Continuous Model Theory

Jennifer Chubb

George Washington University Washington, DC

GWU Logic Seminar September 22, 2006

Slides available at home.gwu.edu/~jchubb

Advertisement and thank you's

This is the second in a series of three talks on special topics in logic discussed at the MATHLOGAPS summer school. The third will be:

 "The computable content of Vaughtian model theory" on Thurday, September 28 at 4 pm in Old Main, Room 104.
A computability theoretic perspective on prime, saturated, and homogeneous models. (Definitions provided.)

Many thanks to the Columbian College for support to attend the MATHLOGAPS summer school at the University of Leeds.

- **Introduction**
 - Standard First Order Logic (FOL)
 - Motivation
- Continuous Logic
 - Metric Structures
 - Continuous First Order Logic (CFO)
- 3 Examples
 - One example
 - Another example

Introduction

- Standard First Order Logic (FOL)
- Motivation
- Continuous Logic
 - Metric Structures
 - Continuous First Order Logic (CFO)
- 3 Examples
 - One example
 - Another example

The Basics

Start with a *language*, \mathcal{L} , consisting of

- Constant symbols (a_k),
- Relation symbols (R_i), along with their arity, and
- Function symbols (F_i) , along with their *arity*.

An \mathcal{L} -formula is any syntactically correct string of characters you can make out of \mathcal{L} , along with variables, equals ('='), the usual logical connectives, and quantifiers.

An \mathcal{L} -sentence is an \mathcal{L} -formula having no free variables.

An \mathcal{L} -structure, \mathcal{M} , is a universe, M, together with an interpretation for each symbol in \mathcal{L} . We write $\mathcal{M} = \langle M; R_i^{\mathcal{M}}, F_i^{\mathcal{M}}, a_k^{\mathcal{M}} \rangle$.

An example

Suppose we're thinking about the groups... maybe with a unary relation

- Our language is $\mathcal{L} = \{R, ^{-1}, \cdot, e\}$.
- An example of an \mathcal{L} -formula: $\varphi(x_1, x_2) \iff \exists y[x_1 \cdot y = y \cdot x_2].$
- An example of an \mathcal{L} -sentence: $\sigma \iff \forall x [R(x) \lor R(x^{-1})]$.
- Any group is an example of an \mathcal{L} -structure. (There are other examples that are not groups.)

To ensure the structures we are considering *are* groups we have to insist they satisfy appropriate axioms.

Theories in FOL

- An \mathcal{L} -theory is any collection of \mathcal{L} -sentences.
- An \mathcal{L} -theory, T, is *consistent* if there is an \mathcal{L} -structure in which all the sentences in T are true.
- An \mathcal{L} -theory, T, is *complete* if for every \mathcal{L} -sentence, σ , either $\sigma \in T$ or $\neg \sigma \in T$.
- The theory of a structure, M is the set of all L-sentences true in that structure. (Note, the theory of a structure is always complete and consistent.)

If we choose a theory Σ first, and then look for structures that model this theory, we sometimes refer to the sentences in Σ as axioms.

Examples: The theory of arithmetic, group theory, set theory...

Motivation

'Continuous' structures

- Standard FOL does not work well for metric structures (to be defined presently).
- The continuous logic presented here does, and neatly parallels FOL and the accompanying model theory.
- We will see the syntax and semantics for this continuous logic, as well as some key features of the resulting model theory.

Examples

Outline

Introduction

- - Standard First Order Logic (FOL)
 - Motivation
- **Continuous Logic**
 - Metric Structures
 - Continuous First Order Logic (CFO)
- - One example
 - Another example

Introduction

The Basics

Definition

A metric structure, $\mathcal{M} = \langle M; d; R_i, F_i, a_k \rangle$, is a complete, bounded metric space $\langle M, d \rangle$, equipped with some uniformly continuous bounded real-valued "predicates",

Examples

 $R_i: M \times \ldots \times M \to \mathbb{R}$, some uniformly continuous functions $F_i: M \times \ldots \times M \to M$, and some distinguished elements (constants) $a_k \in M$.

Okay, so what does that mean?

A really trivial example

A complete bounded metric space is such a structure, having no predicates, no functions, and no constants.

A slightly more interesting example

Any standard first order structure can be viewed as a metric structure:

Just take d to be the discrete metric,

$$d(x,y) = \begin{cases} 0, & \text{if } x = y \\ 1, & \text{if } x \neq y \end{cases}, \text{ and }$$

• identify predicate R_i with its characteristic function,

$$\chi_{R_i}: M \times \cdots \times M \rightarrow \{0,1\}.$$

(Note that here we may need to adjust our usual association of 0 with 'False' and 1 with 'True' to view this as an extension of FOL.)

Recall that a Banach space is a complete normed vector space over \mathbb{R} (or \mathbb{C}).

Classic examples:

- C[a,b], the set of all continuous functions $f:[a,b]\to\mathbb{R}$ with norm $||f|| = \sup\{|f(x)| : x \in [a, b]\}.$
- ℓ^{∞} , the set of all bounded sequences $x = (x_1, x_2, ...)$ from \mathbb{R} with norm $||x|| = \sup\{|x_i| : i \in \mathbb{N}\}.$
- ℓ^p , the set of all $x = (x_1, x_2, ...)$ so that $\sum_i |x_i|^p$ converges with norm $||x|| = (\sum_i |x_i|^p)^{1/p}$
- $L^p[a,b]$, the set of real-valued functions on [a,b] having $|f|^p$ Lebesgue-integrable with norm $||f|| = (\int |f|^p)^{1/p}$. (Quotient by norm zero things.)

Choose your favorite Banach space X over \mathbb{R} .

Let M be the unit ball of X,

$$M = \{x \in X : ||x|| \le 1\}.$$

Then $\mathcal{M} = \langle M; d; f_{\alpha\beta} \rangle_{|\alpha| + |\beta| \le 1}$ is a metric structure where

- d(x, y) = ||x y||, and
- $\bullet \ f_{\alpha\beta}(x,y) = \alpha x + \beta y.$

Note that we could add to this structure a copy of the norm, d, as a binary predicate, or add a distinguished element, 0_X .

Continuous First Order Logic (CFO)

Syntax: The language of a metric structure

From a metric structure, we may extract the *signature*, \mathcal{L} , or associated language of the structure consisting of appropriate predicate, function, and constant symbols. (The *arity* should be specified when necessary.)

Additionally, for each predicate symbol, R, the signature must specify a closed, bounded, real interval, I_R (containing the range of R), and a modulus of uniform continuity for R. (Simplifying assumption: Our spaces have $I_R = [0,1]$ for all predicate symbols.)

Syntax: The language of a metric structure

For each function symbol, F_j , a modulus of uniform continuity is specified.

Finally, a bound on the diameter of the metric space $\langle M, d \rangle$ must be specified.

We can finally say that \mathcal{M} is an \mathcal{L} -structure.

Syntax: Formulas in CFO

Fix a signature, \mathcal{L} .

Building *terms*:

- Variables and constants are terms.
- If F is an n-ary function symbol and t_1, \ldots, t_n are terms, $F(t_1, \ldots, t_n)$ is a term.

Atomic formulas are formulas of the form

- $d(t_1, t_2)$, and
- $P(t_1, \ldots, t_n)$, for *n*-ary predicate symbol P.

Syntax: Formulas in CFO

The basic building blocks of formulas are the atomic formulas. From there, formulas are built inductively, but things are a little different:

• Continuous functions $u:[0,1]^n \to [0,1]$ play the role of connectives.

If
$$\varphi_1, \ldots, \varphi_n$$
 are formulas, so is $u(\varphi_1, \ldots, \varphi_n)$.

• \sup_x and \inf_x act like quantifiers (think $\forall x$ and $\exists x$, respectively).

If φ is a formula and x a variable, then $\sup_x \varphi$ and $\inf_x \varphi$ are formulas.

An \mathcal{L} -sentence is an \mathcal{L} -formula with no free variables.

Semantics in CFO

This works out as you'd expect. The *truth value*, $\sigma^{\mathcal{M}}$, assigned to an \mathcal{L} -sentence σ is given by

$$\bullet (d(t_1,t_2))^{\mathcal{M}} = d^{\mathcal{M}}(t_1^{\mathcal{M}},t_2^{\mathcal{M}}),$$

$$\bullet (P(t_1,\ldots,t_n))^{\mathcal{M}} = P^{\mathcal{M}}(t_1^{\mathcal{M}},\ldots,t_n^{\mathcal{M}}),$$

$$\bullet (u(\sigma_1,\ldots,\sigma_n))^{\mathcal{M}}=u(\sigma_1^{\mathcal{M}},\ldots,\sigma_n^{\mathcal{M}}),$$

•
$$(\sup_{x} \varphi(x))^{\mathcal{M}} = \sup \{ \varphi(a)^{\mathcal{M}} : a \in M \}, \text{ and }$$

•
$$(\inf_{x} \varphi(x))^{\mathcal{M}} = \inf \{ \varphi(a)^{\mathcal{M}} : a \in M \}.$$

Theories in CFO

- If φ is an \mathcal{L} -formula, we call the expression $\varphi = 0$ an \mathcal{L} -statement.
- If φ is an \mathcal{L} -sentence, $\varphi = \mathbf{0}$ is a closed \mathcal{L} -statement.
- If E is the \mathcal{L} -statement $\varphi(\bar{x}) = 0$ and \bar{a} is a tuple from M, we say E is true of \bar{a} in \mathcal{M} and write $\mathcal{M} \models E[\bar{a}]$ if $\varphi^{\mathcal{M}}(\bar{a}) = 0$.
- An \mathcal{L} -theory is a collection of closed \mathcal{L} -statements.
- An L-theory is complete if it is the theory of some L-structure.

Other fundamentals of CFO

Substructures...

Definition

 ${\mathcal M}$ is an *elementary substructure* of ${\mathcal M}'$ (we write ${\mathcal M} \preceq {\mathcal M}'$) if ${\mathcal M}$ is a substructure of ${\mathcal M}'$ and for every ${\mathcal L}$ -formula $\varphi(\bar x)$ and every tuple $\bar a \in {\mathcal M}, \ \varphi^{\mathcal M}(\bar a) = \varphi^{{\mathcal M}'}(\bar a)$.

Other fundamentals of CFO

- The notion of logical equivalence
 - \mathcal{L} -formulas $\varphi(\bar{x})$ and $\psi(\bar{x})$ are logically equivalent if for every \mathcal{L} -structure, \mathcal{M} , and for every tuple $\bar{a} \in \mathcal{M}$,

$$\varphi^{\mathcal{M}}(\bar{\mathbf{a}}) = \psi^{\mathcal{M}}(\bar{\mathbf{a}}).$$

- Logical distance
 - More generally, the *logical distance* between two formulas $\varphi(\bar{x})$ and $\psi(\bar{x})$ is taken to be the supremum of $|\varphi(\bar{a}) \psi(\bar{a})|$ over all \mathcal{M} and $\bar{a} \in M$.
 - Thus, two formulas are logically equivalent if the logical distance between them is zero.

An important note...

We have *a lot* of formulas, even if \mathcal{L} is finite.

We have allowed uncountably many connectives!

Weierstrass's Theorem provides a countable dense set of connectives with respect to logical distance.

We can approximate *any* formula to within any ε by some formula in a dense collection of size $\leq |\mathcal{L}|$.

Outline

- **Introduction**
 - Standard First Order Logic (FOL)
 - Motivation
- Continuous Logic
 - Metric Structures
 - Continuous First Order Logic (CFO)
- 3 Examples
 - One example
 - Another example

Let $\langle X, \mathcal{B}, \mu \rangle$ be a probability space. We build a metric structure as follows.

The signature will be $\mathcal{M} = \langle \hat{\mathcal{B}}; \mathbf{d}; \mathbf{0}, \mathbf{1}, \cdot^{\mathbf{c}}, \cap, \cup, \mu \rangle$.

- $\hat{\mathcal{B}}$ is the space of *events*, that is \mathcal{B} 'quotiented' by measure zero sets.
- The metric d is given by $d([A]_{\mu}, [B]_{\mu}) = \mu(A \triangle B)$.
- 0 and 1 are the events having probability 0 and 1 respectively.
- \cdot^c , \cup , \cap are what you think they are.
- The modulus of uniform continuity for \cdot^c is $\Delta(\varepsilon) = \varepsilon$, and for \cup and \cap it is $\Delta'(\varepsilon) = \varepsilon/2$.

We call such structures probability structures.

Boolean Algebra axioms

- As usual, but we have to translate.
- eg. instead of $\forall x \forall y (x \cup y = y \cup x)$, we have $\sup_{x} \sup_{y} (d(x \cup y, y \cup x)) = 0$.
- Measure axioms
 - $\mu(\mathbf{0}) = 0$ and $\mu(\mathbf{1}) = 1$;
 - $\sup_{x} \sup_{y} (\mu(x \cap y) \dot{-} \mu(x)) = 0;$
 - $\sup_{x} \sup_{y} (\mu(x) \dot{-} \mu(x \cup y)) = 0;$
 - $\sup_{x} \sup_{y} |(\mu(x) \dot{-} \mu(x \cap y)) (\mu(x \cup y) \dot{-} \mu(y))| = 0.$
 - The last three taken together express the usual $\forall x \forall y [\mu(x \cup y) + \mu(x \cap y) = \mu(x) + \mu(y)].$
- Connecting d and μ
 - $\sup_{x} \sup_{y} |d(x, y) \mu(x \triangle y)| = 0.$

Probability structures

- Any metric structure that models PR₀ can be obtained from a probability space in the manner described.
- If we add $\sup_x \inf_y |\mu(x \cap y) \mu(x \cap y^c)| = 0$ to PR_0 (call this new axiom system PR), the models correspond to *atomless* probability spaces.
- PR is ω -categorical, admits quantifier elimination, and is ω -stable wrt the d metric (on the type space).

Tarski-Vaught

Tarski-Vaught test for ≤

Let $\mathcal S$ be any set of $\mathcal L$ -formulas dense with respect to logical distance. Suppose $\mathcal M$ and $\mathcal N$ are $\mathcal L$ -structures with $\mathcal M\subseteq \mathcal N$. The following are equivalent:

- $\mathbf{0} \ \mathcal{M} \preceq \mathcal{N};$
- ② For every \mathcal{L} -formula $\varphi(\bar{x}, y)$ in \mathcal{S} and every tuple $\bar{a} \in M$,

$$\inf\{\varphi^{\mathcal{N}}(\bar{a},b)|b\in N\} = \inf\{\varphi^{\mathcal{N}}(\bar{a},c)|c\in M\}.$$

This is fairly immediate:

If $\varphi(\bar{x}, y)$ is an \mathcal{L} -formula, and $\bar{a} \in M$, we have

$$\inf\{\varphi^{\mathcal{N}}(\bar{a},b)|b\in\mathcal{N}\}=(\inf_{y}\varphi(\bar{a},y))^{\mathcal{N}},$$

which by (1) is equal to

$$(\inf_{\mathbf{y}}\varphi(\bar{\mathbf{a}},\mathbf{y}))^{\mathcal{M}}=\inf\{\varphi^{\mathcal{M}}(\bar{\mathbf{a}},\mathbf{c})|\mathbf{c}\in\mathbf{M}\},$$

which again by (1) is equal to

$$\inf\{\varphi^{\mathcal{N}}(\bar{\mathbf{a}},\mathbf{c})|\mathbf{c}\in\mathbf{M}\}.$$

• First, show that (2) holds for all \mathcal{L} -formulas.

To prove

$$\psi^{\mathcal{M}}(\bar{\mathbf{a}}) = \psi^{\mathcal{N}}(\bar{\mathbf{a}})$$

for $\bar{a} \in M$, do induction on the complexity of ψ . ((2) is used to cover the quantifier case.)

References

- Pillay, A., "Short Course on Continuous Model Theory," at Leeds MATHLOGAPS Summer School, August 21-25, 2006.
- Ben-Yaacov, I., Berenstein, A., Henson, C.W., Usvyatsov, A., Model theory for metric structures, submitted, 2006.