cycles

• Given an undirected graph G, is there a cycle that traverses every edge exactly once?

21-4: Euler Cycles

• Given an undirected graph G, is there a cycle that traverses every edge exactly once?

CS673-2016F-21 NP & Approximation Algorithms 2

1

23

4

5

6

7

8

9

10

11

12

13

21-5: Euler Cycles

• We can determine if a graph G has an Euler cycle in polynomial time.

• A graph G has an Euler cycle if and only if:

• G is connected

• All vertices in G have an even # of adjacent edges

21-6: Euler Cycles

• Pick any vertex, start following edges (only following an edge once) until you reach a “dead end” (no untraversed

edges from the current node).

• Must be back at the node you started with

• Why?

• Pick a new node with untraversed edges, create a new cycle, and splice it in

• Repeat until all edges have been traversed

21-7: Class P Example

• Almost every algorithm we’ve seen so far has been in P.

• Possible exception: Knapsack problem

• If a problem is not in P, it takes exponential time to solve

• Not practical for large problems

21-8: NP

• Nondeterministic Polynomial (NP) problems:

• Given a solution, that solution Can be verified in polynomial time

• If we could guess a solution to the problem (that’s the Non-deterministic part), we could verify the solution

quickly (polynomial time)

• All problems in P are also in NP

CS673-2016F-21 NP & Approximation Algorithms 3

• Most problems are in NP

•

21-9: NP – Example

• Reachability is also in NP

• Given a Graph G, and two vertices x and y, is there a path from x to y in G?

• Given a graph G and two verticies x and y, we can determine if the path does in fact connect x and y ing G, in

polynomial time

• Make sure each edge in the path exists in the graph

• All problems in P are also in NP

21-10: Hamiltonian Cycles

• Given an undirected graph G, is there a cycle that visits every vertex exactly once?

21-11: Hamiltonian Cycles

• Given an undirected graph G, is there a cycle that visits every vertex exactly once?

21-12: Hamiltonian Cycles

• Given an undirected graph G, is there a cycle that visits every vertex exactly once?

• Very similar to the Euler Cycle problem

CS673-2016F-21 NP & Approximation Algorithms 4

• Verifyable in polynomial time

• No known polynomial time solution

21-13: Satisfiability

• A Boolean Formula in Conjunctive Normal Form (CNF) is a conjunction of disjunctions.

• (x1 ∨ x2) ∧ (x3 ∨ x2 ∨ x1) ∧ (x5)

• (x3 ∨ x1 ∨ x5) ∧ (x1 ∨ x5 ∨ x3) ∧ (x5)

• A Clause is a group of variables xi (or negated variables xj) connected by ORs (∨)

• A Formula is a group of clauses, connected by ANDs (∧)

21-14: Satisfiability

• Satisfiability Problem: Given a formula in Conjunctive Normal Form, is there a set of truth values for the

variables in the formula which makes the formula true?

• (x1 ∨ x4) ∧ (x2 ∨ x4) ∧ (x3 ∨ x2)∧

(x1 ∨ x4) ∧ (x2 ∨ x3) ∧ (x2 ∨ x4)

• Satisfiable: x1 = T, x2 = F, x3 = T, x4 = F

• (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x2)

• Not Satisfiable

21-15: Class NP-Complete

• A problem is NP-Complete if:

• Problem is NP

• If you could solve the problem in polynomial time, then you could solve all NP problems in polynomial

time

• Reduction:

• Given problem A, create an instance of problem B (in polynomial time)

• Solution to problem B gives a solution to problem A

• If we could solve B, in polynomial time, we could solve A

21-16: Reduction Example

• Given any instance of the Hamiltonian Cycle Problem:

• We can (in polynomial time) create an instance of Satisfiability

• That is, given any graph G, we can create a boolean formula f , such that f is satisfiable if and only if there

is a Hamiltonian Cycle in G

• If we could solve Satisfiability in Polynomial Time, we could solve the Hamiltonian Cycle problem in Polyno-

mial Time

21-17: Reduction Example

CS673-2016F-21 NP & Approximation Algorithms 5

• Given a graph G with n vertices, we will create a formula with n2 variables:

• x11, x12, x13, . . . x1n

x21, x22, x23, . . . x2n

. . .
xn1, xn2, xn3, . . . xnn

• Design our formula such that xij will be true if and only if the ith element in a Hamiltonian Circuit of G is

vertex # j

21-18: Reduction Example

• For our set of n2 variables xij , we need to write a formula that ensures that:

• For each i, there is exactly one j such that xij = true

• For each j, there is exactly one i such that xij = true

• If xij and x(i+1)k are both true, then there must be a link from vj to vk in the graph G

21-19: Reduction Example

• For each i, there is exactly one j such that xij = true

• For each i in 1 . . . n, add the rules:

• (xi1 ∨ xi2 ∨ . . . ∨ xin)

• This ensures that for each i, there is at least one j such that xij = true

• (This adds n clauses to the formula)

21-20: Reduction Example

• For each i, there is exactly one j such that xij = true

for each i in 1 . . . n
for each j in 1 . . . n

for each k in 1 . . . n j 6= k
Add rule (xij ∨ xik)

• This ensures that for each i, there is at most one j such that xij = true

• (this adds a total of n3 clauses to the formula)

21-21: Reduction Example

• For each j, there is exactly one i such that xij = true

• For each j in 1 . . . n, add the rules:

• (x1j ∨ x2j ∨ . . . ∨ xnj)

• This ensures that for each j, there is at least one i such that xij = true

• (This adds n clauses to the formula)

CS673-2016F-21 NP & Approximation Algorithms 6

21-22: Reduction Example

• For each j, there is exactly one i such that xij = true

for each j in 1 . . . n
for each i in 1 . . . n

for each k in 1 . . . n
Add rule (xij ∨ xkj)

• This ensures that for each j, there is at most one i such that xij = true

• (This adds a total of n3 clauses to the formula)

21-23: Reduction Example

• If xij and x(i+1)k are both true, then there must be a link from vi to vk in the graph G

for each i in 1 . . . (n− 1)
for each j in 1 . . . n

for each k in 1 . . . n
if edge (vj , vk) is not in the graph:

Add rule (xij ∨ x(i+1)k)

• (This adds no more than n3 clauses to the formula)

21-24: Reduction Example

• If xnj and x0k are both true, then there must be a link from vi to vk in the graph G (looping back to finish cycle)

for each j in 1 . . . n
for each k in 1 . . . n

if edge (vn, v0) is not in the graph:

Add rule (xnj ∨ x0k)

• (This adds no more than n2 clauses to the formula)

21-25: Reduction Example

• In order for this formula to be satisfied:

• For each i, there is exactly one j such that xij is true

• For each j, there is exactly one i such that xji is true

• if xij is true, and x(i+1)k is true, then there is an arc from vj to vk in the graph G

• Thus, the formula can only be satisfied if there is a Hamiltonian Cycle of the graph

21-26: Proving NP-Completeness

• Once you have the first NP-complete problem, easy to find more

CS673-2016F-21 NP & Approximation Algorithms 7

• Given an NP-Complete problem P

• Different problem P ′

• Polynomial-time reduction from P to P ′

• P ′ must be NP-Complete

21-27: Proving NP-Completeness

• First NP-Complete problem: Satisfiability (SAT)

• SAT is NP-Complete

• By reduction from the universal Turing machine

• Reduce any algorithm that guesses and verifies to SAT

• For the actual proof, see Automata Theory

• Main goal of the class is to build up the formal tools needed to prove SAT is NP-Complete.

21-28: More NP-Complete Problems

• Exact Cover Problem

• Set of elements A

• F ⊂ 2A, family of subsets

• Is there a subset of F such that each element of A appears exactly once?

21-29: More NP-Complete Problems

• Exact Cover Problem

• A = {a, b, c, d, e, f, g}

• F = {{a, b, c}, {d, e, f}, {b, f, g}, {g}}

• Exact cover exists:

{a, b, c}, {d, e, f}, {g}

21-30: More NP-Complete Problems

• Exact Cover Problem

• A = {a, b, c, d, e, f, g}

• F = {{a, b, c}, {c, d, e, f}, {a, f, g}, {c}}

• No exact cover exists

21-31: More NP-Complete Problems

• Exact Cover is in NP

• Guess a cover

• Check that each element appears exactly once

• Exact Cover is NP-Complete

• Reduction from Satisfiability

CS673-2016F-21 NP & Approximation Algorithms 8

• Given any instance of Satisfiability, create (in polynomial time) an instance of Exact Cover

21-32: Exact Cover is NP-Complete

• Given an instance of SAT:

• C1 = (x1,∨x2)

• C2 = (x1 ∨ x2 ∨ x3)

• C3 = (x2)

• C4 = (x2, x3)

• Formula: C1 ∧C2 ∧ C3 ∧ C4

• Create an instance of Exact Cover

• Define a set A and family of subsets F such that there is an exact cover of A in F if and only if the formula

is satisfiable

21-33: Exact Cover is NP-Complete

C1 = (x1 ∨ x2) C2 = (x1 ∨ x2 ∨ x3) C3 = (x2) C4 = (x2 ∨ x3)

A = {x1, x2, x3, C1, C2, C3, C4, p11, p12, p21, p22, p23, p31, p41, p42}
F = {{p11}, {p12}, {p21}, {p22}, {p23}, {p31}, {p41}, {p42},
X1, f = {x1, p11}
X1, t = {x1, p21}
X2, f = {x2, p22, p31}
X2, t = {x2, p12, p41}
X3, f = {x3, p23}
X3, t = {x3, p42}

{C1, p11}, {C1, p12}, {C2, p21}, {C2, p22}, {C2, p23}, {C3, p31}, {C4, p41}, {C4, p422}} 21-34: Directed Hamilto-

nian Cycle

• Given any directed graph G, determine if G has a a Hamiltonian Cycle

• Cycle that includes every node in the graph exactly once, following the direction of the arrows

21-35: Directed Hamiltonian Cycle

• Given any directed graph G, determine if G has a a Hamiltonian Cycle

• Cycle that includes every node in the graph exactly once, following the direction of the arrows

21-36: Directed Hamiltonian Cycle

CS673-2016F-21 NP & Approximation Algorithms 9

• The Directed Hamiltonian Cycle problem is NP-Complete

• Reduce Exact Cover to Directed Hamiltonian Cycle

• Given any set A, and family of subsets F :

• Create a graph G that has a hamiltonian cycle if and only if there is an exact cover of A in F

21-37: Directed Hamiltonian Cycle

• Widgets:

• Consider the following graph segment:

a

d

b

c

u v w

• If a graph containing this subgraph has a Hamiltonian cycle, then the cycle must contain either a → u →
v → w→ b or c→ w→ v → u→ d – but not both (why)?

21-38: Directed Hamiltonian Cycle

• Widgets:

• XOR edges: Exactly one of the edges must be used in a Hamiltonian Cycle

a

d

b

c

21-39: Directed Hamiltonian Cycle

• Widgets:

• XOR edges: Exactly one of the edges must be used in a Hamiltonian Cycle

a

d

b

c f e

a b

f cde

CS673-2016F-21 NP & Approximation Algorithms 10

21-40: Directed Hamiltonian Cycle

• Add a vertex for every variable in A (+ 1 extra)

F = {a ,a }
F = {a }
F = {a ,a }

1

2

3

1

3

2 3

1a

0a

2a

3a
2

21-41: Directed Hamiltonian Cycle

• Add a vertex for every subset F (+ 1 extra)

F = {a ,a }
F = {a }
F = {a ,a }

1

2

3

1

3

2 3

2F

1F

3F

0F

1a

0a

2a

3a
2

21-42: Directed Hamiltonian Cycle

• Add an edge from the last variable to the 0th subset, and from the last subset to the 0th variable

CS673-2016F-21 NP & Approximation Algorithms 11

F = {a ,a }
F = {a }
F = {a ,a }

1

2

3

1

3

2 3

2F

1F

3F

0F

1a

0a

2a

3a
2

21-43: Directed Hamiltonian Cycle

• Add 2 edges from Fi to Fi+1. One edge will be a “short edge”, and one will be a “long edge”.

F = {a ,a }
F = {a }
F = {a ,a }

1

2

3

1

3

2 3

2F

1F

3F

0F

1a

0a

2a

3a
2

21-44: Directed Hamiltonian Cycle

• Add an edge from ai−1 to ai for each subset ai appears in.

CS673-2016F-21 NP & Approximation Algorithms 12

F = {a ,a }
F = {a }
F = {a ,a }

1

2

3

1

3

2 3

2F

1F

3F

0F

1a

0a

2a

3a
2

21-45: Directed Hamiltonian Cycle

• Each edge (ai−1, ai) corresponds to some subset that contains ai. Add an XOR link between this edge and the

long edge of the corresponding subset

21-46: Directed Hamiltonian Cycle

F = {a ,a }
F = {a ,a }
F = {a ,a }
F = {a }

1

2

3

4

2

2

1

2

4

3

2F

1F

3F

4F

0F

2a

1a

3a

4a

0a

4

XOR edge

———————————————————————- SLIDE - 21-47: NP-Complete Problems

• What if you need to solve an NP-Complete problem?

21-48: NP-Complete Problems

• What if you need to solve an NP-Complete problem?

• If the problem is small, exponential solution is OK

• Special case of an NP-Complete problem, that can be solved quickly (3-SAT vs. 2-SAT)

• Approximate solution

CS673-2016F-21 NP & Approximation Algorithms 13

21-49: Approximation Ratio

• An algorithm has an approximation ratio of ρ(b) if, for any input size n, the cost of the solution produced by

the algorithm is within a factor of ρ(n) of an optimal solution

max

(

C

C∗
,
C∗

C

)

≤ ρ(n)

• For a maximization problem, 0 < C ≤ C∗

• For a minimizaion problem, 0 < C∗ ≤ C

21-50: Approximation Ratio

• Some problems have a polynomial solution, with ρ(n) = c for a small constant c.

• For other problems, best-known polynomial solutions have an approximation ration that is a function of n

• Bigger problems⇒ worse approximation ratios

21-51: Approximation Scheme

• Some approximation algorithm takes as input both the problem, and a value ǫ > 0

• For any fixed ǫ, (1 + ǫ)-approximation algorithm

• ρ(n) = 1 + ǫ

• Running time increases as ǫ decreases

21-52: Vertex Cover

• Problem: Given an undirected graph G = (V,E), find a V ′ ⊆ V such that

• For each edge (u, v) E, u ∈ V ′ or v ∈ V ′

• |V ′| is as small as possible

• Vertex Cover is NP-Complete, optimal solutions will require exponential time

• Can you come up with an algorithm that will give a (possiblly non-optimal) solution for the problem?

21-53: Vertex Cover

Approx-Vertex-Cover(V,E)

C ← {}
E′ ← E
while E′ 6= {}

let (u, v) be any edge in E′

C ← C ∪ {u, v}
remove all edges from E′ that contain

u or v

CS673-2016F-21 NP & Approximation Algorithms 14

21-54: Vertex Cover

a c

b d

e

f

g

h
21-55: Vertex Cover

a c

b d

e

f

g

h

C = {a, c}
21-56: Vertex Cover

a c

b d

e

f

g

h

C = {a, c, d, e}
21-57: Vertex Cover

CS673-2016F-21 NP & Approximation Algorithms 15

a c

b d

e

f

g

h

C = {a, c, d, e, f, h}
21-58: Vertex Cover

a c

b d

e

f

g

h

C = {a, c, d, e, f, h}
21-59: Vertex Cover

a c

b d

e

f

g

h

C = {a, c, d, e, f, h}
21-60: Vertex Cover

CS673-2016F-21 NP & Approximation Algorithms 16

a c

b d

e

f

g

h

C = {a, d, e, h}

Optimal

21-61: Vertex Cover

• Approx. Vertex-Cover is a polynomial-time 2-approximation algorithm

• ρ(n) = 2

• Let C be the set of vertices found by approx. algorithm

• Let C∗ be the optimal set of vertices

• |C| ≤ 2 ∗ |C∗|

21-62: Vertex Cover

• Let A be the set of edges selected by Approx. Vertex Cover

• Optimal vertex cover must pick at least one of the vertices for each edge in A

• |C∗| ≥ |A|

• Approx. vertex cover picked both vertices for each edge in A:

• |C| = 2 ∗ |A|

• Putting pieces together: |C∗| ≥ |A| = |C|/2, |C| ≤ 2 ∗ |C∗|

21-63: TSP

• Travelling Salesman problem

• Complete, undirected graph G = (V,E)

• Cost for each edge

• Find a cycle that includes vertices, that minimizes total cost

21-64: TSP w/ triangle inequality

• TSP on plane

• Each node has an x,y location

• Cost bewteen nodes is the distance between nodes

CS673-2016F-21 NP & Approximation Algorithms 17

• Slighly more general: TSP with triangle inequality

• For any three vertices v1, v2, v3 ∈ V , c(v1, v2) + c(v2, v3) ≥ c(v1, v3)

21-65: Approximate TSP

Approx-TSP(V,E, c)
select any vertex r ∈ V as root vertex

Compute MST T of graph from root r using Prim

L← list of vertices visited in preorder tree

walk of T
return L

21-66: Approximate TSP

a b

e

f

c

g

d

Edges between all pairs of vertices
cost = distance between vertices

21-67: Approximate TSP

a b

e

f

c

g

d

Start with vertex a
create MST

21-68: Approximate TSP

CS673-2016F-21 NP & Approximation Algorithms 18

a b

e

f

c

g

d

Preoder Traversal of MST
a,e,g,f,b,d,c

21-69: Approximate TSP

a b

e

f

c

g

d

Traversal => Tour
a,e,g,f,b,d,c

21-70: Approximate TSP

a b

e

f

c

g

d

Best TSP tour
a,e,g,f,d,c,b

21-71: Approximate TSP

• Approximate-TSP finds a tour whose cost is at most twice the cost of the optimal TSP

CS673-2016F-21 NP & Approximation Algorithms 19

• ρ(n) ≤ 2

• Why?

21-72: Approximate TSP

• Cost of TSP Tour ≥ cost of MST

• Consider a “full walk” of MST (revisit vertices)

21-73: Approximate TSP

a b

e

f

c

g

d

"full walk" of MST
a,e,g,e,f,e,a,b,d,b,c,b,a

21-74: Approximate TSP

• Cost of “full walk” = 2 * cost MST

• Since we are following each edge twice

• Not a valid tour

• Repeated vertices

• Remove repeated vertices, get preorder walk

• Cost of preorder walk ≤ cost of full walk – triangle inequality

21-75: Approximate TSP

• Cost of approximate TSP tour ≤ cost of full walk

• Cost of full walk ≤ 2 * cost of MST

• Cost of MST ≤ cost of optimal TSP tour

Cost of approximate TSP tour ≤ 2 * cost of optimal tour

21-76: General TSP

• Alas, our algorithm does not generalize to all TSP

• Relied on the triangle inequality

• No good approximate tours can be found in polynomial time for TSP, unless NP = P

CS673-2016F-21 NP & Approximation Algorithms 20

• See text for proof

21-77: Randomized Approximation

• Randomized algorithms can be used to calculate approximate solutions

• Unsurprising, we’ve used randomized algorithms to calculate exact values – Randomized Quicksort

• Randomized Approximation Algorithms are a little different

• Random values that are picked affect the outcome

• Instead of an approximation ratio, we have an expected approximation ratio

21-78: Randomized MAX-3-SAT

• MAX-3-SAT

• Satisfiability Problem,

• Each clause contains exactly 3 variables

• No variable is repeated in the same clause

• Trying to maximize the number of satisfied clauses

21-79: Randomized MAX-3-SAT

• Algorithm is extremely simple:

• For each variable xi:

• Set xi =True with Probability 0.5

• What is an upper limit to the expected approximation ratio?

21-80: Randomized MAX-3-SAT

• Yi = I{clause i is satisfied}

• So Yi =true if at least one of the literals in the ith clause is set to 1

• Setting of 3 literals in each clause is independent

• Pr{clause i is not satisfied} =

21-81: Randomized MAX-3-SAT

• Yi = I{clause i is satisfied}

• So Yi =true if at least one of the literals in the ith clause is set to 1

• Setting of 3 literals in each clause is independent

• Pr{clause i is not satisfied} = (1/2)3 = 1/8

• Pr{clause i is satisfied} = 1− (1/2)3 = 7/8

21-82: Randomized MAX-3-SAT

• Yi = I{clause i is satisfied}

• Y =number of satisfied clauses =
∑m

i=1 Yi

CS673-2016F-21 NP & Approximation Algorithms 21

• Assuming m clauses

E[Y] = E[

m
∑

i=1

]

=

m
∑

i=1

E[Yi]

=
m
∑

i=1

7/8

= 7m/8

• Expected number of satisfied clauses: 7m/8

21-83: Randomized MAX-3-SAT

• Finding the expected approximation ratio:

• Largest possible number of satisfied clauses = m.

• Expected number of satisfied clauses = 7m/8

• Maximum expected approximation ratio: m/(7m/8) = 8/7

• Pick values randomly, expected approximation ratio is at most 8/7

21-84: Subset-Sum Problem

• Subset-Sum Decision Problem

• Given:

• A set S = {x1, x2, x3, . . . xn} of positive integers

• A target t

• Is there a subset of S that sums exactly to t?

21-85: Subset-Sum Problem

• Subset-Sum Optimization Problem

• Given:

• A set S = {x1, x2, x3, . . . xn} of positive integers

• A target t

• Find a subset of S with the largest possible sum less than or equal to t

21-86: Subset-Sum Problem

CS673-2016F-21 NP & Approximation Algorithms 22

Exact-Subset-Sum(S, t)
n← |S|
L← {0}
for i← 1 to n
L←MergeLists(L,L+ S[i])
Remove all elements larger than t from L

return largest element in L

• L+ S[i] means add S[i] to each element in L

• MergeLists: Merge two sorted lists, removing duplicates

21-87: Subset-Sum Problem

S = {1, 3, 5}

• L = {0}

• L = {0, 1}

• L = {0, 1, 3, 4}

• L = {0, 1, 3, 4, 5, 6, 8, 9}

21-88: Subset-Sum Problem

S = {1, 2, 3}

• L = {0}

• L = {0, 1}

• L = {0, 1, 2, 3}

• L = {0, 1, 2, 3, 4, 5, 6}

21-89: Subset-Sum Problem

• What is the worst-case running time?

21-90: Subset-Sum Problem

• What is the worst-case running time?

• List L could be as large as 2n

• Running time is O(2n)

• (Polynomial if sum of all elements in L is bound by a polynomial in |S|)

21-91: Subset-Sum Problem

• Algorithm is exponential because L can grow exponentially large

• So, if we wanted an approximation in polynomial time, what could we do?

21-92: Subset-Sum Problem

• Algorithm is exponential because L can grow exponentially large

CS673-2016F-21 NP & Approximation Algorithms 23

• So, if we wanted an approximation in polynomial time, what could we do?

• Prune L to prevent it from getting too large

• Removing the wrong element could prevent us from finding an optimal solution

• How can we prune L to minimize / bound the error?

21-93: Subset-Sum Problem

• Basic idea:

• After creating the list L, “trim” it by removing elements

• If we have two elements that are close to each other, we remove the larger of them

• Sum can be off by the difference of the elements

21-94: Subset-Sum Problem

• Function TRIM, takes as input a list and a δ, and trims all elements that are within δ % of the previous element

in the list:

TRIM(L, δ)

m← |L|
L′ ← L[1]
last← L[1]
for i← 2 to m

if L[i] >last ∗(1 + δ)
append L[i] to L′

last← L[i]
return L′

21-95: Subset-Sum Problem

Approx-Subset-Sum(S, t, ǫ)
n← |L|
L← {0}
for i← 1 to n
L←MergeLists(L,L+ S[i])
L← TRIM(L, ǫ/2n)
remove elements greater than t from L

return largest element in L

• Returns an element within (1 + ǫ) of optimal

21-96: Subset-Sum Problem
S = {104, 102, 201, 101}, t = 308, ǫ = .4, δ = 0.05

• L = {0}

• L = {0, 104}

• (no trimming)

• L = {0, 102, 104, 206}

• 104 < 102 ∗ 1.05

• L = {0, 102, 206}

CS673-2016F-21 NP & Approximation Algorithms 24

• L = {0, 102, 201, 206, 303, 407}

• 206 < 201 ∗ 1.05

• 407 > t

• L = {0, 102, 201, 303}

21-97: Subset-Sum Problem
S = {104, 102, 201, 101}, t = 308ǫ = .4, δ = 0.05

• L = {0, 102, 201, 303}

• L = {0, 101, 102, 201, 203, 302, 303, 404}

• 102 < 101 ∗ 1.05

• 203 < 201 ∗ 1.05

• 303 < 302 ∗ 1.05

• 404 > ǫ

• L = {0, 101, 201, 302}

• Result: 302

• Optimal: 307 (104 + 102 + 101)

• Within 0.40 of optimal

21-98: Subset-Sum Problem

• Approx-Subset-Sum(S, t, ǫ)

• Always returns a result within (1 + ǫ) of the true optimal

• Runs in time polynomial in length of input and 1/ǫ

21-99: Subset-Sum Problem

• Runs in time polynomial in length of input and 1/ǫ:

• First, we’ll find a bound on how long each list Li can be

• After each trimming, consider successive elements z, z′

• z′/z > 1 + ǫ/2n

• Largest that Li could be:

• 0, 1, ǫ/2n, 2ǫ/2n, 3ǫ/2n . . .

• size of Li < log1+ǫ/2n t+ 2

21-100: Subset-Sum Problem

• size of Li < log1+ǫ/2n t

log1+ǫ/2n t =
ln t

ln(1 + ǫ/2n)
+ 2

≤
2n(1 + ǫ/2n) ln t

ǫ
+ 2

≤
4n ln t

ǫ
+ 2

• Bound is clearly polynnomial in size of input and 1
ǫ

x
1+x ≤ ln(1 + x) ≤ x, 0 < ǫ < 1
21-101: Subset-Sum Problem

• Always returns a result within (1 + ǫ) of the true optimal

• See text, pg. 1048

