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Notation and Definitions

e \We consider structures M for a variety of countable
languages L.

e A partial function, p: M — M, is a partial automorphism if p
is 1-1 and for every atomic formula 6 = 6(xq,...,x,_1) in L,
and every aqg,...,a,_1 € dom(p), we have

M= 0(ag; .- -,an-1) & M = 0(p(ag),...,plap—1)).
e p is a finite partial automorphism if it is finite.

e p IS a partial computable automorphism if it is a partial
computable function.



Notation and Definitions

We will be interested in the following collections of partial
automorphisms of M:

o I;in(M) =g4s {All finite partial automorphisms of M},

o [.(M) =4+ {All partial computable automorphisms of M}, and

o I(M) =4er {All partial automorphisms of M}.

Each of these forms an inverse semigroup under function
composition and function inversion.

We consider these sets as structures for the language of inverse
semigroups.



Basic Question

Let I be an inverse semigroup of partial automorphisms for a
structure M.

Given information about I, what can we deduce about M?



Past Results

Theorem. (A. Morozov) IfBg is a nontrivial atomic computable
Boolean algebra with a computable set of atoms and By is a
computable Boolean algebra, then if the groups of computable
automorphisms of By and B1 are isomorphic then the Boolean
algebras are computably isomorphic.



Past Results

Theorem. (E. Lipacheva) Let A = (A;Py,...,P,) and
B = (B;Qq,...,Q) be arbitrary structures of finite predicate

signatures. Then the following statements are equivalent:

1. Ifzn(A) = Ifz'n(B)r'

2. There exists a bijection A\ from A onto B such that for every
predicate P;, the set {\(z) | A = P;(x)} is definable in B by
means of a quantifier—free formula and for every predicate
Q;, the set {\~1(z) | B |= Q;(®)} is definable in A by means
of a quantifier—free formula.




Partial Orderings

Theorem. Let Mg = (Mg, <g) and M1 = (M1,<71) be strict
partial orders and let I, be inverse semigroups such that

Tin(M;) CI; CI(M;), i=0,1.
Then
In=11 = Mg=M1V Mpg= Mll%ev)’ and

Ip =2 I1 = (Mg £ M1V Mg & M),



Boolean Algebras and RCDLs

A partial ordering B = (B, <) with smallest element O is called a
relatively complemented distributive lattice (RCDL) if it is a
distributive lattice and for all a < b in B, there exists the unique
relative complement of a in b, i.e., an element o’ such that
sup{a,a’} = b and inf{a,a’} = 0.

A Boolean algebra is a special case of an RCDL.



RCDLs in the language of partial orderings

Corollary. If Bg and By are RCDLs considered in the language
(<) and I; are inverse semigroups such that

Iin(B;)) C1; CI(B;), i=0,1.
T hen

Io =11 = By =B, and

Ip = 11 = By = B;j.



RCDLs

Theorem. Let By and B1 be RCDLs considered in the language
(N, U, \,0) and I; are inverse semigroups such that

Iin(B;)) C1; CI(B;), i=0,1.
Then

Io =11 = By =B, and

Ip = 11 = By = Bj.
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RCDLSs

Let F denote the (unique) computable nontrivial atomless RCDL
with no greatest element.

Theorem. Assume that Bg and By are computable RCDLs in
the language (N, U, \,0). Suppose that there exists a computable
isomorphic embedding of F into Bg and that I.(By) = I.(Bq).
Then By = Bj.
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Equivalence Structures

Theorem. Let Mgy = (Mg, Eg) and M1 = (M7, E1) be nontrivial
equivalence structures and let I; be inverse semigroups such that

Ipin(M;) € I; CI(M;), i=0,1.
Then

1. In =11 & Mg= My,
2. Ip=117 = Mg=M;y, and

3. if both the structures Mg and M are countable then

Lin(Mo) = I (M1) & Mg = M;.
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Equivalence Structures

Theorem. Let M be a nontrivial computable equivalence
structure. Then there exists a first order sentence ¢ in the
language of inverse semigroups such that for any nontrivial
computable equivalence structure N,

I(N)Ep = N =M.
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Strategy

Our general approach is to interpret as much of the structure M
into I as possible.
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Basic Interpretations

Our first goal is to interpret the universe of M in I, where [ is
any inverse semigroup so that I¢;,(M) C I C I(M).

1. Interpret (some) subsets of M in I.

e Let Id(z) be the formula 2?2 = z, a first-order formula requiring = to
be idempotent.

e Functions satisfying Id(xz) are the identity on their domain.

e T hey can be identified with subsets of M.
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Basic Interpretations

2. Define the notion of ‘“subset” in I.

e Id(z) & Id(y) & zy = x holds in I exactly when = C y in M.

3. Interpret the empty set, 0, as the (unique) function contained
in all other functions.

4. Define A(M) = {{(a, a)}la € M} the interpretation of the
universe of M in I.

e xclisin AM)ifz#=0 & —-Fu(d CuCx).

e We identify x € M with the partial automorphism {(x,z)} € I.
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Basic Interpretations

The second goal is to interpret the natural action of elements of
I on elements A(M) U {0}.

For g e I and z,y € M, g(z) = y exactly when [ =gzg~1 = y.
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Equivalence structures

Here we consider structures of kind M = (M; E), where FE is an
equivalence relation on M.

We say an equivalence structure is nontrivial if £ is not the same
as equality.
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Interpreting the equivalence relation in the semigroup

We'll need to interpret E into I where I¢;,(M) C 1 C I(M).

1. Let p,q ~ r,s abbreviate 3f(f(p) =7 & f(q) = s).

2. Let

E(z,y) =ar (z#0) & (y#0) &
‘v’a‘v’ch((w,yNa,b & x,y~b,c) —>a:,y~a,,c).

Note that the following holds,

M = E(z,y) & I = E(z,y).

19



Equivalence structures

Theorem. Let Mgy = (Mg, Eg) and M1 = (M7, E1) be nontrivial
equivalence structures and let I; be inverse semigroups such that

Ipin(M;) € I; CI(M;), i=0,1.
Then

1. In =11 & Mg= My,
2. Ip=117 = Mg=M;y, and

3. if both the structures Mg and M are countable then

Lin(Mo) = I (M1) & Mg = M;.
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Equivalence structures

Sketch of proof for (3).

e My and M1 are isomorphic iff they have exactly the same number of
n-element equivalence classes for n € w U {w}.

o Let pn SAay “E has at least m n-element equivalence classes.”
— For finite n, it is easy to find such a formula.

— For the infinite case, we need only see how to say “x is a member of
an infinite equivalence class.”

— Note that this is the case exactly when

—3f(Vy(E(z,y) — y € dom (f))).
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Characterization of computable equivalence structures

Theorem. Let M be a nontrivial computable equivalence
structure. Then there exists a first order sentence ¢ in the
language of inverse semigroups such that for any
nontrivial computable equivalence structure N,

I(N)Ep = N =M.
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Proof idea:

Divide the proof into cases based on three scenarios:

Case 1. M has finitely many equivalence classes.

Case 2. M has infinitely many equivalence classes.

Subcase 1. The set of cardinalities of the equivalence classes
of M is finite, that is, M has bounded character.

Subcase 2. This set is infinite, or M has wunbounded
character.
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Case 1 versus Case 2

There is a first order formula ©(p) in the language of semigroups
requiring that the function p has, among other properties, an
infinite domain consisting of exactly one representative of each
equivalence class.

The sentence “ dp w(p)” will distinguish Case 1 from Case 2.
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Subcase 1 versus Subcase 2

There is a first order sentence, ~, in the language of semigroups
asserting the existence of a finite set F' so that for any x € A(M),
there are y € F' and g € I.(M) so that ¢ is a bijection from [z]g
onto [y]g.

The existence of such an F will distinguish Subcase 1 from
Subcase 2.
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Case 1.

M has m equivalence classes having cardinalities ko, k1,...,km—1,
where k; € w U {w}.

e This property can be expressed in the language of I.(M) by

3z, Tm—1| Nicjem(Ziy25) € B & Vz (Vi<m($,ﬂ?i) S E> &

Ni<emlzil 5 contains k; e/ements)].

e If a computable equivalence structure N satisfies this for-
mula, it is computably isomorphic to M.
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Case 2

M has infinitely many equivalence classes — so there is a partial
computable automorphism p satisfying = (p).

e We'll use this p as a list of the distinct equivalence classes
of M, and describe their cardinalities along this list.

We give the idea for Subcase 1.
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Case 2, Subcase 1.

M has infinitely many equivalence classes and the set of their
cardinalities is finite.

Let K ={kg<ki1<...<kp_1} CwU{w} be this set.

e Use p as a list of the equivalence classes in M, and we can
describe the cardinalities along this list by a formula in the
language of I.(M):

vt €dom(p) \ (¢i(t) & ¥i(1)).

<m
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Conclusions

e Even when we know nothing about a structure’s global sym-
metries, we can learn about it by looking at local symmetries.
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