Divide & Conquer

- Divide a problem into 2 or more smaller subproblems
- Recursively solve each subproblem
- Combine the solutions of the subproblems
04-1: Divide & Conquer

- Mergesort:
 - Divide the list in half
 - Recursively sort each half of the list
 - Merge the sorted lists together
- Dividing the list is easy (no real work required)
- Combining solutions harder
04-2: Divide & Conquer

- Quicksort:
 - Pick a pivot element
 - Divide the list into elements $< \text{pivot}$, elements $> \text{pivot}$
 - Recursively sort each of these two segments
 - No work required after recursive step
- Dividing the list is harder
- Combining solutions is easy (no real work required)
Quicksort(A, low, high)
if (low < high) then
 pivotindex ← Partition(A, low, high)
 Quicksort(A, low, pivotindex − 1)
 Quicksort(A, pivotindex + 1, high)
How can we efficiently partition the list?
• How can we efficiently partition the list?
• Method 1:
 • Maintain two indices, \(i\) and \(j\)
 • Everything to left of \(i \leq \text{pivot}\)
 • Everything to right if \(j \geq \text{pivot}\)
 • Start \(i\) at beginning of the list, \(j\) at the end of the list, move them in maintaining the conditions above
How can we efficiently partition the list?

Method 2:

- Maintain two indices, \(i \) and \(j \)
- Everything to left of \(i \leq \) pivot
- Everything between \(i \) and \(j \geq \) pivot
- Start both \(i \) and \(j \) at beginning of the list, increase them while maintaining the conditions above
Partition(A, low, high)
pivot = A[high]
i ← low - 1
for j ← low to high - 1 do
 if (A[j] ≤ pivot then
 i ← i + 1
Partition example:
5 7 1 3 6 2 8 4
Running time for Quicksort: Intuition

- Worst case: list is split into size 0, size \((n-1)\)

\[
T(n) = T(n-1) + T(0) + \Theta(n)
\]

\[
= T(n-1) + \Theta(n)
\]

Recursion Tree
04-10: Quicksort

\[(n-1)a + \sum_{i=1}^{n} c_i \]
Confirm $O(n^2)$ with substitution method:

$$T(n) = T(n - 1) + c \times n$$
04-12: Quicksort

Confirm $O(n^2)$ with substitution method:

$$T(n) = T(n - 1) + c \cdot n$$

$$\leq c_1 \cdot (n - 1)^2 + c \cdot n$$

$$\leq c_1 \cdot (n^2 - 2n + 1) + c \cdot n$$

$$\leq c_1 \cdot n^2 + (c - 2 \cdot c_1 + 1/n) \cdot n$$

$$\leq c_1 \cdot n^2$$

(if $c_1 > (c + 1/n)/2$)
Confirm $\Omega(n^2)$ with substitution method:

$$T(n) = T(n - 1) + c \cdot n$$

$$\geq c_1 \cdot (n - 1)^2 + c \cdot n$$

$$\geq c_1 \cdot (n^2 - 2n + 1) + c \cdot n$$

$$\geq c_1 \cdot (n^2 - 2n) + c \cdot n$$

$$\geq c_1 \cdot n^2 + (c - 2 \cdot c_1) \cdot n$$

$$\geq c_1 \cdot n^2$$

(if $c_1 > c/2$)
Running time for Quicksort: Intuition

- Best case: list is split in half

\[T(n) = 2T \left(\frac{n}{2} \right) + c \cdot n \]

\[\in \Theta(n \log n) \]

(Using the master theorem)
• Running time for Quicksort: Intuition
 • Average case:
 • What if we split the problem into size \((1/9)n\) and \((8/9)n\)
 • What if we split the problem into size \((1/100)n\) and \((99/100)n\)

(Show recursion trees)
Worst Case:

\[T(n) = \max_{0 \leq q \leq n-1} T(q) + T(n - q - 1) + \Theta(n) \]
04-17: Quicksort

- Worst Case:

\[T(n) = \max_{0 \leq q \leq n-1} T(q) + T(n - q - 1) + \Theta(n) \]

Guess \(T(n) \in O(n^2) \)

\[T(n) \leq \max_{0 \leq q \leq n-1} c_1 q^2 + c_1 (n - q - 1)^2 + c_2 * n \]

\[\leq c_1 * \max_{0 \leq q \leq n-1} (q^2 + (n - q - 1)^2) c_1 + c_2 * n \]

Maximizing \(q^2 + (n - q - 1)^2 \) over range \(0 \leq q \leq n - 1 \)
Maximizing $q^2 + (n - q - 1)^2$ over range $0 \leq q \leq n - 1$

- 2nd derivative with respect to q is positive
- Maximim value needs to occur at the endpoints: $q = 0$ or $q = n - 1$
04-19: Quicksort

\[T(n) \leq \max_{0 \leq q \leq n-1} c_1 q^2 + c_1 (n - q - 1)^2 + c_2 \cdot n \]

\[\leq c_1 \cdot \max_{0 \leq q \leq n-1} (q^2 + (n - q - 1)^2) c_1 + c_2 \cdot n \]

\[\leq c_1 (n - 1)^2 + c_2 \cdot n \]

\[\leq c_1 n^2 - 2c_1 n + c_1 + c_2 \cdot n \]

\[\leq c_1 n^2 \]

(if \(c_1 > c_2 / 2 \))
• Average case:
 • What is the average case?
 • We can \textit{assume} that all permutations of the list are equally likely (is this a good assumption?)
 • What else can we do?
Partition(A, low, high)
pivot = A[high]
i ← low - 1
for j ← low to high - 1 do
 if (A[j] ≤ pivot) then
 i ← i + 1
Partition(A, low, high)
 swap A[high] ↔ A[random(low,high)]
 pivot = A[high]
 i ← low - 1
 for j ← low to high - 1 do
 if (A[j] ≤ pivot) then
 i ← i + 1
04-23: Quicksort Analysis

- OK, we can assume that all permutations are equally likely (especially if we randomize partition)
- How long does quicksort take in the average case?
04-24: Quicksort Analysis

- Time for quicksort dominated by time spent in partition procedure.
- Partition can be called a maximum of n times (why)?
- Time for each call to partition is $\Theta(1) + \#$ of times through for loop.
- Total number of times the test ($A[j] \leq$ pivot) is done is proportional to the time spent for the loop.
- Therefore, the total $\#$ of times the test ($A[j] \leq$ pivot) is a bound on the time for the entire algorithm.
Some definitions:

- Define z_i to be the ith smallest element in the list
- Define Z_{ij} to be the set of elements $z_i, z_{i+1}, \ldots z_j$

So, if our array $A = \{3, 4, 1, 9, 10, 7\}$ then:

- $z_1 = 1, z_2 = 3, z_3 = 4$, etc
- $Z_{35} = \{4, 7, 9\}$
- $Z_{46} = \{7, 9, 10\}$
Each pair of elements can be compared at most once (why)? Define an indicator variable \(X_{ij} = I\{z_i \text{ is compared to } z_j\} \)

\[
X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}
\]

\[
E[X] = E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \right]
\]

\[
E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}]
\]
Quicksort Analysis

- Calculating $E[X_{ij}]$:
 - When will element z_i be compared to z_j?
- $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- If pivot = 6
 - 6 will be compared to every other element
 - 1-5 will never be compared to anything in 7-10
04-28: Quicksort Analysis

- Calculating $E[X_{ij}]$:
 - Given any two elements z_i, z_j, if we pick some element x as a pivot such that $z_i < x < z_j$, then z_i and z_j will never be compared to each other.
 - z_i and z_j will be compared with each other when the first element chosen Z_{ij} is either z_i or z_j.
Pr\{z_i \text{ is compared to } z_j\} = Pr\{z_i \text{ or } z_j \text{ is first pivot selected from } Z_{ij}\}
= Pr\{z_i \text{ is first from } Z_{ij}\} + Pr\{z_j \text{ is first from } Z_{ij}\}
= 1/(j - i + 1) + 1/(j - i + 1)
= 2/(j - i + 1)
04-30: Quicksort Analysis

\[E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}] \]

\[= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j - i + 1} \]

\[= \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k + 1} \]

\[< \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k} \]

\[< \sum_{i=1}^{n-1} 2 \ln(n - i) + 1 \]
04-31: Quicksort Analysis

\[E[X] < \sum_{i=1}^{n-1} 2 \ln(n - i) + 1 \]

\[< \sum_{i=1}^{n-1} 2 \ln(n) + 1 \]

\[< 2 \times n \ln(n) + 1 \]

\[\in O(n \lg n) \]
Alternate Partition strategy

Partition(A, low, high)
pivot = A[high]
i = low
j = high - 1
while (i < j)
 while (A[i] < pivot)
 i++
 while (A[j] > pivot)
 j --
 if (i < j)
 i++
 j --
Partition(A, low, high)
 pivot = A[high]
 i = low
 j = high - 1
 while (i < j)
 while (A[i] ≤ pivot)
 i++
 while (A[j] ≥ pivot)
 j - -
 if (i < j)
 i++
 j - -

What happens if we change < to ≤?
Comparison Sorting

- Comparison sorts work by comparing elements
 - Can only compare 2 elements at a time
 - Check for $<, >, =$.
- All the sorts we have seen so far (Insertion, Quick, Merge, Heap, etc.) are comparison sorts
- If we know nothing about the list to be sorted, we need to use a comparison sort
Insertion Sort on list \{a, b, c\}

- \(a < b < c\)
- \(a < c < b\)
- \(b < a < c\)
- \(c < a < b\)
- \(b < c < a\)
- \(c < b < a\)
- \(a < c < b\)
- \(c < a < b\)
- \(b < a < c\)
- \(c < b < a\)
- \(b < c < a\)
- \(c < b < a\)
04-36: Decision Trees

- Every comparison sorting algorithm has a decision tree
- What is the best-case number of comparisons for a comparison sorting algorithm, given the decision tree for the algorithm?
Every comparison sorting algorithm has a decision tree.

What is the best-case number of comparisons for a comparison sorting algorithm, given the decision tree for the algorithm?
- (The depth of the shallowest leaf) + 1

What is the worst case number of comparisons for a comparison sorting algorithm, given the decision tree for the algorithm?
Every comparison sorting algorithm has a decision tree

What is the best-case number of comparisons for a comparison sorting algorithm, given the decision tree for the algorithm?
- (The depth of the shallowest leaf) + 1

What is the worst case number of comparisons for a comparison sorting algorithm, given the decision tree for the algorithm?
- The height of the tree – (depth of the deepest leaf) + 1
04-39: Decision Trees

- What is the largest number of nodes for a tree of depth d?
04-40: **Decision Trees**

- What is the largest number of nodes for a tree of depth d?
 - 2^d

- What is the minimum height, for a tree that has n leaves?
04-41: Decision Trees

- What is the largest number of nodes for a tree of depth d?
 - 2^d

- What is the minimum height, for a tree that has n leaves?
 - $\lg n$

- How many leaves are there in a decision tree for sorting n elements?
What is the largest number of nodes for a tree of depth \(d \)?
- \(2^d \)

What is the minimum height, for a tree that has \(n \) leaves?
- \(\log n \)

How many leaves are there in a decision tree for sorting \(n \) elements?
- \(n! \)

What is the minimum height, for a decision tree for sorting \(n \) elements?
04-43: **Decision Trees**

- What is the largest number of nodes for a tree of depth d?
 - 2^d

- What is the minimum height, for a tree that has n leaves?
 - $\lg n$

- How many leaves are there in a decision tree for sorting n elements?
 - $n!$

- What is the minimum height, for a decision tree for sorting n elements?
 - $\lg n!$
04-44: \(\lg(n!) \in \Omega(n \lg n) \)

\[
\begin{align*}
\lg(n!) &= \lg(n \times (n - 1) \times (n - 2) \times \ldots \times 2 \times 1) \\
&= (\lg n) + (\lg(n - 1)) + (\lg(n - 2)) + \ldots \\
&\quad + (\lg 2) + (\lg 1) \\
&\geq (\lg n) + (\lg(n - 1)) + \ldots + (\lg(n/2)) \\
&\quad \text{\(n/2 \) terms} \\
&\geq (\lg n/2) + (\lg(n/2)) + \ldots + \lg(n/2) \\
&\quad \text{\(n/2 \) terms} \\
&= (n/2) \lg(n/2) \\
&\in \Omega(n \lg n)
\end{align*}
\]
All comparison sorting algorithms can be represented by a decision tree with $n!$ leaves.

Worst-case number of comparisons required by a sorting algorithm represented by a decision tree is the height of the tree.

A decision tree with $n!$ leaves must have a height of at least $n \lg n$.

All comparison sorting algorithms have worst-case running time $\Omega(n \lg n)$.