Graduate Algorithms
CS673-2016F-06

Selection Probelm

Davi |

Department of Computer Science
University of San Francisco

http://www.cs.usfca.edu/galles

06-0: Finding Max & Min

® What is the smallest exact number of comparisons
required to find the maximum element of a list with
n elements?

® What is the smallest exact number of comparisons
required to find the minimum element of a list of n
elements?

® What is the smallest number of comparisons
required to find the maximum and minimum
elements of a list?

06-1: Finding Max & Min

® What is the smallest number of comparisons
required to find the maximum element of a list?
(n—1)

® What is the smallest number of comparisons
required to find the minimum element of a list?
(n—1)

® What is the smallest number of comparisons

required to find the maximum and minimum
elements of a list?

e Compare pairs: then compare the largest to the
current largest, and smallest to the current

smallest |2| + (n — 2)

06-2: Selection Problem

® What if we want to find the kth smallest element?
* Median: k& = |7 |th smallest element, for odd n

® \What is the obvious method?
® Can we do better?

06-3: Selection Problem

® What if we want to find the kth smallest element?
* Median: k& = |7 |th smallest element, for odd n

® \What is the obvious method?
e Sort the list, select the element at index &k

® Can we do better?

06-4: Selection Problem

Quicksort(A, low, high)
if (low < high) then
pivotindex < Partition(A, low, high)
Quicksort(A, low, pivotindex 1)
Quicksort(A, pivotindex + 1, high)

Partition(A, low, high)
pivot = A[high]
| < low - 1
for j < low to high - 1 do
if (A[j] < pivot) then
<0+ 1
swap A[i] + A[j]
swap A[i+1] +» Alhigh]
return i+1

06-5: Selection Problem

Select(A,low,high,k)
if (low = high)
return Aflow]
pivot = Partition(A, low, high)
ad]_pivot = piv - low + 1
If (K = adj_pivot) then
return A[pivot]
If (K < adj_pivot) then
return Select(A,low,pivot-1, k)
else
return Select(A,pivot+1, high, k-adj_pivot)

Running time (Best and worst case)?

06-6: Selection Problem
® Best case time:

T(n)=Tn/2)+c*n € O(n)
® Worst case time:
T(n)=Tn—1)+cxn € 6(n°)

® Average case time turns out to be ©O(n), but we'd
like to get the worst-case time down.

06-7: Selection Problem

® |mproving worst-case time for selection

* We need to guarantee a “good” pivot to get
O(n) time for selection

* How much time can we spend to find a good
pivot, and still get ©(n) time for selection?

06-8: Selection Problem

® |mproving worst-case time for selection

* We need to guarantee a “good” pivot to get
O(n) time for selection

* How much time can we spend to find a good
pivot, and still get ©(n) time for selection?

e O(n) !

06-9: Selection Problem

® Finding a “Good” pivot (one that is near the
median) in linear time:

* Split the list into ¢ list of length 5
e Do an insertion sort on each of the g lists to
find the median of each of these lists

e Call select recursively to find the median of the
= medians

06-10: Selection Problem

06-11: Selection Problem

06-12: Selection Problem

06-13: Selection Problem

® How good is the pivot chosen by this method?
How many elements are guaranteed to be less

than the pivot?
e Each row has 5 elements
e Half of the rows will have a median less than
the pivot
e Each of these rows will have 3 elements less
than the pivot

06-14: Selection Problem
3*[]5] 5]

® Not all of those rows have exactly 3 elements less

than

the pivot:

* The total number of elements might not be
divisible by 5 (so one row would have < 5

e
e T
e

ements
ne row containing the pivot itself only has 2

ements less than the pivot (not 3)

® So, we will omit those two rows, leaving:
3x([]5]3]—2) =% —6

5! — 10

06-15: Selection Problem

® Worst case time for selection for a problem of size
n.
e O(n) time to do partition, n/5 insertion sorts
e Time to find the median of medians (looking at
n/5 elements)

* Time to make the recursive call (to a problem of
no more than size 7n/10 4 6

06-16: Selection Problem

(

T(n) <
(n) < <\ T([2])+ T(£+6)+ Cy *n otherwise

06-17: Selection Problem

T'(n)

10

C xn TxC xn
- | 0 FOoxC 4+ Cs xn

9x(C
= *1JWLI7*C+%E*n

O*n+<7*0+02*n C;E)”)

T([%})+T(7—n+6>+02*n

VAN
S

06-18: Selection Problem

C

C*(?—%)

(357

0
C
C

VAN

—02*77/

[V

Cg*n

Cyxn/(n/10 —7)
10 %« Cy % (n/(n — 70))

AVARAV,

Note that we must insist that n > 70. If n > 140, then
this is true if C' > 20 x ()

06-19: Selection Problem

® Selection takes time O(n)
e in fact, ©(n), since each recursion steps takes
time Q2(n)
® S0, we can use Selection to make Quicksort take
time ©(nlgn) worst case
 Would that be a good idea?

	{small lecturenumber -	heblocknumber :} Finding Max & Minaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Finding Max & Minaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Selection Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Selection Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Selection Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Selection Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Selection Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Selection Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Selection Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Selection Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Selection Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Selection Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Selection Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Selection Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Selection Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Selection Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Selection Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Selection Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Selection Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Selection Problemaddtocounter {blocknumber}{1}

