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Notation and Definitions

• We consider structures M for a variety of countable
languages L.

• A partial function, p : M →M , is a partial automorphism if p
is 1-1 and for every atomic formula θ = θ(x0, . . . , xn−1) in L,
and every a0, . . . , an−1 ∈ dom (p), we have

M |= θ(a0, . . . , an−1) ⇔M |= θ(p(a0), . . . , p(an−1)).

• p is a finite partial automorphism if it is finite.

• p is a partial computable automorphism if it is a partial
computable function.
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Notation and Definitions

We will be interested in the following collections of partial

automorphisms of M:

• Ifin(M) =def {All finite partial automorphisms of M},

• Ic(M) =def {All partial computable automorphisms of M}, and

• I(M) =def {All partial automorphisms of M}.

Each of these forms an inverse semigroup under function

composition and function inversion.

We consider these sets as structures for the language of inverse

semigroups.
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Basic Question

Let I be an inverse semigroup of partial automorphisms for a

structure M.

Given information about I, what can we deduce about M?
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Past Results

Theorem. (A. Morozov) If B0 is a nontrivial atomic computable

Boolean algebra with a computable set of atoms and B1 is a

computable Boolean algebra, then if the groups of computable

automorphisms of B0 and B1 are isomorphic then the Boolean

algebras are computably isomorphic.
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Past Results

Theorem. (E. Lipacheva) Let A = 〈A;P0, . . . , Pk〉 and

B = 〈B;Q0, . . . , Ql〉 be arbitrary structures of finite predicate

signatures. Then the following statements are equivalent:

1. Ifin(A) ∼= Ifin(B);

2. There exists a bijection λ from A onto B such that for every

predicate Pi, the set {λ(x) | A |= Pi(x)} is definable in B by

means of a quantifier–free formula and for every predicate

Qj, the set {λ−1(x) | B |= Qj(x)} is definable in A by means

of a quantifier–free formula.
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Partial Orderings

Theorem. Let M0 = 〈M0, <0〉 and M1 = 〈M1, <1〉 be strict

partial orders and let Ii be inverse semigroups such that

Ifin(Mi) ⊆ Ii ⊆ I(Mi), i = 0,1.

Then

I0 ≡ I1 ⇒ (M0 ≡M1 ∨M0 ≡MRev
1 ), and

I0
∼= I1 ⇒ (M0

∼= M1 ∨M0
∼= MRev

1 ).
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Boolean Algebras and RCDLs

A partial ordering B = 〈B,<〉 with smallest element 0 is called a

relatively complemented distributive lattice (RCDL) if it is a

distributive lattice and for all a 6 b in B, there exists the unique

relative complement of a in b, i.e., an element a′ such that

sup{a, a′} = b and inf{a, a′} = 0.

A Boolean algebra is a special case of an RCDL.
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RCDLs in the language of partial orderings

Corollary. If B0 and B1 are RCDLs considered in the language

〈<〉 and Ii are inverse semigroups such that

Ifin(Bi) ⊆ Ii ⊆ I(Bi), i = 0,1.

Then

I0 ≡ I1 ⇒ B0 ≡ B1, and

I0
∼= I1 ⇒ B0

∼= B1.
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RCDLs

Theorem. Let B0 and B1 be RCDLs considered in the language

〈∩,∪, \,0〉 and Ii are inverse semigroups such that

Ifin(Bi) ⊆ Ii ⊆ I(Bi), i = 0,1.

Then

I0 ≡ I1 ⇒ B0 ≡ B1, and

I0
∼= I1 ⇒ B0

∼= B1.
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RCDLs

Let F denote the (unique) computable nontrivial atomless RCDL

with no greatest element.

Theorem. Assume that B0 and B1 are computable RCDLs in

the language 〈∩,∪, \,0〉. Suppose that there exists a computable

isomorphic embedding of F into B0 and that Ic(B0)
∼= Ic(B1).

Then B0
∼=c B1.
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Equivalence Structures

Theorem. Let M0 = 〈M0, E0〉 and M1 = 〈M1, E1〉 be nontrivial
equivalence structures and let Ii be inverse semigroups such that

Ifin(Mi) ⊆ Ii ⊆ I(Mi), i = 0,1.

Then

1. I0
∼= I1 ⇔ M0

∼= M1;

2. I0 ≡ I1 ⇒ M0 ≡M1; and

3. if both the structures M0 and M1 are countable then

Ifin(M0) ≡ Ifin(M1) ⇔ M0
∼= M1.
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Equivalence Structures

Theorem. Let M be a nontrivial computable equivalence

structure. Then there exists a first order sentence ϕ in the

language of inverse semigroups such that for any nontrivial

computable equivalence structure N ,

Ic(N ) |= ϕ ⇒ N ∼=cM.
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Strategy

Our general approach is to interpret as much of the structure M
into I as possible.
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Basic Interpretations

Our first goal is to interpret the universe of M in I, where I is

any inverse semigroup so that Ifin(M) ⊆ I ⊆ I(M).

1. Interpret (some) subsets of M in I.

• Let Id(x) be the formula x2 = x, a first-order formula requiring x to
be idempotent.

• Functions satisfying Id(x) are the identity on their domain.

• They can be identified with subsets of M.
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Basic Interpretations

2. Define the notion of “subset” in I.

• Id(x) & Id(y) & xy = x holds in I exactly when x ⊆ y in M.

3. Interpret the empty set, ∅, as the (unique) function contained

in all other functions.

4. Define A(M) =
{
{(a, a)}|a ∈ M

}
, the interpretation of the

universe of M in I.

• x ∈ I is in A(M) if x 6= ∅ & ¬∃u(∅ ⊂ u ⊂ x).

• We identify x ∈M with the partial automorphism {(x, x)} ∈ I.
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Basic Interpretations

The second goal is to interpret the natural action of elements of

I on elements A(M) ∪ {∅}.

For g ∈ I and x, y ∈M , g(x) = y exactly when I |= gxg−1 = y.
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Equivalence structures

Here we consider structures of kind M = 〈M ;E〉, where E is an

equivalence relation on M .

We say an equivalence structure is nontrivial if E is not the same

as equality.
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Interpreting the equivalence relation in the semigroup

We’ll need to interpret E into I where Ifin(M) ⊆ I ⊆ I(M).

1. Let p, q ∼ r, s abbreviate ∃f(f(p) = r & f(q) = s).

2. Let

Ẽ(x, y) =def (x 6= ∅) & (y 6= ∅) &
∀a ∀b∀c

(
(x, y ∼ a, b & x, y ∼ b, c) → x, y ∼ a, c

)
.

Note that the following holds,

M |= E(x, y) ⇔ I |= Ẽ(x, y).
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Equivalence structures

Theorem. Let M0 = 〈M0, E0〉 and M1 = 〈M1, E1〉 be nontrivial
equivalence structures and let Ii be inverse semigroups such that

Ifin(Mi) ⊆ Ii ⊆ I(Mi), i = 0,1.

Then

1. I0
∼= I1 ⇔ M0

∼= M1;

2. I0 ≡ I1 ⇒ M0 ≡M1; and

3. if both the structures M0 and M1 are countable then

Ifin(M0) ≡ Ifin(M1) ⇔ M0
∼= M1.
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Equivalence structures

Sketch of proof for (3).

• M0 and M1 are isomorphic iff they have exactly the same number of
n-element equivalence classes for n ∈ ω ∪ {ω}.

• Let ϕm,n say “E has at least m n-element equivalence classes.”

– For finite n, it is easy to find such a formula.

– For the infinite case, we need only see how to say “x is a member of
an infinite equivalence class.”

– Note that this is the case exactly when

¬∃f(∀y(Ẽ(x, y) → y ∈ dom (f))).
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Characterization of computable equivalence structures

Theorem. Let M be a nontrivial computable equivalence

structure. Then there exists a first order sentence ϕ in the

language of inverse semigroups such that for any

nontrivial computable equivalence structure N ,

Ic(N ) |= ϕ ⇒ N ∼=cM.
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Proof idea:

Divide the proof into cases based on three scenarios:

Case 1. M has finitely many equivalence classes.

Case 2. M has infinitely many equivalence classes.

Subcase 1. The set of cardinalities of the equivalence classes

of M is finite, that is, M has bounded character.

Subcase 2. This set is infinite, or M has unbounded

character.
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Case 1 versus Case 2

There is a first order formula π(p) in the language of semigroups

requiring that the function p has, among other properties, an

infinite domain consisting of exactly one representative of each

equivalence class.

The sentence “ ∃p π(p)” will distinguish Case 1 from Case 2.
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Subcase 1 versus Subcase 2

There is a first order sentence, γ, in the language of semigroups

asserting the existence of a finite set F so that for any x ∈ A(M),

there are y ∈ F and g ∈ Ic(M) so that g is a bijection from [x]E
onto [y]E.

The existence of such an F will distinguish Subcase 1 from

Subcase 2.
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Case 1.

M has m equivalence classes having cardinalities k0, k1, . . . , km−1,

where ki ∈ ω ∪ {ω}.

• This property can be expressed in the language of Ic(M) by

∃x0, . . . , xm−1

[ ∧
i<j<m(xi, xj) /∈ E & ∀x

( ∨
i<m(x, xi) ∈ E

)
&

∧
i<m[xi]E contains ki elements)

]
.

• If a computable equivalence structure N satisfies this for-

mula, it is computably isomorphic to M.
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Case 2

M has infinitely many equivalence classes – so there is a partial

computable automorphism p satisfying π(p).

• We’ll use this p as a list of the distinct equivalence classes

of M, and describe their cardinalities along this list.

We give the idea for Subcase 1.
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Case 2, Subcase 1.

M has infinitely many equivalence classes and the set of their

cardinalities is finite.

Let K = {k0 < k1 < . . . < km−1} ⊂ ω ∪ {ω} be this set.

• Use p as a list of the equivalence classes in M, and we can

describe the cardinalities along this list by a formula in the

language of Ic(M):

∀t ∈ dom (p)
∨
i<m

(
ϕi(t) & ψi(t)

)
.
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Conclusions

• Even when we know nothing about a structure’s global sym-

metries, we can learn about it by looking at local symmetries.
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