Computability and Vaughtian Models

Jennifer Chubb

George Washington University Washington, DC

Logic Seminar September 28, 2006

Slides available at home.gwu.edu/~jchubb

Outline

- Review
 - Type Space, S(T)
 - Vaughtian models, definitions and basic facts
- Prime Models
 - Decidable prime models
 - Undecidable prime models
 - Degrees bounding prime models
- Saturated Models
 - Decidable saturated models
 - Undecidable saturated models
 - Degrees bounding saturated models
- 4 Homogeneous Models
 - Decidable copies of homogeneous models
 - Undecidable copies of homogeneous models
 - Degrees bounding homogeneous models

Outline

- Review
 - Type Space, S(T)
 - Vaughtian models, definitions and basic facts
- Prime Models
 - Decidable prime models
 - Undecidable prime models
 - Degrees bounding prime models
- Saturated Models
 - Decidable saturated models
 - Undecidable saturated models
 - Degrees bounding saturated models
- **4** Homogeneous Models
 - Decidable copies of homogeneous models
 - Undecidable copies of homogeneous models
 - Degrade le copies di nomogéneous models

Assumptions

Everything will be countable; in particular, all languages, theories, and models are countable.

Theories will be complete (except when they're not), and taken to have only infinite models.

Types

Let $p(\bar{x})$ be a collection of \mathcal{L} -formulas having variables among x_0, \ldots, x_{n-1} for some fixed n.

- $p(\bar{x})$ is an *n-type of T* if there is a model \mathcal{M} of T, and an element \bar{a} in the universe of that model so that every formula in $p(\bar{x})$ is true of \bar{a} in \mathcal{M} . We say $p(\bar{x})$ is realized by \bar{a} in \mathcal{M} .
- $p(\bar{x})$ is a *complete n-type of T* if it is a maximal consistent set of *n*-ary formulas.
- Given an \mathcal{L} -structure $\mathcal{M} \models T$ and an element \bar{a} of its universe, the *type of* \bar{a} in \mathcal{M} , $tp_{\mathcal{M}}(\bar{a}) = \{\theta(\bar{x}) | \theta(\bar{a}) \text{ is true in } \mathcal{M}.\}.$

Type Space

- The collection of all complete n-types is $S_n(T)$.
- We can put a topology on this space... the basic open sets are given by the n-ary \mathcal{L} -formulas, that is, for an n-ary \mathcal{L} -formula $\varphi(\bar{x})$, we have the basic open set

$$\{p \in S_n(T) | \varphi(\bar{x}) \in p\}.$$

• With this topology, $S_n(T)$ is a totally disconnected space, compact, and Hausdorff. (Such a space is called Boolean.)

Type Space

 $S_n(T)$ can be viewed as the set of all paths in a tree:

- Let $\{\theta_i(\bar{x})\}_{i\in\omega}$ be an enumeration of all *n*-ary formulas of \mathcal{L} .
- Let $\theta^1 = \theta$ and $\theta^0 = \neg \theta$.
- For $\alpha \in 2^{<\omega}$, let $\theta_{\alpha}(\bar{x}) = \bigwedge_{i<|\alpha|} \{\theta_i^{\alpha(i)}(\bar{x})\}.$
- Define the tree of n-ary formulas consistent with T as

$$T_n(T) = \{\theta_{\alpha}(\bar{x}) | \alpha \in 2^{<\omega} \& (\exists \bar{x}) \theta(\bar{x}) \in T\}.$$

• Paths in $T_n(T)$ are complete *n*-types of T.

Type Space

Note that we identify formulas with their indices when convenient.

- A node, α is an *atom* if it does not split. Paths passing through atoms atoms *isolated* or *principle* paths. These correspond to formulas which generate *principle types*.
- T is atomic if every node in T is extended by an atom, equivalently, the isolated paths are dense in [T].
- A complete theory, T, is atomic if T_n(T) is atomic for every n > 1.
- A node β that cannot be extended to an atom is called *atomless*.

Warm up example

Let T be the theory of the rationals as a DLO without endpoints, and consider the structure $Q = \langle \mathbb{Q}; <, c_q \rangle_{q \in \mathbb{Q}}$.

- Countably many isolated types. (Corresponding to generators of the form $x = c_q$ for $q \in \mathbb{Q}$.)
- Uncountably many non-principal types. (Corresponding to the cuts of the rationals.)
- T is atomic as the principal types are dense.

Homogeneous models

Definition

An \mathcal{L} -structure \mathcal{M} is called *homogeneous* if for any two finite tuples, \bar{a} and \bar{b} , in M we have

$$\langle \mathcal{M}, \bar{a} \rangle \equiv \langle \mathcal{M}, \bar{b} \rangle \implies (\forall c \in M)(\exists d \in M)[\langle \mathcal{M}, \bar{a}, c \rangle \equiv \langle \mathcal{M}, \bar{b}, d \rangle].$$

Facts

- It is equivalent to say that any finite elementary map can be extended to an automorphism.
- Any two homogeneous models of the same cardinality that realize the same types are isomorphic.
- Any countable theory has a homogeneous model.

Vaughtian models, definitions and basic facts

Prime and Atomic models

Definition

- M ⊨ T is prime if M can be elementarily embedded in any other model of T.
- \mathcal{M} is *atomic* if all the types realized by \mathcal{M} are principle.

Facts

- \mathcal{M} is prime iff it is countable and atomic.
- If \mathcal{M} is prime (and hence atomic), it is homogeneous.
- If M₁ and M₂ are both prime models of T, they are isomorphic.
- If T is countable, complete, has infinite models, and is atomic, then it has a prime model.

Vaughtian models, definitions and basic facts

Saturated models

Definition

Let \mathcal{M} be a countable model of T.

- ① \mathcal{M} is *saturated* if every 1-type $p(\bar{a}, x)$ over a finite set of elements $\bar{a} \in M$ is realized in \mathcal{M} .
- ② \mathcal{M} is weakly saturated if every n-type of T is realized in \mathcal{M} .
- **3** \mathcal{M} is ω -universal if $\mathcal{N} \preceq \mathcal{M}$ for every countable model \mathcal{N} of T.

Vaughtian models, definitions and basic facts

Saturated models

Facts

- The following are equivalent:
 - M is saturated.
 - ullet $\mathcal M$ is weakly saturated and homogeneous.
 - \mathcal{M} is ω -universal and homogeneous.
- If \mathcal{M}_1 and \mathcal{M}_2 are countable and saturated, they are isomorphic.
- A theory has a countable saturated model iff $S_n(T)$ is countable for all n.

Outline

Review

- Review
 - Type Space, S(T)
 - Vaughtian models, definitions and basic facts
- Prime Models
 - Decidable prime models
 - Undecidable prime models
 - Degrees bounding prime models
- Saturated Models
 - Decidable saturated models
 - Undecidable saturated models
 - Degrees bounding saturated models
- 4 Homogeneous Models
 - Decidable copies of homogeneous models
 - Undecidable copies of homogeneous models
 - Dograda hounding homogeneous models

Review

Let *T* be a complete, atomic, decidable (CAD) theory.

Theorem (Millar)

There is CAD theory with no decidable prime model.

Theorem (Goncharov-Nurtazin, Harrington; 1973, 1974)

The following are equivalent:

- T has a decidable prime model.
- The collection of principal types, $S^{P}(T)$, has a **0**-basis.
- $(\exists g \leq_T \mathbf{0})(\forall \theta_{\alpha} \in \mathcal{T}_n(T))[\theta_{\alpha} \subset g_{\alpha} \in \mathcal{S}_n^P(T)]$, where $g_{\alpha}(y) = g(\alpha, y)$ is an element of $[\mathcal{T}_n(T)]$.

Undecidable prime models

Theorem

If T is CAD, then it has a prime model decidable in $\mathbf{0}'$.

Theorem (Csima)

If T is a CAD then it has a low prime model.

Degrees bounding prime models

A theorem about trees...

Theorem (Hirschfeldt, 2006)

If \mathcal{T} is an extendible 'paths all computable' (*PAC*) tree, and $D >_{\mathcal{T}} \emptyset$, then there is a *D*-computable listing of all the isolated paths in $[\mathcal{T}]$.

Corollary

If T is CAD and all its types are computable (TAC), and $D >_T \emptyset$, then T has a D-decidable prime model.

Corollary

If $\mathbf{0} \notin dgSp(\mathcal{M})$, and \mathcal{M} is prime, then $dgSp(\mathcal{M}) = \{\mathbf{d} | \mathbf{d} > \mathbf{0}\}$.

Corollary (Slaman, Wehner)

There is a structure with presentations of every non-zero degree, but no computable presentation.

- The function g dominates f ($f <^* g$) if $(\forall^{\infty} x)[f(x) < g(x)]$.
- f escapes g if $f \not<^* g$, that is, $(\exists^{\infty} x)[g(x) \le f(x)]$.
- *f* is *dominant* if *f* dominates every computable function.

These definitions extend naturally to degrees.

Theorem (Martin)

A degree **d** is high ($\mathbf{d}' = \mathbf{0}''$) iff \exists dominant $g \leq_T \mathbf{d}$.

Relativizing yields a characterization of the nonlow₂ sets:

Theorem (Nonlow₂ escape theorem)

Degree $\mathbf{a} \leq \mathbf{0}'$ is not low₂, $(\mathbf{a}'' > \mathbf{0}'')$ iff $\mathbf{0}'$ does not dominate \mathbf{a} .

More reminders...

• A set X is said to have the escape property if

$$(\forall g \leq_T 0')(\exists f \leq_T X)(\exists^{\infty} x)[g(x) \leq f(x)],$$

that is, for any Δ_2^0 function, we can find an *X*-computable function *f* that escapes it.

 X (or the degree of X) has the prime bounding property if every CAD theory has an X-decidable prime model. Degrees bounding prime models

Back to the matter at hand.

Theorem (Csima, Hirschfeldt, Knight, Soare; 2004)

For $X \leq_{\mathcal{T}} 0'$, the following are equivalent:

- X has the escape property.
- X is not low₂.
- X is prime bounding.

Outline

Review

- 1 Review
 - Type Space, S(T)
 - Vaughtian models, definitions and basic facts
- Prime Models
 - Decidable prime models
 - Undecidable prime models
 - Degrees bounding prime models
- Saturated Models
 - Decidable saturated models
 - Undecidable saturated models
 - Degrees bounding saturated models
- **4** Homogeneous Models
 - Decidable copies of homogeneous models
 - Undecidable copies of homogeneous models
 - Degrade le copies di nomogéneous models

Let *T* be complete decidable (*CD*) with all its types computable (TAC).

Theorem (Millar)

There is a CD, TAC theory having no decidable saturated model.

Theorem (Morley, Millar; 1978)

The following are equivalent:

- T has a decidable saturated model.
- There is a computable listing of the types of T, S(T), that is, S(T) has a **0**-basis.

Undecidable saturated models

Theorem (Harris)

There is a CD, TAC theory having no low saturated model.

Theorem

T has a saturated model computable in \emptyset' .

Positive results

A set X (or its degree) is called *saturated bounding* if every CD, TAC theory has an X-decidable saturated model.

If **d** is the degree of a complete extension of Peano Arithmetic, it is a *PA* degree.

Theorem (Macintyre, Marker; 1984)

Every PA degree is saturated bounding.

Theorem (Harris; to appear)

Every high degree is saturated bounding.

Proof that high degrees are saturated bounding.

Another tree theorem:

Theorem

Let \mathcal{T} be an extendible *PAC* tree, and **d** a high degree. There is a **d**-uniform listing of $[\mathcal{T}]$.

To show this, we need a theorem from computability:

Theorem (Jockusch)

If **d** is a high degree, there is a **d**-uniform listing of the computable functions.

Degrees bounding saturated models

Negative results

Theorem (Harris)

No low $_n$ degree is saturated bounding.

Outline

- 1 Review
 - Type Space, S(T)
 - Vaughtian models, definitions and basic facts
- Prime Models
 - Decidable prime models
 - Undecidable prime models
 - Degrees bounding prime models
- Saturated Models
 - Decidable saturated models
 - Undecidable saturated models
 - Degrees bounding saturated models
- **4** Homogeneous Models
 - Decidable copies of homogeneous models
 - Undecidable copies of homogeneous models
 - Degrees bounding homogeneous models

Theorem (Goncharov, Peretyat'kin, Millar; 1978, 1978, 1980)

There is a *CD* theory having a homogeneous model with a **0**-basis, but no decidable copy.

Theorem (Goncahrov, Peretvat'kin: 1978, 1978)

If \mathcal{M} is a homogeneous model of a CD theory that has a **0**-basis $X = \{p_i(\bar{x})\}_{i \in \omega}$ and an *effective extension function* for X then \mathcal{M} has a decidable copy.

An effective extension function is a computable binary function f taking the n-type $p_i(\bar{x})$ and a (consistent) (n+1)-ary formula $\theta_i(\bar{x}, x_n)$ to an (n+1)-type, $p_{f(i,i)}$ that extends both, that is $p_i(\bar{x}) \cup \{\theta_i(\bar{x}, x_n)\} \subseteq p_{f(i,i)}(\bar{x}, x_n).$

Undecidable copies of homogeneous models

Theorem (Lange)

If \mathcal{M} is a homogeneous model of a CD theory T, and $X = S(\mathcal{M})$ is a $\mathbf{0}'$ -basis for the types of \mathcal{M} , then \mathcal{M} has a copy \mathcal{N} that is low $(D^e(\mathcal{N})' \equiv_T \mathbf{0}')$.

Theorem (Lange)

Let T be a CD theory with homogeneous model $\mathcal M$ having **0**-basis X. If $\mathbf d \leq \mathbf 0'$ is nonlow₂, then there is a $\mathbf d$ -decidable copy of $\mathcal M$.

Undecidable copies of homogeneous models

Theorem (Lange)

Let T be a CD, TAC theory. Let \mathcal{M} be a homogeneous model of T with a **0**-basis. Then

$$\{\mathbf{d}|\mathbf{0}<\mathbf{d}\}\subseteq\{deg(\mathcal{N})|\mathcal{N}\cong\mathcal{M}\}.$$

Degrees bounding homogeneous models

A degree **d** is *homogeneous bounding* if every *CD* theory has a **d**-decidable homogeneous model.

Theorem (Csima, Harizanov, Hirschfeldt, Soare; to appear)

A degree is homogeneous bounding iff it is a PA degree.

References

 Soare, R. "Short Course on The Computable Content of Vaughtian Models," at Leeds MATHLOGAPS Summer School, August 21-25, 2006.