
CS673-2016F-03 Heaps 1

03-0: Heap Definition

• Complete Binary Tree

• Heap Property

• Max Heap:

• For every subtree in a tree, each value in the subtree is ¡= value stored at the root of the subtree

• Min Heap:

• For every subtree in a tree, each value in the subtree is ¿= value stored at the root of the subtree

03-1: Heap Examples

20

8 15

7 6 4 14

5 2 1 3
Valid Heap

03-2: Heap Examples

20

8 15

7 9 4 14

5 2 1 3
Invalid Heap

03-3: Heap Insert

• There is only one place we can insert an element into a heap, so that the heap remains a complete binary tree

• Inserting an element at the “end” of the heap might break the heap property



CS673-2016F-03 Heaps 2

03-4: Heap Insert

• There is only one place we can insert an element into a heap, so that the heap remains a complete binary tree

• Inserting an element at the “end” of the heap might break the heap property

• Swap the inserted value up the tree

03-5: Heap Remove Largest

• Removing the Root of the heap is hard

• Removing the element at the “end” of the heap is easy

03-6: Heap Remove Largest

• Removing the Root of the heap is hard

• Removing the element at the “end” of the heap is easy

• Move last element into root

• May break the heap property

03-7: Heap Remove Largest

• Removing the Root of the heap is hard

• Removing the element at the “end” of the heap is easy

• Move last element into root

• Shift the root down, until heap property is satisfied

03-8: Representing Heaps

• Represent heaps using pointers

• Need to add parent pointers for insert to work correctly

• Space needed to store pointers – 3 per node – could be greater than the space need to store the data in the

heap!

• Memory allocation and deallocation is slow

• There is a better way!

03-9: Representing Heaps

A Complete Binary Tree can be stored in an array:



CS673-2016F-03 Heaps 3

20

8 15

7 6 4 14

5 2 1 3

20 8 15 7 6 4 14 5 2 1 3
0 1 2 3 4 5 6 7 8 9 10 11 12 13

03-10: CBTs as Arrays

• The root is stored at index 0

• For the node stored at index i:

• Left child is stored at index 2 ∗ i + 1

• Right child is stored at index 2 ∗ i+ 2

• Parent is stored at index ⌊(i − 1)/2⌋

03-11: CBTs as Arrays

Finding the parent of a node

int parent(int n) {

return (n - 1) / 2;

}

Finding the left child of a node

int leftchild(int n) {

return 2 * n + 1;

}

Finding the right child of a node

int rightchild(int n) {

return 2 * n + 1;

}

03-12: Building a Heap

Build a heap out of n elements

03-13: Building a Heap

Build a heap out of n elements



CS673-2016F-03 Heaps 4

• Start with an empty heap

• Do n insertions into the heap

MaxHeap H = new MaxHeap();

for(i=0 < i<A.size(); i++)

H.insert(A[i]);

Running time?

03-14: Building a Heap

Build a heap out of n elements

• Start with an empty heap

• Do n insertions into the heap

MaxHeap H = new MaxHeap();

for(i=0 < i<A.size(); i++)

H.insert(A[i]);

Running time? O(n lg n) – is this bound tight?

03-15: Building a Heap Total time: c1 +
∑n

i=1
c2 lg i

03-16: Building a Heap Total time: c1 +
∑n

i=1
c2 lg i

c1 +

n∑

i=1

c2 lg i ≥

n∑

i=n/2

c2 lg i

≥

n∑

i=n/2

c2 lg(n/2)

= (n/2)c2 lg(n/2)

= (n/2)c2((lg n)− 1)

∈ Ω(n lg n)

Running Time: Θ(n lg n)
03-17: Building a Heap

Build a heap from the bottom up

• Place elements into a heap array

• Each leaf is a legal heap

• First potential problem is at location ⌊i/2⌋

03-18: Building a Heap

Build a heap from the bottom up

• Place elements into a heap array

• Each leaf is a legal heap

• First potential problem is at location ⌊i/2⌋



CS673-2016F-03 Heaps 5

for(i=n/2; i>=0; i--)

siftdown(i);

03-19: Building a Heap

How many swaps, worst case? If every siftdown has to swap all the way to a leaf:

n/4 elements 1 swap

n/8 elements 2 swaps

n/16 elements 3 swaps

n/32 elements 4 swaps

. . .
Total # of swaps:

n/4 + 2n/8 + 3n/16 + 4n/32 + . . .+ (lg n)n/n

03-20: Heapsort

• How can we use a heap to sort a list?

03-21: Heapsort

• How can we use a heap to sort a list?

• Build a max-heap out of the array we want to sort (Time Θ(n))

• While the heap is not empty:

• Remove the largest element

• Place this element in the “empty space” just cleared by the deletion

Total time:

03-22: Heapsort

• How can we use a heap to sort a list?

• Build a max-heap out of the array we want to sort (Time Θ(n))

• While the heap is not empty:

• Remove the largest element

• Place this element in the “empty space” just cleared by the deletion

Total time: Θ(n lgn)


