
Graduate Algorithms
CS673-2016F-08

Extending Data Structures

David Galles

Department of Computer Science

University of San Francisco

http://www.cs.usfca.edu/galles


08-0: Dynamic Order Statistics

Data structure with following operations:

Insert / Remove / Find Θ(lg n)

Find nth smallest element

Find the rank of any element (is it smallest,
second smallest, etc)

How can we do this with red/black trees?

How to find the rank of any element in a red/black
tree

How to find the nth element in a red/black tree



08-1: Dynamic Order Statistics

Addinging functionality to red/black trees

Finding the nth element in a red/black tree

Finding the rank of any element in a red/black
tree

What if we could add some other data to a
red/black tree, to make this easier?

What should we add?

How could we use it?



08-2: Size Field

Add a “size” field to each node in a red/black tree

How can we use this size field to find the nth
element in the tree?

How can we use this size field to find the rank
of any element?

Can we maintain the size field, and still have
insert/remove/find take time O(lg n)?



08-3: Using Size Field

To find the kth element in a red/black tree with size
field:

If # of elements in left subtree = k − 1, then
root is the kth element

if # of elements in left subtree > k − 1, then the
kth element is the kth element in the left
subtree

if # of elements in the left subtree = n < k − 1,
then the kth element is the (k − (n+ 1))th
element in the right subtree



08-4: Updating Size: Insert

Updating size field on insert:



08-5: Updating Size: Insert

Updating size field on insert:

As we go down the tree looking for the correct
place to insert an element, add one to the size
field of every node along the path from the root
to the inserted element

(examples on board)



08-6: Updating Size: Delete

Updating size field on delete:



08-7: Updating Size: Delete

Updating size field on delete:

As we go down the tree looking for the element
to delete, delete one from the size of evey node
along the path from the root to the deleted
element

(examples on board)

Need to be careful about trying to delete
elements that aren’t in the tree



08-8: Updating Size Field: Rotate

Updating size on rotations

How should sizes be updated on rotations?
(Picture on board)



08-9: Updating Size Field: Rotate

Y

X C

A B

Y

X

C

A

B

Right Rotate

Sizes of A,B,C not changed

Size(Y) = Size(B) + Size(C) + 1

Size(X) = Size(A) + Size(Y) + 1

Sizes of A,B,C not changed

Size(X) = Size(A) + Size(B) + 1

Size(Y) = Size(X) + Size(C) + 1

Left Rotate



08-10: Augmenting Data Structures

Decide what extra information to add to each
element of the data structure

Make sure we can update this extra information for
each operation on the data structure

Add operations that use this extra information

New operations

Do old operations more efficiently

(Finding rank example)



08-11: Augmenting Data Structures

For Red/Black trees:

If extra information in a node is dependent only
on the node itself, and values in left & right
children

Then, we can always update this information
during insert and delete in time O(lg n)



08-12: Augmenting Data Structures

On an insert:

Add the leaf

Update information on path from leaf to root
after the insertion

Extra time: O(lg n)

Rotate as necessary



08-13: Augmenting Data Structures

On a delete:

Delete the node

Update information on path from deleted node
to root after deletion is completed

(also works for deletion of node w/ 2 children,
do example)

Extra time: O(lg n)

Rotate as necessary



08-14: Augmenting Data Structures

Y

X C

A B

Y

X

C

A

B

Right Rotate

Values in A,B,C don’t need to change

Values in X,Y can be changed by looking at A,B,C

Might need to propagate change up the tree (time

O(lg n))



08-15: Intervals

Closed intervals

i = [t1, t2]

All values between t1 and t2, including t1 and t2

Open / Half-Open intervals

i = (t1, t2), i
′ = (t′

1
, t′

2
]

All values between t1 and t2, not including t1 or
t2
All values between t1 and t2, including t2 but not
t1



08-16: Intervals

Given two intervals i = [t1, t2] and i′ = [t′
1
, t′

2
]

Three cases

i and i′ overlap (including one is a subset of the
other)

i is to the left of i′

i is to the right if i′



08-17: Intervals

Data structure that manipulates intervals

Insert a closed interval (using endpoints)

Delete a closed interval (using endpoints)

Find an interval
Given an interval i, find an interval that
overlaps i
If > 1 interval overlaps i, return one arbitrarily



08-18: Interval Trees

First Try:

Each node stores low/high endpoint of interval

Sorted based on low endpoint

No extra information (yet!)



08-19: Interval Trees

0 2 10

[9,14]

[4,7] [11,12]

164 6 8 12 14

[3,6] [5,6]

[0,1]

[10,13] [15,17]

[14,16]



08-20: Interval Trees

Data Structure

Each node stores low/high endpoint of interval

Sorted based on low endpoint

Extra information: Maximum value of any
interval stored in the subtree rooted at this node



08-21: Interval Trees

0 2 10

[9,14]

[4,7] [11,12]

164 6 8 12 14

[3,6]

17

7 17

[5,6]
66

[0,1]
1

[10,13] [15,17]
1713

[14,16]
16



08-22: Interval Trees

Extra Information:

Maximum value of any interval stored in the
subtree

Can we maintain this extra information through
inserts and deletes?



08-23: Interval Trees

Extra Information:

Maximum value of any interval stored in the
subtree

Can we maintain this extra information through
inserts and deletes?

Yes: Maximum value in a subtree only depends
upon:

High endpoint stored in current node
Maximum value in left subtree
Maximum value in right subtree

(Example updates on board)



08-24: Interval Trees

How do we find an interval?

Given an interval i, find an interval that overlaps
i.

If > 1 interval overlaps i, return any one of the
intervals that overlap i

(examples in next slide)



08-25: Interval Trees

0 2 10

[8,9]

[4,7] [11,12]

164 6 8 12 14

[3,14]

17

14 17

[5,6]
614

[0,1]
1

[10,11] [16,17]
1711

[15,16]
16



08-26: Interval Trees

How do we find an interval?

IntervalSearch(T,i)
if (T == null) return null
if (i overlaps interval at root)

return T
if (T.left != null && T.left.max > i.low)

return IntervalSearch(T.left,i)
else

return IntervalSearch(T.right,i)

Can we remove recursion?



08-27: Interval Trees

How do we find an interval?

IntervalSearch(T,i)
while ((T != null) && (i does not

overlap interval stored at t))
if (T.left != null && T.left.max > i.low)

T = T.left
else

T = T.right
return T


	{small lecturenumber -	heblocknumber :} Dynamic Order Statisticsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dynamic Order Statisticsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Size Fieldaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Using Size Fieldaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Updating Size: Insertaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Updating Size: Insertaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Updating Size: Deleteaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Updating Size: Deleteaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Updating Size Field: Rotateaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Updating Size Field: Rotateaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Augmenting Data Structuresaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Augmenting Data Structuresaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Augmenting Data Structuresaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Augmenting Data Structuresaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Augmenting Data Structuresaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Intervalsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Intervalsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Intervalsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Interval Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Interval Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Interval Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Interval Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Interval Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Interval Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Interval Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Interval Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Interval Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Interval Treesaddtocounter {blocknumber}{1}

