04-0: **Divide & Conquer**

- Divide a problem into 2 or more smaller subproblems
- Recursively solve each subproblem
- Combine the solutions of the subproblems

04-1: **Divide & Conquer**

- Mergesort:
 - Divide the list in half
 - Recursively sort each half of the list
 - Merge the sorted lists together
- Dividing the list is easy (no real work required)
- Combining solutions harder

04-2: **Divide & Conquer**

- Quicksort:
 - Pick a pivot element
 - Divide the list into elements $< \text{pivot}$, elements $> \text{pivot}$
 - Recursively sort each of these two segments
 - No work required after recursive step
- Dividing the list is harder
- Combining solutions is easy (no real work required)

04-3: **Quicksort**

Quicksort(A, low, high)
if (low < high) then
 pivotindex ← Partition(A, low, high)
 Quicksort(A, low, pivotindex − 1)
 Quicksort(A, pivotindex + 1, high)

04-4: **Quicksort**

- How can we efficiently partition the list?

04-5: **Quicksort**

- How can we efficiently partition the list?
- Method 1:
 - Maintain two indices, i and j
 - Everything to left of $i \leq \text{pivot}$
- Everything to right if \(j \geq \text{pivot} \)
- Start \(i \) at beginning of the list, \(j \) at the end of the list, move them in maintaining the conditions above

04-6: **Quicksort**

- How can we efficiently partition the list?
- Method 2:
 - Maintain two indices, \(i \) and \(j \)
 - Everything to left of \(i \) \(\leq \) pivot
 - Everything between \(i \) and \(j \) \(\geq \) pivot
 - Start both \(i \) and \(j \) at beginning of the list, increase them while maintaining the conditions above

04-7: **Partition**

\[
\text{Partition}(A, \text{low}, \text{high}) \\
pivot = A[\text{high}] \\
i \leftarrow \text{low} - 1 \\
\text{for } j \leftarrow \text{low to high} - 1 \text{ do} \\
\quad \text{if } (A[j] \leq \text{pivot then} \\
\quad \quad i \leftarrow i + 1 \\
\quad \quad \text{swap } A[i] \leftrightarrow A[j] \\
\quad \text{swap } A[i+1] \leftrightarrow A[\text{high}] \\
\]

04-8: **Partition**

Partition example:

5 7 1 3 6 2 8 4

04-9: **Quicksort**

- Running time for Quicksort: Intuition
 - Worst case: list is split into size 0, size \((n-1)\)

\[
T(n) = T(n-1) + T(0) + \Theta(n) \\
= T(n-1) + \Theta(n)
\]

Recursion Tree

04-10: **Quicksort**
04-11: Quicksort
Confirm \(O(n^2)\) with substitution method:

\[
T(n) = T(n - 1) + c \cdot n
\]

04-12: Quicksort
Confirm \(O(n^2)\) with substitution method:

\[
T(n) = T(n - 1) + c \cdot n
\leq c_1 \cdot (n - 1)^2 + c \cdot n
\leq c_1 \cdot (n^2 - 2n + 1) + c \cdot n
\leq c_1 \cdot n^2 + (c - 2 \cdot c_1 + 1/n) \cdot n
\leq c_1 \cdot n^2
\]

(if \(c_1 > (c + 1/n)/2\))

04-13: Quicksort
Confirm \(\Omega(n^2)\) with substitution method:

\[
T(n) = T(n - 1) + c \cdot n
\geq c_1 \cdot (n - 1)^2 + c \cdot n
\geq c_1 \cdot (n^2 - 2n + 1) + c \cdot n
\geq c_1 \cdot (n^2 - 2n) + c \cdot n
\geq c_1 \cdot n^2 + (c - 2 \cdot c_1) \cdot n
\geq c_1 \cdot n^2
\]
(if $c_1 > c/2$
04-14: Quicksort

- Running time for Quicksort: Intuition
 - Best case: list is split in half

\[
T(n) = 2T\left(\frac{n}{2}\right) + c \cdot n \\
\in \Theta(n \lg n)
\]

(Using the master theorem) 04-15: Quicksort

- Running time for Quicksort: Intuition
 - Average case:
 - What if we split the problem into size $(1/9)n$ and $(8/9)n$
 - What if we split the problem into size $(1/100)n$ and $(99/100)n$

(Show recursion trees) 04-16: Quicksort

- Worst Case:

\[
T(n) = \max_{0 \leq q \leq n-1} T(q) + T(n - q - 1) + \Theta(n)
\]

04-17: Quicksort

- Worst Case:

\[
T(n) = \max_{0 \leq q \leq n-1} T(q) + T(n - q - 1) + \Theta(n)
\]

Guess $T(n) \in O(n^2)$

\[
T(n) \leq \max_{0 \leq q \leq n-1} c_1 q^2 + c_1 (n - q - 1)^2 + c_2 \cdot n \\
\leq c_1 \cdot \max_{0 \leq q \leq n-1} (q^2 + (n - q - 1)^2) + c_2 \cdot n
\]

Maximizing $q^2 + (n - q - 1)^2$ over range $0 \leq q \leq n - 1$

04-18: Quicksort

Maximizing $q^2 + (n - q - 1)^2$ over range $0 \leq q \leq n - 1$

- 2nd derivative with respect to q is positive
- Maximum value needs to occur at the endpoints: $q = 0$ or $q = n - 1$
04-19: **Quicksort**

\[T(n) \leq \max_{0 \leq q \leq n-1} \quad c_1 q^2 + c_1 (n - q - 1)^2 + c_2 \cdot n \]

\[\leq c_1 \cdot \max_{0 \leq q \leq n-1} (q^2 + (n - q - 1)^2) + c_1 + c_2 \cdot n \]

\[\leq c_1 (n - 1)^2 + c_2 \cdot n \]

\[\leq c_1 n^2 - 2c_1 n + c_1 + c_2 \cdot n \]

\[\leq c_1 n^2 \]

(if \(c_1 > c_2/2\))

04-20: **Quicksort**

- Average case:
 - What is the average case?
 - We can assume that all permutations of the list are equally likely (is this a good assumption?)
 - What else can we do?

04-21: **Partition**

\[\text{Partition}(A, \text{low}, \text{high}) \]

\[\text{pivot} = A[\text{high}] \]

\[i \leftarrow \text{low} - 1 \]

\[\text{for } j \leftarrow \text{low} \text{ to high - 1 do} \]

\[\text{if } (A[j] \leq \text{pivot}) \text{ then} \]

\[i \leftarrow i + 1 \]

\[\text{swap } A[i] \leftrightarrow A[j] \]

\[\text{swap } A[i+1] \leftrightarrow A[\text{high}] \]

04-22: **Randomized Partition**

\[\text{Partition}(A, \text{low}, \text{high}) \]

\[\text{swap } A[\text{high}] \leftrightarrow A[\text{random}(\text{low}, \text{high})] \]

\[\text{pivot} = A[\text{high}] \]

\[i \leftarrow \text{low} - 1 \]

\[\text{for } j \leftarrow \text{low} \text{ to high - 1 do} \]

\[\text{if } (A[j] \leq \text{pivot}) \text{ then} \]

\[i \leftarrow i + 1 \]

\[\text{swap } A[i] \leftrightarrow A[j] \]

\[\text{swap } A[i+1] \leftrightarrow A[\text{high}] \]

04-23: **Quicksort Analysis**

- OK, we can assume that all permutations are equally likely (especially if we randomize partition)

- How long does quicksort take in the average case?

04-24: **Quicksort Analysis**
• Time for quicksort dominated by time spent in partition procedure
• Partition can be called a maximum of \(n \) times (why)?
• Time for each call to partition is \(\Theta(1) + \# \) of times through for loop
• Total number of times the test \((A[j] \leq \text{pivot}) \) is done is proportional to the time spent for the loop
• Therefore, the total \# of times the test \((A[j] \leq \text{pivot}) \) is a bound on the time for the entire algorithm

04-25: Quicksort Analysis
Some definitions:
• Define \(z_i \) to be the \(i \)th smallest element in the list
• Define \(Z_{ij} \) to be the set of elements \(z_i, z_{i+1}, \ldots z_j \)
So, if our array \(A = \{3, 4, 1, 9, 10, 7\} \) then:
• \(z_1 = 1, z_2 = 3, z_3 = 4, \text{etc} \)
• \(Z_{35} = \{4, 7, 9\} \)
• \(Z_{46} = \{7, 9, 10\} \)

04-26: Quicksort Analysis
• Each pair of elements can be compared at most once (why)?
• Define an indicator variable \(X_{ij} = I\{z_i \text{ is compared to } z_j\} \)

\[
X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}
\]

\[
E[X] = E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij} \right]
\]

\[
E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}]
\]

\[
E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} Pr\{z_i \text{ compared to } z_j\}
\]

04-27: Quicksort Analysis
• Calculating \(E[X_{ij}] \):
 • When will element \(z_i \) be compared to \(z_j \)?
 • \(A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} \)
 • If pivot = 6
 • 6 will be compared to every other element
 • 1-5 will never be compared to anything in 7-10
04-28: Quicksort Analysis

- Calculating $E[X_{ij}]$:
 - Given any two elements z_i, z_j, if we pick some element x as a pivot such that $z_i < x < z_j$, then z_i and z_j will never be compared to each other
 - z_i and z_j will be compared with each other when the first element chosen Z_{ij} is either z_i or z_j

04-29: Quicksort Analysis

$\Pr\{z_i \text{ is compared to } z_j\} = \Pr\{z_i \text{ or } z_j \text{ is first pivot selected from } Z_{ij}\} = 1/(j-i+1) + 1/(j-i+1) = 2/(j-i+1)$

04-30: Quicksort Analysis

$$E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}]$$
$$= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$
$$= \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1}$$
$$< \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k}$$
$$< \sum_{i=1}^{n-1} 2 \ln(n-i) + 1$$

04-31: Quicksort Analysis

$$E[X] < \sum_{i=1}^{n-1} 2 \ln(n-i) + 1$$
$$< \sum_{i=1}^{n-1} 2 \ln(n) + 1$$
$$< 2 * n \ln(n) + 1$$
$$\in O(n \lg n)$$

04-32: Alternate Partition strategy

Partition(A, low, high)
 pivot = A[high]
 i = low
 j = high - 1
 while (i < j)
 while (A[i] < pivot)
 i++
 while (A[j] > pivot)
 j --
if (i < j)
 i++
 j --

04-33: Alternate Partition strategy

Partition(A, low, high)
 pivot = A[high]
 i = low
 j = high - 1
 while (i < j)
 while (A[i] ≤ pivot)
 i++
 while (A[j] ≥ pivot)
 j --
 if (i < j)
 i++
 j --

What happens if we change < to ≤?

04-34: Comparison Sorting

- Comparison sorts work by comparing elements
 - Can only compare 2 elements at a time
 - Check for <, >, =.
- All the sorts we have seen so far (Insertion, Quick, Merge, Heap, etc.) are comparison sorts
- If we know nothing about the list to be sorted, we need to use a comparison sort

04-35: Decision Trees Insertion Sort on list \{a, b, c\}

- Every comparison sorting algorithm has a decision tree
- What is the best-case number of comparisons for a comparison sorting algorithm, given the decision tree for the algorithm?
04-37: **Decision Trees**

- Every comparison sorting algorithm has a decision tree
- What is the best-case number of comparisons for a comparison sorting algorithm, given the decision tree for the algorithm?
 - (The depth of the shallowest leaf) + 1
- What is the worst case number of comparisons for a comparison sorting algorithm, given the decision tree for the algorithm?

04-38: **Decision Trees**

- Every comparison sorting algorithm has a decision tree
- What is the best-case number of comparisons for a comparison sorting algorithm, given the decision tree for the algorithm?
 - (The depth of the shallowest leaf) + 1
- What is the worst case number of comparisons for a comparison sorting algorithm, given the decision tree for the algorithm?
 - The height of the tree – (depth of the deepest leaf) + 1

04-39: **Decision Trees**

- What is the largest number of nodes for a tree of depth d?

04-40: **Decision Trees**

- What is the largest number of nodes for a tree of depth d?
 - 2^d
- What is the minimum height, for a tree that has n leaves?

04-41: **Decision Trees**

- What is the largest number of nodes for a tree of depth d?
 - 2^d
- What is the minimum height, for a tree that has n leaves?
 - $\lg n$

- How many leaves are there in a decision tree for sorting n elements?

04-42: **Decision Trees**

- What is the largest number of nodes for a tree of depth d?
 - 2^d
- What is the minimum height, for a tree that has n leaves?
 - $\lg n$
• How many leaves are there in a decision tree for sorting \(n \) elements?
 • \(n! \)

• What is the minimum height, for a decision tree for sorting \(n \) elements?

04-43: Decision Trees

• What is the largest number of nodes for a tree of depth \(d \)?
 • \(2^d \)

• What is the minimum height, for a tree that has \(n \) leaves?
 • \(\lg n \)

• How many leaves are there in a decision tree for sorting \(n \) elements?
 • \(n! \)

• What is the minimum height, for a decision tree for sorting \(n \) elements?
 • \(\lg n! \)

04-44: \(\lg(n!) \in \Omega(n \lg n) \)

\[
\begin{align*}
\lg(n!) &= \lg(n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 2 \cdot 1) \\
&= (\lg n) + (\lg(n-1)) + (\lg(n-2)) + \ldots + (\lg 2) + (\lg 1) \\
&\geq \frac{\lg n + (\lg(n-1)) + \ldots + (\lg(n/2))}{n/2 \text{ terms}} \\
&\geq \frac{\lg(n/2) + (\lg(n/2)) + \ldots + \lg(n/2)}{n/2 \text{ terms}} \\
&= \frac{n}{2} \lg(n/2) \\
&\in \Omega(n \lg n)
\end{align*}
\]

04-45: Sorting Lower Bound

• All comparison sorting algorithms can be represented by a decision tree with \(n! \) leaves

• Worst-case number of comparisons required by a sorting algorithm represented by a decision tree is the height of the tree

• A decision tree with \(n! \) leaves must have a height of at least \(n \lg n \)

• All comparison sorting algorithms have worst-case running time \(\Omega(n \lg n) \)