Graduate Algorithms
CS673-2016F-04

Sorting |

Davi |

Department of Computer Science
University of San Francisco

http://www.cs.usfca.edu/galles

04-0: Divide & Conquer

® Divide a problem into 2 or more smaller
subproblems

® Recursively solve each subproblem
® Combine the solutions of the subproblems

04-1: Divide & Conquer

® Mergesort:

* Divide the list in half
e Recursively sort each half of the list
* Merge the sorted lists together

® Dividing the list is easy (no real work required)
® Combining solutions harder

04-2: Divide & Conquer

® Quicksort:

* Pick a pivot element

e Divide the list into elements < pivot, elements
> pivot

e Recursively sort each of these two segments

* No work required after recursive step

® Dividing the list is harder

® Combining solutions is easy (no real work
required)

04-3: Quicksort

Quicksort(A, low, high)
If (low < high) then
pivotindex <— Partition(A, low, high)
Quicksort(A, low, pivotindex — 1)
Quicksort(A, pivotindex + 1, high)

0s-2: Quicksort

® How can we efficiently partition the list?

04-5: QuUicksort

® How can we efficiently partition the list?

® Method 1:
* Maintain two indices, » and j
e Everything to left of + < pivot
e Everything to right if 3 > pivot
e Start 2 at beginning of the list, ; at the end of

the list, move them in maintaining the
conditions above

0s-6: QuUicksort

® How can we efficiently partition the list?

® Method 2:
* Maintain two indices, » and j
e Everything to left of + < pivot
e Everything between : and ;3 > pivot

e Start both ¢ and ;7 at beginning of the list,
iIncrease them while maintaining the conditions

above

04-7: Partition

Partition(A, low, high)
pivot = A[high]
| < low - 1
for j <— low to high - 1 do
iIf (A[j] < pivot then
| <1+ 1
swap Ali] <+ A[j]
swap Afi+1] <+ A[high]

04-8: Partition

Partition example:
05/136284

04-9: Quicksort

® Running time for Quicksort: Intuition
* Worst case: list is split into size 0, size (n-1)

T(n) = T(n—1)+T(0) +6(n)

Recursion Tree

04-10: Quicksort

/ \
c(n-1) a+c(n-1)
/ AN
c(n-2) a+c(n-2)
= / AN
c(n-3) a+c(n-3

(n-1)a + 2 c1
1=1

04-11: Quicksort

Confirm O(n*) with substitution method:

Tn) = T(n—1)4+cx*xn

04-12: Quicksort

Confirm O(n*) with substitution method:

T(n) Tn—1)4+cxn
cx(n—1)7+cx*n
cx(n*—2n+1)+cx*n
cxn’+(c—2*xc+1/n)*xn

Cl*nQ

VAN VAN VAR VAN

(if c; > (c+1/n)/2)

04-13: Quicksort

Confirm £2(n?) with substitution method:

T'(n)

(if ¢, > ¢/2)

NV IV IV IV IV

T(n—1)+cx*xn
ax(n—1)7+cxn
cx(n*—=2n+1)+cx*n
c,*(n°—2n)+cx*n
coxn’+(c—2%c)*n

Cl*n2

04-14: Quicksort

® Running time for Quicksort: Intuition
e Best case: list is split in half

T(n) = 2T(g)+c*n
€ O(nlgn)

(Using the master theorem)

04-15: QuUicksort

® Running time for Quicksort: Intuition
* Average case:
- What if we split the problem into size (1/9)n
and (8/9)n
- What if we split the problem into size
(1/100)n and (99/100)n

(Show recursion trees)

04-16: QuUicksort

® \Worst Case:

T(n) = max T(q)+T(n—q—1)+ 6(n)

0<g<n—1

04-17: Quicksort

® \Worst Case:

T(n)= max T(q)+T(n—q—1)+ 6O(n)

0<g<n—1

Guess T'(n) € O(n?)

VAN

T(n) max cq°+c(n—qg—17+c*n

0<g<n-—1

2 12
< cl*oggc_l(q +(n—q—1))c; +cxn

Maximizing ¢* + (n — ¢ — 1)* overrange 0 < ¢ <n — 1

04-18: Quicksort

Maximizing ¢* + (n —q — 1)* overrange 0 < g <n — 1

® 2nd derivative with respect to g Is positive

® Maximim value needs to occur at the endpoints:
g=00org=n—1

04-19: Quicksort

T(n) < 0£2$101q2+01(n—q—1)2+02*n
2 Y
< Cl*o£§ﬁ1(q +(n—qg—1)7)c;i +cxn
< an—1 4+c*n
< enf—2em+c+cxn
< c¢n?

(|f C1 > 02/2)

04-20: Quicksort

® Average case:
 What is the average case?

* We can assume that all permutations of the list
are equally likely (is this a good assumption?)

e What else can we do?

04-21:

Partition

Partition(A, low, high)
pivot = A[high]
| < low - 1
for j <— low to high - 1 do
If (A[j] < pivot) then
| <1+ 1
swap Ali] <+ A[j]
swap Afi+1] <+ A[hight]

04-22: Randomized Partition

Partition(A, low, high)
swap A[high] <+ A[random(low,high)]
pivot = Alhigh]
| < low - 1
for j <— low to high - 1 do
If (A[j] < pivot) then

| <1+ 1

swap A[i] < A[j]
swap A[i+1] < Alhight]

04-23: Quicksort Analysis

® OK, we can assume that all permutations are
equally likely (especially if we randomize partition)

® How long does quicksort take in the average case?

04-24: Quicksort Analysis

® Time for quicksort dominated by time spent in
partition procedure

® Partition can be called a maximum of n times
(why)?

® Time for each call to partition is ©(1) + # of times
through for loop

® Total number of times the test (A[j] < pivot) is done
IS proportional to the time spent for the loop

® Therefore, the total # of times the test (A[j] < pivot)
IS a bound on the time for the entire algorithm

04-25: Quicksort Analysis

Some definitions:

® Define z; to be the :th smallest element in the list
® Define Z;; to be the set of elements z;, 2,11, ... 2;

So, if our array A = {3, 4, 1, 9, 10, 7} then:

.21:1,22:3,23:4,91:(3
® Zzs=1{4,7,9}
® Zy=1{/,9,10}

04-26: Quicksort Analysis

® Each pair of elements can be compared at most
once (why)?

® Define an indicator variable X;; = [{z; iIs compared
to Zj}

=
o
|
'—t(
]
=
23

04-27: Quicksort Analysis

® Calculating E|X;;]:
* When will element z; be compared to z;?
®* A={1,2,3,4,5,6,7,8,9, 10}
® |f pivot =6
* 6 will be compared to every other element
* 1-5 will never be compared to anything in 7-10

04-28: Quicksort Analysis

® Calculating E|X;;]:
* Given any two elements z;, z;, if we pick some

element x as a pivot such that z; < z < z;, then
z; and z; will never be compared to each other

* z; and z; will be compared with each other

when the first element chosen Z;; is either z; or
<j

04-20: Quicksort Analysis

Pr{z; iscomparedto z;} = Pr
= Pr
!
=

{z; or z; is first pivot selected from Z;;
{z; is first from Z;;} + Pr{z; is first from Z;; }
j—i+1)+1/(G —i+1)

/(
(G —i+1)

04-30: Quicksort Analysis

~.
I
S
|
)

p—

n—1 n

EX] =)) E[Xy]
1=1 g=1+1
n—1 n 9

S
A
3 o
L

DO

||
N
=N
i

~
I

Ny
I
. —

YA
. 3
M3 T
=
|
| DO

N

Lol
I
I
—

~
I

< 2In(n —1i) +1

.

—

~

04-31: Quicksort Analysis

ElX]

<

n—1
> 2In(n—i) +1
1=1

n—1
> 2In(n) +1
1=1

2xnln(n) + 1
O(nlgn)

0s-32: Alternate Parition strategy

Partition(A, low, high)
pivot = A[high]
| = low
] = high - 1
while (I < |)
while (A[i] < pivot)
I++
while (A[j] > pivot)
J - -
if (1 <)
swap Afi] < A[j]
I++
j _ -
swap AJi] <+ Al[high]

04-33: Alternate Parition strategy

Partition(A, low, high)
pivot = A[high]
i = low
j = high -1
while (i < j)
while (A[i] pivot)
I++
while (A[j] pivot)
j - -
if (i <J)
swap A[i] + A[j]
I++
j - -
swap Ali] «+» A[high]

What happens if we change < to <?

04-32: Comparison Sorting

® Comparison sorts work by comparing elements
 Can only compare 2 elements at a time
e Check for <, >, =.

® All the sorts we have seen so far (Insertion, Quick,
Merge, Heap, etc.) are comparison sorts

® |f we know nothing about the list to be sorted, we
need to use a comparison sort

04-35: Decision Trees

Insertion Sort on list {a, b, c}
a<b<c b<c<a
a<c<b c<a<b
b<a<c c<b<a

yw

a<b<c b<a<c

a<c<b b<c<a

c<a<b c<b<a
a<b<c a<c<b b<a<c b<c<a
c<a<b c<b<a

y ya b<c/ \C<b
c<b<a

a<c<b c<a<b b<c<a

04-36: Decision Trees

® Fvery comparison sorting algorithm has a decision
free
® What is the best-case number of comparisons for a

comparison sorting algorithm, given the decision
tree for the algorithm?

04-37: Decision Trees

® Every comparison sorting algorithm has a decision
free

® What is the best-case number of comparisons for a
comparison sorting algorithm, given the decision
tree for the algorithm?

* (The depth of the shallowest leaf) + 1
® What is the worst case number of comparisons for

a comparison sorting algorithm, given the decision
tree for the algorithm?

04-38: Decision Trees

® Every comparison sorting algorithm has a decision
free

® What is the best-case number of comparisons for a
comparison sorting algorithm, given the decision
tree for the algorithm?

* (The depth of the shallowest leaf) + 1

® What is the worst case number of comparisons for
a comparison sorting algorithm, given the decision
tree for the algorithm?
* The height of the tree — (depth of the deepest
leaf) + 1

04-39: Decision Trees

® What is the largest number of nodes for a tree of
depth d?

04-40: Decision Trees

® What is the largest number of nodes for a tree of
depth d?

02d

® What is the minimum height, for a tree that has n
leaves?

04-41: Decision Trees

® What is the largest number of nodes for a tree of
depth d?

02d

® What is the minimum height, for a tree that has n
leaves?

°* lgn

® How many leaves are there in a decision tree for
sorting n elements?

04-42: Decision Trees

® What is the largest number of nodes for a tree of
depth d?
® 2d
® What is the minimum height, for a tree that has n
leaves?

°* lgn
® How many leaves are there in a decision tree for
sorting n elements?
e 1l
® What is the minimum height, for a decision tree for
sorting n elements?

04-43: Decision Trees

® What is the largest number of nodes for a tree of
depth d?
® 2d
® What is the minimum height, for a tree that has n
leaves?

°* lgn
® How many leaves are there in a decision tree for
sorting n elements?
e 1l
® What is the minimum height, for a decision tree for
sorting n elements?
e Jgn!

0a-a4: Ig(n!) € Q(nlgn)

lg(n!) lg(nx(n—1)%x(n—2)%...%x2x%1)
(lgn) + (Ig(n —1)) + (Ig(n —2)) + . ..
(1g2) +(Ig1)

> (lgn) +(Ig(n —1)) +... + (Ig(n/2))

\
-~

n/2 terms

(lgn/2) + (lg(n/2)) + ... +1g(n/2)

N

n/2 terms

= (n/2)l1g(n/2)

e Qnlgn)

IV

04-45: Sorting Lower Bound

® All comparison sorting algorithms can be
represented by a decision tree with n! leaves

® Worst-case number of comparisons required by a
sorting algorithm represented by a decision tree is
the height of the tree

® A decision tree with n! leaves must have a height
of at least nlgn

® All comparison sorting algorithms have worst-case
running time Q2(nlgn)

	{small lecturenumber -	heblocknumber :} Divide & Conquer addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Divide & Conquer addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Divide & Conquer addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Partitionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Partitionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Partitionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Randomized Partitionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksort Analysisaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksort Analysisaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksort Analysisaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksort Analysisaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksort Analysisaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksort Analysisaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksort Analysisaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksort Analysisaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksort Analysisaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Alternate Parition strategyaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Alternate Parition strategyaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Comparison Sortingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Decision Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Decision Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Decision Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Decision Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Decision Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Decision Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Decision Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Decision Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Decision Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $lg (n!)
in Omega (n lg n)$addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Sorting Lower Boundaddtocounter {blocknumber}{1}

