
1

Synopsis: A Distributed Sketch over Voluminous
Spatiotemporal Observational Streams

Thilina Buddhika, Matthew Malensek, Sangmi Lee Pallickara and Shrideep Pallickara, Members, IEEE

Abstract—Networked observational devices have proliferated in recent years, contributing to voluminous data streams from a variety
of sources and problem domains. These streams often have a spatiotemporal component and include multidimensional features of
interest. Processing such data in an offline fashion using batch systems or data warehouses is costly from both a storage and
computational standpoint, and in many situations the insights derived from the data streams are useful only if they are timely.
In this study, we propose SYNOPSIS, an online, distributed sketch that is constructed from voluminous spatiotemporal data streams.
The sketch summarizes feature values and inter-feature relationships in memory to facilitate real-time query evaluations and to serve
as input to computations expressed using analytical engines. As the data streams evolve, SYNOPSIS performs targeted dynamic
scaling to ensure high accuracy and effective resource utilization. We evaluate our system in the context of two real-world
spatiotemporal datasets and demonstrate its efficacy in both scalability and query evaluations.

Index Terms—data sketches, streaming systems, spatiotemporal data, query evaluations

F

1 INTRODUCTION

The proliferation of remote sensing equipment such as
radars and satellites, networked sensors, commercial mapping,
location-based services, and sales tracking applications have
resulted in exponential growth of spatiotemporal data. Such
datasets comprise observations where both the location and
time of measurement are available in addition to features of
interest (such as humidity, air quality, disease prevalence, sales,
etc.). This information can be leveraged in several domains,
including atmospheric science, epidemiology, environmental
science, geosciences, smart cities, and commercial applications.
In these settings, queries over the data must be expressive and
execute in real time, regardless of data volumes.

Spatiotemporal datasets are naturally multidimensional
with multiple features of interest being reported/recorded
continuously for a particular timestamp and geolocation. The
values associated with these features are continually changing;
in other words, the dataset feature space is always evolving.
Queries specified over these datasets may have a wide range
of characteristics encompassing the frequency at which they
are evaluated and their spatiotemporal scope. The crux of this
paper is to support query evaluations and data processing over
continually-arriving observational data. We achieve this via
construction of an in-memory distributed sketch that maintains
a compact representation of the data. The sketch is also an
effective surrogate for the data that it snapshots and serves as
input for computations.

Challenges in supporting real-time evaluation of queries and
analysis over a constantly-evolving feature space:
• Data volumes and arrival rates: It is infeasible to store all

observations, which may arrive continually and at high rates.
This is especially true if the arrival rates outpace disk speeds.

• I/O Costs: Memory accesses are 5-6 orders of magnitude faster
than disk accesses. Given the data volumes, disk accesses
during query evaluations or analysis are infeasible.

• Accuracy: Queries evaluations must be accurate, with appro-
priate error bounds included in the results.

• Spatiotemporal characteristics: Queries and analysis may target
both spatial and chronological properties of the dataset.

Research Questions we developed during this study:
RQ-1: How can we generate compact, memory-resident repre-
sentations of the observational space while accounting for spa-
tiotemporal attributes? The resulting sketch must be amenable
to fast, continuous updates to ensure its representativeness
and fidelity to the original data.

RQ-2: How can we scale effectively in situations where system
load is high or observations arrive faster than the sketch can be
updated? The density and arrival rates for observations may
vary based on geospatial characteristics; for example, New
York would have a far higher rate of observations than Denver.

RQ-3: How can we enable expressive, low-latency queries
over the distributed sketch while also maintaining accuracy?
Given that the sketch is a compact representation of the data,
queries facilitate high-level analysis without requiring users to
understand the underlying system implementation.

Approach Summary: Similar to other sketches, the design of
SYNOPSIS was guided by its desired functionality. SYNOPSIS is
a compact, effective surrogate for voluminous data; the system
extracts metadata from observations and organizes this infor-
mation to support relational queries targeting different portions
of the feature space. We support selection, joins, aggregations,
and sorting. The SYNOPSIS sketch can interoperate and provide
input data to general purpose computations expressed using
popular analytic engines such as Spark [1], [2], TensorFlow [3],
[4], Hadoop [5], [6], [7], and VW [8].

Our sketch is also naturally amenable to distribution, with
each machine in the cluster holding information about a partic-
ular subset of the observational space. This ensures that each
cluster-node can evaluate multiple concurrent queries indepen-
dently. The sketch is capable of scaling in or out depending on
streaming ingress rates and memory footprints, with scale-out
operations that support targeted alleviation of hotspots. SYN-
OPSIS manages the complexity of identifying these hotspots,
splitting portions of the sketch, and migrating relevant subsets.
Distributing the sketch allows us to maintain a finer-grained
representation of the feature space while also improving the
accuracy of query evaluations; e.g., an arctic region and a
tropical region would be maintained on separate nodes that
specialize for particular climates.

2

Paper Contributions: To our knowledge, SYNOPSIS is the first
sketch tailored specifically for spatiotemporal observational
data. The methodology of this study is centered around our
novel in-memory data structure, SIFT (§3.2.1), which employs
a hierarchical forest-of-trees approach combined with online,
running summary statistics to compactly represent observa-
tional data. In addition to the memory benefits of the SIFT,
the data structure is amenable to distribution across a cluster
of machines. This allows SYNOPSIS to cope with high-rate data
arrivals and scale dynamically with changes in problem size
or resource availability. Both dynamic scaling and querying
are facilitated by efficient tree-based lookup operations. For
analytic tasks, the SIFT acts as an effective surrogate for full-
resolution observations, enabling expressive queries over arbi-
trary spatiotemporal scopes, generation of synthetic datasets,
and interoperation with popular analytical engines.

Paper Organization: §2 provides a system overview, followed
by methodology in §3. A performance evaluation is presented
in §4, while §5 demonstrates applications of SYNOPSIS, §6
discusses related approaches, and §7 concludes the paper.

2 SYSTEM OVERVIEW AND PRELIMINARIES

SYNOPSIS is a distributed sketch constructed over voluminous
spatiotemporal data streams. The number of sketchlets (execut-
ing on different machines) that comprise the distributed sketch
varies dynamically as the system scales in or out to cope with
data arrival rates and memory pressure. SYNOPSIS assimilates,
organizes, and compacts spatiotemporal data streams that com-
prise the sketch. A stream partitioning scheme, based on the
Geohash algorithm, is used to route packets to the appropriate
sketchlet. Sketchlets process stream packets emitted by stream
ingesters and construct compact, in-memory representations
of the observational data by extracting metadata from stream
packets. During dynamic scaling, the geographic extents man-
aged by a sketchlet vary.

System Components: SYNOPSIS relies on a set of auxiliary
services that are needed to construct, update, and maintain the
sketch, as well as adapt to changing system conditions:
Control plane is responsible for orchestrating control mes-
sages exchanged between sketchlets as part of various dis-
tributed protocols such as dynamic scaling. It is decoupled
from the generic data plane to ensure higher priority and low
latency processing without being affected by buffering delays
and backpressure experienced during stream processing.

Gossip subsystem is used by the sketchlets to gossip about
their state periodically (based on time intervals and the num-
ber of pending updates) as well as when a change in state
occurs to establish an approximate global view of the system.
SYNOPSIS supports eventual consistency with respect to these
updates given their propagation and convergence delays.

Querying subsystem is responsible for the distributed evalu-
ation of queries. This involves forwarding queries to relevant
sketchlets; in some cases, multiple sketchlets may be involved
based on the geographical scope of the query.

Monitoring subsystem probes sketchlets comprising SYNOP-
SIS periodically to gather metrics that impact performance of
the system. These include memory utilization and backlog
information based on packet arrival rates and updates to the
in-memory structures. This information is used for dynamic
scaling recommendations as explained in Sections 3.3 and 3.4.

Data Model: While designing SYNOPSIS, we targeted a data
model wherein observations are geotagged and have chrono-
logical timestamps indicating where and when the obser-
vations were made. Location information is encoded as

〈latitude, longitude〉 tuples. Observations contain multiple fea-
tures (temperature, humidity, wind speed, etc.), and may be
encoded as 〈feature name, value〉 tuples or may have prede-
fined positions within the serialized data representation.

Query Support: SYNOPSIS supports common query constructs
such as selects or joins, while also providing rich analytical
queries that report statistical information, make predictions, or
produce synthetic datasets (detailed fully in §3.5). A key inno-
vation in our query support is that portions of the sketch itself
can be retrieved and manipulated by clients. The following
query demonstrates this functionality, where climate features
are requested from a region when the wind speed is more than
a standard deviation away from the mean:

SELECT location, precipitation, humidity
WHERE location LIKE ’dj%’ AND

(wind_sp > MEAN(wind_sp) + STD(wind_sp)
OR wind_sp < MEAN(wind_sp) - STD(wind_sp))

Stream Partitioning: We use the Geohash algorithm [9] to
balance load and partition incoming data streams. Geohash
divides the earth into a hierarchy of bounding boxes identified
by Base 32 strings; the longer the geohash string, the more pre-
cise the bounding box. Figure 1 illustrates this hierarchy. Most
of the eastern United States is contained within the bounding
box described by geohash D, while DJ encompasses substantial
parts of Florida, Georgia, and Alabama. The bounding box
DJKJ (highlighted in red) contains Tallahassee, Florida. This
hierarchical representation enables SYNOPSIS to cope with both
low- and high-density regions: several sketchlets may be tasked
with managing streams originating in and around large cities,
while rural areas fall under the purview of a single node.

Each bit added to a geohash string reduces its scope by half,
with each character represented by five bits (25 = 32). In other
words, a four-character geohash string represents 20 spatial
subdivisions applied recursively to each resulting region. This
property allows us to manage and allocate resources across a
variety of observational densities.

DJ

DN

DH

9V

9Y

DJ

DN

DH

9V

9Y

DJB DJC DJF DJG DJU DJV DJY DJZ

DJ8 DJ9 DJD DJE DJS DJT DJW DJX

DJ2 DJ3 DJ6 DJ7 DJK DJM DJRDJQ

DJ0 DJ1 DJ4 DJ5 DJH DJJ DJN DJP

DJB DJC DJF DJG DJU DJV DJY DJZ

DJ8 DJ9 DJD DJE DJS DJT DJW DJX

DJ2 DJ3 DJ6 DJ7 DJK DJM DJRDJQ

DJ0 DJ1 DJ4 DJ5 DJH DJJ DJN DJP

Fig. 1: Visual demonstration of the Geohash algorithm.

3 METHODOLOGY

In this section, we discuss the construction of the distributed
sketch, sketchlet data structure, dynamic scaling, and query
support in SYNOPSIS. We report microbenchmark results which
were run using a single machine (HP DL160; Xeon E5620; 12
GB RAM) demonstrating the efficacy of individual aspects of
the system. Our input data was sourced from NOAA North
American Mesoscale (NAM) Forecast System [10].

3

3.1 Sketch

From a macroscopic view, the sketch is organized as a dis-
tributed prefix tree. All descendant nodes – sketchlets – are
responsible for a particular geospatial scope and share a com-
mon prefix with their parent. One of our primary goals behind
SYNOPSIS is to ensure the sketch is performant, flexible, and
amenable to scaling. The sketch initiates scale-out operations
to relieve memory pressure and preserve performance, while
scale-in operations conserve memory. Further, any sketchlet
may serve as the conduit for queries or analytic operations.

The geohash algorithm plays a central role in the organiza-
tion of the distributed sketch. Since locations are represented
by bounding boxes, the algorithm facilitates collocation of ob-
servations from particular geographical scopes. This allows the
conduit to redirect queries effectively and ensure data locality.
Increases in the length of the geohash string correspond to ge-
ographically smaller (and more precise) bounding boxes. This
is well-aligned with dynamic scaling performed by the sketch
to manage memory requirements. Scaling operations within the
sketch are targeted; scaling out targets geospatial locations with
increased density of observations to relieve memory pressure
and alleviate performance bottlenecks, while scaling in targets
geolocations where there is a sparsity in available data to
conserve memory.

Each sketchlet is responsible for real-time organization,
summarization, and compaction of observational data from the
geographical scope represented by its geohash. The sketch-
let performs two operations: first, it extracts metadata from
incoming observations, including geolocations, chronological
information, and features encapsulated within the observation.
Second, the sketchlet is responsible for summarization and
compaction of the extracted features.

The sketchlet organizes its summarization in a data struc-
ture called SIFT (Summarization Involving a Forest of Trees).
The edges and vertices within each SIFT tree maintain inter-
feature relationships, while leaves contain online, in-memory
summary statistics and correlation information to support sta-
tistical queries and generation of synthetic datasets. The num-
ber of edges at each level within the subtrees corresponds to
density-based dynamic binning of a particular feature to re-
duce error. The underlying principle within this data structure
is grouping to exploit similarities in values reported within
observations; grouping allows us to preserve fidelity of the
observational space while conserving memory.

A simplified version of the distributed sketch for geospatial
region D is depicted in Figure 2. Each tree within the SIFT
is rooted at a higher precision geohash than that associated
with the sketchlet. For example, at a sketchlet with a geohash
prefix, DJ, the trees within the SIFT at that sketchlet are rooted
at higher precision geohashes such as DJB, DJC, DJF, etc. An
advantage of this approach is that the sketchlet partitions data
from the overall geospatial scope into smaller regions, further
improving the grouping of observations.

The second level of the SIFT is used to group observations
based on their temporal properties. This approach allows us
to exploit similarity in readings reported for a particular time
range. Note that as the trees are traversed, this organization
strategy means that all descendants of a temporal node corre-
spond to measurements reported for a particular region and
for a particular temporal scope. The SIFT data structure also
supports finer-grained temporal resolutions for the recent past
– e.g., minutes, hours, day, weeks, etc. – along with targeted
compaction operations that fold finer-grained temporal scopes
into a coarser grained scopes as time advances. Specifically, our

D

DN

DJ

DNB

DJ9

t2t1

DJB

t2t1Zoom In

Responsible
Geospatial Area: D - DJ - DN

Responsible Geospatial Area: DN - DNB

Responsible Geospatial Area: DNB

Responsible Geospatial Area: DJ

Sketchlet for Geospatial Area DJ

….
Temporal

Scope

Feature
ScopesStream FlowA

B

C

D
SIFT Trees

Fig. 2: A demonstration of the distributed sketch for geohash
prefix D. The sketchlets for prefixes DJ and DN have scaled out
due to high volume of observations. Each sketchlet maintains a
SIFT, with each tree responsible for a geospatial subregion.

organizational structure allows us to support varying levels
of expressiveness for different temporal scopes, with recent
observations being represented more expressively.

The grouping concept also extends to individual features.
Each feature occupies a level within an individual tree in SIFT.
At each level, the range of values that a feature can take is
broken up into a set of bins (corresponding to the range of val-
ues) that they take. These ranges are determined using kernel
density estimation (KDE) to ensure that the binning of features
is representative of the observed density in the distribution of
values for that feature at the particular spatiotemporal scope.
Each node (or bin) maintains the min, max, standard deviation,
mean, and the total number of observations it is responsible
for. This is useful during the creation of synthetic datasets that
are representative of the observational space for a particular
spatiotemporal scope.

The methodology behind SIFT accomplishes two key objec-
tives: first, it captures the distribution of feature values across
a spatiotemporal scope. Second, it supports targeted reductions
in the observational data volumes while being representative
of the observed feature values. This is in contrast to a random
sampling scheme, which may be unable to recreate distribu-
tions with high fidelity for arbitrary spatiotemporal scopes.

The organization of the sketchlet is such that it is amenable
to scale-out and scale-in operations of the distributed sketch. A
key feature provided by the SIFT data structure is support for
scaling operations. For example, if a subregion represented by a
tree within the forest maintained at each sketchlet has a higher
density (and variability) of the reported observational values,
that tree would have a correspondingly higher memory foot-
print within the data structure. This allows us to target scaling
maneuvers to particular subregions managed at a sketchlet to
alleviate memory pressure. During scale-in operations, descen-
dants can be folded into the parent; the descendant’s SIFT is
simply added as a tree to the SIFT maintained at the parent.

Systems View of the Sketch: The SYNOPSIS sketch, comprising
sketchlets dispersed over multiple machines, is a compact and
memory-resident surrogate for the entire observational space.
The sketch may be used for any purpose that regular, on-disk
data is used for including but not limited to query evaluations,
assessing statistical properties of the data, and launching com-
putations using well-known analytical engines. The sketch is
adaptive and evolves over time, with the number of sketchlets
varying as scaling maneuvers occur to cope with data volumes
and memory management. The structure of the SIFT also varies
over time as temporal scopes are aggregated, features binned,
and scaling occurs.

4

3.2 Sketchlet

Sketchlets maintain compact, multidimensional, tree-based rep-
resentations of incoming data streams in the SIFT data struc-
ture. Each in-memory SIFT can be queried to retrieve statistical
properties about the underlying data or discover how features
interact. Due to the voluminous nature of these data streams,
storing each record in main memory is not practical. Therefore,
the queries supported by our framework are facilitated by
compact, online metadata collection and quantization methods.
These techniques ensure high accuracy while also conforming
to the memory requirements of the system. To further improve
accuracy, we bias our algorithms toward the most recent data
points while reducing the resolution of the oldest.

3.2.1 SIFT Structure
SIFT instances are maintained as hierarchical trees with feature
values stored in the vertices. Each level of the hierarchy, called a
plane, represents a particular data type, and traversing through
vertices in this feature hierarchy incrementally reduces the
search space of a query. Upon insertion of a multidimensional
observation, each feature is arranged to form a path through
the tree and added based on the current feature hierarchy.
Paths taken through the tree during a lookup are influenced by
the specificity of the query, with additional feature expressions
constraining the query scope; an empty query would result in
a scope that spans the entire tree. Figure 3 demonstrates the
structure of a SIFT tree and highlights a query and its scope.
SIFT trees are internally arranged as modified red-black trees,
resulting in lookup and insertion complexities of O(log n).

Metadata records for paths through the feature hierarchy
are stored at leaf nodes. Each record contains statistics that
are updated in an online fashion using Welford’s method [11].
Welford’s method maintains the number of observations, n, the
running mean, x̄, and the sum of squares of differences from
the current mean, Sn, as in the following recurrence relation:

x̄0 = 0, S0 = 0

x̄n = x̄n−1 +
xn − x̄n−1

n
Sn = Sn−1 + (xn − x̄n−1)(xn − x̄n)

Besides the observation count and running mean, this enables
calculation of the variance and standard deviation of the ob-
served values: σ2 = Sn

n
; σ =

√
Sn/n. Our implementation

of Welford’s method also maintains the sum of cross products
between features to track cross-feature relationships, such as
the correlation between temperature values and humidity. Leaf

Query Scope

Metadata Leaves:

Surface
Temperature

Relative
Humidity

Precipitation

Feature Planes:

Temperature
 Range: 30-32 C
Count: 3286
Min: 30.2, Max: 31.9
 μ: 31.6, σ: 0.2
 ...

Temporal
Scope

Spatial
Location

Fig. 3: A simplified SIFT tree with five planes and a sample
query scope. In production settings, these trees contain hun-
dreds of thousands of vertices and edges.

nodes may also be merged to combine their respective summary
statistics into a single aggregate summary, which allows queries
to be evaluated across multiple sketchlets and then fused into a
single, coherent result.

3.2.2 Structural Compaction
The number of unique feature types stored in the SIFT directly
influences the size of the hierarchy, which impacts memory
consumption. However, memory use can be managed by ma-
nipulating the hierarchical configuration of the trees to increase
vertex reuse. In general, features that exhibit high fan-out (many
outgoing edges leading to the next level of the hierarchy)
should be placed near the bottom of the tree to reduce its overall
size. Listing 1 demonstrates how the fan-out score is calculated.

def fan_out_score(feature):
sc = Synopsis.context()
Select all vertices for this feature
vertices = sc.query(’SELECT ’ + str(feature))
edges_out = 0
for vertex in vertices:

edges_out += vertex.num_neighbors()
fan_out = edges_out / len(vertices)
return fan_out

Listing 1: Calculation of the fan-out score (average number of
outgoing edges) for dynamic reconfiguration.

To illustrate this concept, consider both a boolean feature
and spatial location being used as the root of the tree. With the
boolean feature, two possible partitions of the tree are created.
However, using the spatial location leads to the creation of
hundreds or thousands of subtrees, depending on the geohash
resolution being used at the sketchlet. This leads to low vertex
reuse. Consequently, we compact the logical representation of
the SIFT by aggregating vertices from the entire forest and
reorienting the planes to conserve memory. Listing 2 presents
the feature plane compaction algorithm.

def compact_hierarchy():
sc = Synopsis.context()
scores = []
for feature in sc.features:

fan_out = fan_out_score(feature)
scores.append((fan_out, feature))

new_hierarchy = sort_ascending(scores)
return new_hierarchy

Listing 2: Feature plane compaction algorithm; the hierarchy is
reconfigured based on sorted fan-out scores.

One notable result of this process is that vertices near the
bottom of the hierarchy may be responsible for storing spatial
locations of the data points rather than the root of the tree as
depicted in our conceptual model of the SIFT. After reconfigura-
tion, the fan-out scores are leveraged to estimate the lower and
upper bounds for memory usage (the reversed configuration
will yield the highest memory consumption).

3.2.3 Density-Driven Quantization
Maintaining data points, statistics, and cross-feature relation-
ships in memory at full resolution is infeasible when faced with
voluminous datasets, even when load is balanced over several
computing resources. To reduce the memory consumption of
SIFT instances we perform quantization — targeted reduction of
resolution — which allows vertices in the tree to be merged,
thus enabling single vertices to represent a collection of values.
We determine which vertices should be merged by splitting
each range of feature values into a configurable number of
bins. After quantization, each vertex represents a range of
observations.

5

To determine the size and quantity of these bins, trees
within the SIFT maintain additional metadata provided by
the multivariate online kernel density estimation (oKDE) al-
gorithm developed by Kristan et al. [12]. While it is possible
to recompute kernel density estimates periodically for each
feature type using in-memory samples [13], the online approach
afforded by oKDE requires less overall CPU usage and memory,
which is crucial in streaming environments. oKDE assimilates
data incrementally at runtime to create a dynamic probability
density function (PDF) for each feature type. The smoothing
parameter used to create the PDF, called the bandwidth, is
selected autonomously using Silverman’s rule [14]. Silverman’s
rule assumes that data tends to follow a normal distribution,
which is generally true for naturally-occurring observations.
However, we also allow the smoothing parameter be selectively
reconfigured for different problem types.

During the quantization process, these PDFs are used to
ensure that each bin is assigned an approximately equal pro-
portion of the feature density to create small, highly-accurate
bins, while the overall number of bins is influenced by memory
availability. Given a PDF and bin count for a feature, our
quantization algorithm iterates through the bins and assigns
them each an equal portion of the probability density. This
process has a time complexity of O(n) where n is the number
of bins, but it is worth noting that n is generally small (around
30 on average) and the algorithm is not run frequently.

Figure 4 illustrates the quantization process for the surface
temperature feature in our atmospheric test dataset [10]: the
highest densities of values are stored in the smallest bins
(indicated by vertical lines under the curve), improving overall
accuracy. To evaluate accuracy, we compare the mean values
of each bin with the actual, full-resolution data points. Con-
sequently, the standard error (σx̄) can be calculated from our
running summary statistics to judge the accuracy level of the
bins based on how well they represent the mean: σx̄ =

√
Sn/n2.

This information is provided alongside any query results re-
turned by the system. During initialization, we calculate the
normalized error for each data point empirically (shown in the
lower portion of Figure 4). For values that are observed less
frequently, the error rate is higher; temperatures from 240 –
260 Kelvin (-33.15 to -13.15 ◦C) reach a normalized root-mean-
square error (NRMSE) of about 7%. However, approximately
80% of the values in the tree will be assigned to vertices with

Fig. 4: Quantized surface temperatures, with 29 vertex bins.
Each bin is indicated by a vertical line under the curve.

an error of about 0.5%. In practice, this means that commonly-
observed values will be within 0.25 Kelvin of their actual value.

Table 1 compares full-resolution and quantized trees gen-
erated from a month of data with 20 unique features, which
include atmospheric information such as temperature, hu-
midity, precipitation, and cloud cover. In this configuration,
our quantization algorithm reduced memory consumption by
about 62.4%, which allows much more historical data and larger
geographical areas to be maintained in each SIFT.

TABLE 1: Tree statistics before and after our dynamic quantiza-
tion algorithm over one month of ingested data.

Metric Original Quantized Change
Vertices 3,104,874 1,238,424 -60.1%
Edges 3,367,665 1,441,639 -57.2%
Leaves 262,792 203,216 -22.7%
Memory 1,710.6 MB 643.1 MB -62.4%

3.2.4 Temporal Dimensionality Reduction

While our quantization approach enables SYNOPSIS to retain
large volumes of data in main memory, we also offer a temporal
accuracy gradient to ensure the most relevant data points are
prioritized for high accuracy. This is achieved by iteratively
removing tree paths from the SIFT hierarchy in the oldest
subtrees, eventually phasing out old records. As data ages, this
process results in the creation of temporal accuracy bands.

Selective temporal dimensionality reduction proceeds in a
bottom-up fashion, starting from the bottom of the hierarchy.
Given a set of relevant vertices, neighboring bins are merged
uniformly across the feature space. As the bins are merged,
their respective metadata is also merged, reducing memory
consumption. Given two metadata instances, merging results
in half the memory footprint. However, it is worth noting that
this process is irreversible; once metadata has been merged,
it cannot be split at a later point in time. As time passes,
entire portions of the feature space are compacted until a single
metadata record is left for a particular temporal range. This
allows users to still query the summary statistics and models
for historical data, but at a lower level of accuracy.

3.2.5 Facilitating Scalability

The SIFT is designed to facilitate distribution across sev-
eral computing resources. Specifically, splitting and merging
functionality is exposed via the same query interface used
for resolving user requests. Queries proceed in a depth-first
fashion, locating a subtree root within the hierarchy. Once the
root is established, either: (1) its descendants are serialized for
transmission to another sketchlet, or (2) an incoming subtree is
merged in place. During merges, existing paths are reused with
only leaf nodes requiring updates.

3.3 Coping with High Loads: Scaling out

There are two primary approaches to scaling a sketchlet that
is experiencing high load: replication and load migration. In
replication-based scaling, new sketchlets are spawned during
high data arrival rates that are responsible for identical spa-
tial scopes as their originating sketchlet. Assimilation of the
newly-created sketchlet involves partitioning inbound streams
directed to the original sketchlet. The upstream node (e.g.,
stream ingester) is responsible for partitioning, which may be
performed in a skewed fashion with the new sketchlet receiving
a larger portion of the inbound stream. Alternatively, inbound
streams to the original sketchlet may also be partitioned in

6

Deployer Sketchlet C Sketchlet D

Request Target
Computation Location

List of Target Node
Suggestions

Acquire Lock

Grant Lock

Initiate Dataflow

State Transfer

State Transfer
Complete

Time

Fig. 5: Scale-out protocol

a round-robin fashion between the original and the newly-
created sketchlet. Using a replication-based scaling with a
round-robin style stream partitioning is memory inefficient be-
cause of the possibility of multiple SIFT trees with significantly
overlapping sets of vertices and edges. Alternatively, targeted
load migration selects geospatial scopes that are experiencing
heavy load; both data arrival and SIFT update rates are consid-
ered when deciding which trees to migrate.

In SYNOPSIS, we use targeted load migration for scaling out.
Our implementation closely follows the MAPE loop [15] which
comprises four phases: monitor (M), analyze (A), planning (P)
and execution (E). A monitoring task within every sketchlet
periodically gathers two performance metrics:
1) Length of the backlog: This represents the number of

unprocessed messages in the queue. If the sketchlet cannot
keep up with the incoming data rate, the backlog grows.

2) Memory pressure: Each sketchlet is allocated a fixed amount
of memory. Exceeding these memory limits creates memory
pressure causing extended garbage collection cycles and
increased paging activity, eventually leading to reduced per-
formance. The monitoring task continuously records mem-
ory utilization and triggers scaling activities.
The objective of scaling out is to maintain stability at each

sketchlet. We define stability as the ability to keep up with
incoming data rates while incurring a manageable memory
pressure. During the analyze phase, we use threshold-based
rules [16] to issue scale-out recommendations to sketchlets,
which are issued if either of the following rules are consistently
satisfied for a certain number of monitoring cycles:
• Backlog growth, which indicates that a portion of the load

needs to be migrated to a different sketchlet.
• High overall memory utilization above a threshold, which

is usually set below the memory limits to allow a capacity
buffer for the process to avoid oscillation.

Upon receiving a scale out recommendation during monitoring,
the sketchlet executes the planning and execution phases.

During the planning phase, the sketchlet chooses portion(s)
of the region within its current purview, i.e. a set of SIFT trees,
to be handed over to another sketchlet. For this task, it relies
on performance metrics it maintains for each subregion and a
numeric value provided by the scale-out recommendation that
measures how much load should be migrated. These metrics
includes the data rate and the memory consumption for each
subregion. If the backlog growth based threshold rule has trig-
gered the scale out operation, the subregion metrics are sorted
based on their update rates in the descending order. Otherwise
they are sorted based on their memory consumption. Then a
simple bin-packing algorithm is used to choose a minimum

set of subregions for migration such that the excess load is
removed from the current sketchlet.

Only a single scaling operation takes place at a given time
per sketchlet, which is enforced by a mutex lock. Further, every
scaling operation is followed by a stabilization period where no
scaling operation takes place and system does not enter the
monitoring phase for the next MAPE cycle. The objective of
these constraints is to avoid oscillations in scaling activities;
for instance, repetitively scaling out in the presence of memory
pressure could result in overprovisioning, which would then
lead to recurring scale-in operations.

Figure 5 depicts the phases of the scale-out protocol with
respect to our example in Figure 2 when sketchlet C is scaling
out to sketchlet D. Once the sketchlet decides on subregions
to scale, it initiates the scale-out protocol by contacting the
deployer process, which is responsible for launching tasks. In
this message, it includes a list of preferred target sketchlets
for the load migration as well as memory requirements and
expected message rate for the load. The preferred sketchlet
set includes the sketchlets that already hold other subregions.
It minimizes the number of sketchlets responsible for each
geographical region to reduce communication during query
evaluations. The SYNOPSIS deployer component has an approx-
imate view of the entire system constructed through gossip
messages. This includes the memory pressure and cumulative
backlog information for each sketchlet. Based on this view and
the information present in the request, the deployer replies back
with a set of candidate target sketchlets. Only if a suitable
candidate cannot be found from the set of current sketchlets
will a new sketchlet be spawned. Upon receiving a response
from the deployer, the sketchlet (parent) contacts the target
sketchlet (child) and tries to acquire the mutex. A lock will be
granted only if the target can accommodate the load and no
other scaling operations are taking place. If the lock acquisition
fails, another candidate from the list is attempted; otherwise,
the parent sketchlet will create a pass-through channel and di-
rect traffic corresponding to migrated regions towards the child
sketchlet. Once this process is complete, the parent sketchlet
will initiate a state transfer asynchronously using a background
channel to ensure the stream data flow is not affected, and up-
date the child sketchlet’s memory utilization metrics to account
for the pending state transfer.

As the data flow tree grows with scale-out operations,
having parent sketchlets pass traffic through to their children
becomes inefficient because of higher bandwidth consumption
as well as increased latency due to the additional network hops
the packets have to traverse through. To circumvent this, we
allow short circuiting, which redirects traffic from stream in-
gesters straight the downstream sketchlets. For instance, stream
ingesters will send data directly to sketchlet D using the short
circuited route bypassing sketchlets A and C in Figure 2. We
use our gossiping subsystem to update parent sketchlets about
the child’s performance metrics required for scaling in (§3.4).

We evaluated how each of these rules triggers dynamic
scaling activities to maintain the system stability. For this exper-
iment, we have enabled only a single threshold-based rule at a
time to demonstrate its effectiveness. To evaluate the backlog
based threshold rule, we captured how backlog length and
throughput at an individual sketchlet varies with the input rate.
The sketchlet immediately received data from stream ingesters,
hence the input rate observed at the sketchlet closely resembled
the varying data ingestion rate. As shown in Figure 6a, scaling
out helps a sketchlet to keep pace with the variations in the
workload, which in turn causes the backlog to stay within a
safe range. This benchmark also shows infrequent, rapid scale-

7

Time
0

50

100

150

200

250

300

350

In
p
u
t

R
a
te

(M
e
ss

a
g
e
s/

s)

Backlog Size

Scale Out Threshold

Input Rate

Throughput

Scale Out Scale In

(a) Triggered by backlog growth based threshold rules

Time
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

P
ro

ce
ss

e
d
 M

e
ss

a
g
e
 C

o
u
n
t

(i
n
 M

ill
io

n
s)

Memory Consumption (in MB)

Number of Messages Processed

Scale Out Threshold

Scale Out

0

500

1000

1500

2000

2500

3000

M
e
m

o
ry

 C
o
n
su

m
p
ti

o
n
 (

in
 M

B
)

(b) Triggered by memory usage based threshold rules
Fig. 6: Scaling out based on backlog growth and memory usage enables maintaining stability at an individual sketchlet

out and continuous, gradual scale-in as explained in §3.3.
Figure 6b demonstrates how memory consumption thresh-

old rules trigger scaling maneuvers to maintain the stability
of an individual sketchlet. We have used 0.45 of the total
memory available to a JVM process as the upper threshold
for triggering scale-out operations. In certain occasions, it is
required to perform multiple consecutive scaling out operations
(interleaved with the cooling down periods) to bring memory
usage to the desired level due to the increased utilization
caused by background data ingestion.

3.4 Scaling In: Conserving Resources
During scaling in, sketchlets merge scaled-out subregions back
into their SIFT. This ensures better resource utilization and
reduces the number of sketchlets contacted during query eval-
uations. Scaling in is also guarded by the same mutex used for
scaling out and is also followed by a stabilization period.

Monitoring and analysis during scale-in operations pro-
ceeds similarly to scaling out, except for the obvious change
to the threshold-based rules: now both memory pressure and
backlog length metrics should consistently record values be-
low a predefined lower threshold. When scaling in, we use a
less aggressive scheme than scaling out; a single subregion is
acquired during a single scale-in operation. Scaling in is more
complex because it involves more than one sketchlet in most
cases; at this point, it is possible that further descendant scale-
out operations have taken place. For instance, if sketchlet A
in Figure 2 decides to scale in subregion DN, then it must
communicate with sketchlets C and D.

The scale-in protocol starts with a lock acquisition protocol
similar to the scaling out protocol, but involves locking the

Sketchlet A Sketchlet C Sketchlet D

Time

Acquire Lock

Acquire Lock

Grant Lock

Grant Lock

Terminate Traffic

Termination Point

Termination Point

State Transfer

State Transfer

State Transfer
Ack

State Transfer
Ack

Fig. 7: Scale-in protocol

entire subtree. The steps are depicted in Figure 7 with respect
to our example in Figure 2 where sketchlet C is scaled in.
As per our example, sketchlet A will acquire locks for both
sketchlets C and D. Locks are acquired in a top-to-bottom
fashion where parent locks itself and then attempts to lock the
child. If lock acquisition fails for any part of the subtree, the
scale-in operation is aborted and the monitoring process starts
the next iteration of the MAPE loop immediately. If the lock
acquisition is successful, then data flow to the child sketchlet
corresponding to this subregion is immediately terminated.

The state acquisition phase begins next. To ensure that
SYNOPSIS does not lose any messages, the initiating sketchlet
sends a termination point control message to the child sketchlet.
The termination point is the sequence number of the last
message sent to the child sketchlet either by the parent itself
or by the short circuit channel. Once the child sketchlet has
processed every message up to the termination point, it sends
out termination point messages to all relevant child sketchlets.
In our example, sketchlet C sends a termination point control
message to D upon processing the stream packet corresponding
to the termination point sent by sketchlet A. After the entire
subtree has seen all messages up to the termination point,
they acknowledge the initiator sketchlet and start transferring
their states asynchronously. Once the parent sketchlet receives
acknowledgments from the entire subtree, it propagates the
protocol end messages to release locks. Locks are released from
the bottom to top in the subtree, with the parent sketchlet
releasing its lock after each child has released its lock.

3.5 Query Evaluations
SYNOPSIS incorporates support for user-defined queries that
are evaluated over the distributed sketch. Queries can be spec-
ified by the user in a SQL-like format or with JSON-based
key-value descriptions similar to GraphQL [17]. Exact-match,
range-based, and summarization queries are all supported
over spatiotemporal bounds and individual feature values.
The following example depicts how SQL-like queries can be
formulated for evaluation over the sketch.

SELECT MEAN(precipitation), MAX(wind_speed)
WHERE temperature > 20 AND temperature < 30
AND humidity > .8 AND CORRELATION(

cloud_cover, precipitation) < -0.25

Depending on scaling operations and the spatial scope of
the queries, evaluations are carried out on one or more sketch-
lets. Information on the placement of sketchlets in the system
and their corresponding feature scopes is maintained at each
sketchlet in a geohash prefix tree, with changes propagated
through the network in an eventually-consistent manner as
data is ingested and scaling maneuvers occur.

8

The entry point for these queries, called the conduit, may
be any of the sketchlets comprising the distributed sketch.
During query evaluations, the first step is to identify the set of
sketchlets relevant to the query. The conduit consults its prefix
tree to locate sketchlets based on spatial, chronological, and
feature constraints specified by the user. For spatial constraints
that overlap multiple geohashes, a set of minimum bounding
geohashes (MBG) is constructed based on query geometry. Points
falling outside the MBG are trimmed at the individual sketchlet
level, in a fashion similar to traversing an R-Tree [18]. After this
process is complete, the conduit forwards the queries on to the
sketchlets for evaluation and supplies the client with a list of
responding sketchlets. As queries execute, results are streamed
back and merged by the client API. This strategy ensures that
I/O and processing activities are interleaved.

In some situations, a trade-off arises between false positives
and false negatives when queries overlap but do not completely
cover quantization bins. Users are made aware of this through
the error bounds provided by SYNOPSIS, but in cases where
false positives are undesirable, partially-matching bins can be
pruned from the results. This also affects spatial queries, albeit
much less often; while high-resolution geohashes are stored
in the SIFT, the encoding scheme is inherently lossy and may
produce false positives depending on the configured resolution.

Our distributed prefix tree enables query evaluations during
both scaling in and out. For instance, when a conduit attempts
to forward a query to a child sketchlet that is undergoing a
scale-in operation, the request will be redirected to the its parent
sketchlet. This process can continue recursively up through the
network, ensuring queries will reach their destination.

3.5.1 Query Types Supported by SYNOPSIS

Relational Queries describe the feature space in the context
of the hierarchical trees within our SIFT data structure and
may target ranges of values; e.g., “What is the relationship
between temperature and humidity during July in Alaska,
when precipitation was greater than 1 cm?” These queries
return a subset of the overall sketch.

Statistical Queries allow users to explore statistical properties
of the observational space. For example, users can retrieve and
contrast correlations between any two features at different
geographic locations at the same time. Alternatively, queries
may contrast correlations between different features at differ-
ent time ranges at the same geographic location. These queries
also support retrieval of the mean, standard deviation, and
feature outliers based on Chebyshev’s inequality [19].

Density Queries support analysis of the distribution of values
associated with a feature over a particular spatiotemporal
scope. These include kernel density estimations, estimating
the probability of observing a particular, and determining the
deciles and quartiles for the observed feature.

Set Queries target identification of whether a particular com-
bination of feature values was observed, estimating the cardi-
nality of the dataset, and identifying the frequencies of the
observations. Each type of set query requires a particular
data structure, with instances created across configurable time
bounds (for instance, every day). Set membership is deter-
mined using space-efficient bloom filters [20], while cardinal-
ity queries are supported by the HyperLogLog [21] algorithm.

Inferential Queries enable spatiotemporal forecasts to be pro-
duced for a particular feature (or set of features). Discrete
inferential queries leverage existing information in the dis-
tributed sketch to make predictions; aggregate metadata
stored in the leaves of the tree can produce two-dimensional

TABLE 2: Local query evaluation times (1000 iterations).
Query Type Mean (ms) Std. Dev. (ms)
Density 0.007 0.005
Set Cardinality 0.154 0.088
Set Frequency 0.036 0.019
Set Membership 0.015 0.009
Statistical 0.002 0.001

Tree Only (5 km) 46.357 1.287
Tree + Meta (5 km) 40.510 6.937
Tree + Meta (25 km) 47.619 6.355
Tree + Meta (800 km) 53.620 6.818

regression models that forecast new outcomes across each
feature type when an independent variable of interest changes.

Synthetic Data Queries allow users generate representative
datasets based on the distributions stored in the sketch and
then stream them to client applications for analytics. The size
of the dataset may also be specified; for instance, 10% of the
volume of the original data points.

Table 2 outlines tree traversal times for query evaluations.
These queries were separated into two groups: conventional
lookups and tree retrievals. Conventional lookups include
density queries, set queries, and statistical queries, while tree
retrievals request targeted portions of the SIFT. While conven-
tional lookups do not return a tree structure to the client, they
still require a tree traversal to resolve. In general, tree retrievals
consume more processing time due to their serialization and
I/O costs; however, it is worth noting that varying the geo-
graphical scope across sketchlet sizes from 5km to 800km did
not result in a proportionate increase in processing time.

3.6 Coping with Failures in SYNOPSIS

SYNOPSIS relies on passive replication to recover from sketchlet
failures because active replication increases resource consump-
tion significantly and it is infeasible to use upstream backups
because the state of a sketchlet depends on the entire set of
messages it has processed previously [22].

Support for fault tolerance is implemented by augmenting
the distributed sketch with a set of secondary sketchlets. A
sketchlet is assigned a set of n secondary sketchlets on dif-
ferent machines to ensure SYNOPSIS can withstand up to n
concurrent machine failures. In our implementation, we used
two secondary sketchlets (n = 2) assigned to each sketchlet.
A primary sketchlet periodically sends the changes to its in-
memory state as an edit stream to its secondary sketchlets.
The secondary sketchlets, which act as the sink to the edit
stream, serialize incoming messages to persistent storage. This
incremental checkpointing scheme consumes less bandwidth
compared to a periodic checkpointing scheme that replicates
the entire state [22]. By default, SYNOPSIS uses the disk of the
machine executing the secondary sketchlet as the persistent
storage, but highly-available storage implementations such as
HDFS [7] can be used if necessary. To reduce resource foot-
prints, secondary sketchlets do not load the serialized state into
memory unless they are promoted to being a primary.

System-wide incremental checkpoints are orchestrated by
a special control message emitted by the stream ingesters.
SYNOPSIS uses upstream backups at stream ingesters to keep
a copy of the messages that entered the system since the last
successful checkpoint. In case of a failure, all messages since the
last checkpoint will be replayed. Sketchlets are implemented
as idempotent data structures using message sequence num-
bers, hence they will process a replayed message only if it
was not processed before. The interval between incremental

9

checkpoints can be configured based on time or the number of
emitted messages. Frequent checkpoints can incur high over-
head, whereas longer periods between successive checkpoints
consume more resources for upstream backups and require
longer replay durations in case of a failure.

Membership management is implemented using
Zookeeper [23], which is leveraged to detect failed sketchlets.
Upon receiving notification of a primary sketchlet failure, a
secondary sketchlet assumes the role of primary through a
leader election algorithm. The secondary will start processing
messages immediately and begins populating its state from
persistent storage in the background. Given this mode of
operation, there may be a small window of time during which
the correctness of queries are impacted. This is rectified once
the stored state is loaded to memory and the replay of the
upstream backup is completed. The SIFT’s support for merge
operations as well as its ability to correctly process out of order
messages is useful during the failure recovery process.

As per our fault tolerance scheme, the total time to recover
from the failure (Ttotal) can be modeled as follows.

Ttotal = Td + max (Tl, Tr)

where Td = time to detect a failure, Tl = time to load persisted state
and Tr = replay time for messages at the upstream node.

The time required to detect failures mainly depends on
the session timeout value used by Zookeeper to detect lost
members and the delay in propagating the notification to other
members. With a 5s session timeout in an active cluster, we
observed a mean notification propagation delay of 5.5s (std.
dev. = 0.911s, 95th percentile = 6.000s). Configuring a lower
session timeout will increase the chance of false positives if
sketchlets become non responsive for a while due to increased
load or system activities such as garbage collection. The time
required to load the persisted storage depends on the size of
the serialized sketchlet; we benchmarked the time it takes to
repopulate the state in all sketchlets after ingesting NOAA data
for 2014. The mean state re-population time was recorded as
16.602s with std. dev. = 23.215s and 95th %ile = 70.877s. Replay
time mainly depends on the checkpointing interval as well as
the message ingestion rate. With a checkpointing interval of
10000 messages, we experienced a mean value of 0.662s (std.
dev. = 0.026s, 95th %ile = 0.707s) to replay an upstream buffer.

4 PERFORMANCE EVALUATION

Here we report system benchmarks profiling several aspects of
SYNOPSIS, including the memory consumption and data inges-
tion performance of the sketch, its ability to handle variable
loads, organization of sketchlets, and query performance.

4.1 Dataset and Experimental Setup
We used two datasets for our evaluation. The first was sourced
from the NOAA North American Mesoscale (NAM) Forecast
System [10]. The NAM collects atmospheric data several times
per day and includes features of interest such as surface tem-
perature, visibility, relative humidity, snow, and precipitation.
The size of this entire source dataset was 25 TB. The other
dataset, collected by the US Environmental Protection Agency,
contained daily summary data of four criteria gases (O3, SO2,
CO and NO2) used for calculating the air quality in a given
area [24]. Each observation in both datasets also incorporates
a relevant geographical location and time of creation. This
information is used during the data ingest process to partition
streams across available sketchlets and preserve temporal or-
dering of events. Data streams were ingested at faster rates

to simulate high data arrival rates while ensuring temporal
ordering was preserved.

Performance evaluations reported here were carried out on
a cluster of 40 HP DL160 servers (Xeon E5620, 12 GB RAM). The
test cluster was configured to run Fedora 24, and SYNOPSIS
was executed under the OpenJDK Java runtime 1.8.0 72. For
evaluations involving Apache Spark, we used Apache Spark
version 2.0.1 with HDFS 2.6.0 with a 100 node cluster by
combining our baseline cluster of 40 machines with 30 HP
DL320e servers (Xeon E3-1220 V2, 8 GB RAM) and 30 HP DL60
servers (Xeon E5-2620, 16 GB RAM).

4.2 Distributed Sketch Memory Evaluation
We monitored the growth in memory consumption of the entire
distributed sketch over time with continuous data ingestion as
shown in Figure 8 for both datasets. As more data was streamed
into the system, the growth rate decreased as the sketchlets
expanded to include vertices for their particular feature space.
At the end of our monitoring period, the total amount of
ingested data was around three orders of magnitude higher
(∼ 1285 for NOAA data and ∼ 926 for air quality data) than
the in-memory sketch size, resulting in notable space savings.

4.3 Sketch Ingestion Rate
In this experiment, we assessed the ability of the sketch to keep
pace with the high rates of incoming observational streams.
We partitioned our dataset based on timestamps of obser-
vations such that each partition comprised observations for
a contiguous time period. Within a partition, data collected
in a single observation cycle for all geographical locations
were stored as successive records. Records within a single
observation cycle were stored in the same order based on
their locations across all observational cycles in all partitions.
Each partition was assigned a single ingester that sequentially
parsed and streamed these records to the distributed sketch.
This organization of observations ensured that multiple stream
ingesters target a small subset of the sketchlets to profile the
worst case performance under high stress. This setup forces
the corresponding SIFT trees to fan out on different planes
(time and features) simultaneously, representing a strenuous
workload for the sketch. A real world scenario is simulated
with a single partition.

Table 3 summarizes the results of this benchmark. As we
increase the number of ingesters with a single sketchlet, the
throughput decreases due to the simultaneous fan-out oper-
ations taking place within the SIFT trees. This claim is fur-
ther supported by the increase in the latency for updating
the sketchlet as shown in the table. We started with a single
sketchlet, allowed the system to dynamically scale out, and
measured its throughput once a steady state was reached (i.e.,
frequent scaling does not occur). The system reached stability
with 14-16 sketchlets depending on the number of ingesters.
We observed higher throughput compared a single sketchlet
due to parallel processing of the observational stream, but
the increase was not linear; when there is a single ingester,
throughput is constrained by the bandwidth of the ingester.
In this benchmark, SYNOPSIS was using around 86% of the
available bandwidth. With multiple ingesters, due to the way
the stream is (intentionally) constructed, the load is not evenly
partitioned across the cluster.

4.4 Analyzing a Snapshot of the Distributed Sketch
Figure 9 visualizes a snapshot of the distributed sketch which
demonstrates the organization of sketchlets at runtime as de-
scribed in §3. This represents the state of the system after

10

0 100 200 300 400 500

Time (Minutes)

0

1000

2000

3000

4000

5000

6000

7000
In

g
e
st

e
d
 M

e
ss

a
g
e
 C

o
u
n
t

(i
n
 M

ill
io

n
s)

10-2

10-1

100

101

102

103

104

105

M
e
m

o
ry

 C
o
n
su

m
p
ti

o
n
 (

in
 G

B
)

NOAA North American Mesoscale (NAM) Forecast Data
 (2010 - 2015)

0 5 10 15 20 25 30

Time (Minutes)

0

20

40

60

80

100

120

140

In
g
e
st

e
d
 M

e
ss

a
g
e
 C

o
u
n
t

(i
n
 M

ill
io

n
s)

10-4

10-3

10-2

10-1

100

101

102

M
e
m

o
ry

 C
o
n
su

m
p
ti

o
n
 (

in
 G

B
)

US Environmental Protection Agency Air Quality Data
 (2010 - 2016)

Cumulative Ingested Message Count Sketch Size Ingested Data Size

Fig. 8: Memory usage of the distributed sketch over time against the amount of ingested data. The rate of growth decreases over
time due to the compact nature of sketchlet data structure.

consuming the complete 2014 NOAA dataset, resulting in 48
sketchlets. The figure shows the distribution and size of the
information maintained across sketchlets for each geohash pre-
fix of 3 characters against the number of records processed for
that particular prefix. The memory requirement for a particular
geohash prefix depends on the number of records as well as
the range of the observed values for different features. The
space requirement is measured by the number of leaf nodes in
the corresponding sketchlets. For the majority of the prefixes,
the space requirement increases with the number of records
processed. If the data for a particular prefix is distributed across
multiple sketchlets, then it is more likely to be a prefix with a
high number of records as shown in the first subplot. In such
cases, some of these sketchlets are created in multiple scale-
out iterations, which results in a higher distance from the root
of the prefix tree. This is depicted in the second subfigure of
Figure 9. A few prefixes with a high number of records can be
observed with low memory consumption, and are distributed
across multiple sketchlets; their observations span a smaller
range, hence they require less memory but were chosen for
scaling out operations due to their high message rates.

4.5 Dynamic Scaling: Responding to Variable Load
We evaluated how SYNOPSIS dynamically scales when the data
ingestion rate is varied. The data ingestion rate was varied over
time such that the peak data ingestion rate is higher than the
highest possible cumulative throughput to create a backlog at
sketchlets. We augmented the sketch update code with addi-
tional operations to match the relatively low ingestion rates
used for better control. We used the number of sketchlets within
the system to quantify the scaling activities. If the system scales
out, more sketchlets will be created as a result of targeted load
migration. We started with a single sketchlet and allowed the

system to dynamically scale. As can be observed in Figure 10,
the number of sketchlets varies with the ingestion rate. Since
we allow aggressive scale-out, rapid scaling out is observed
during high data ingestion rates whereas scaling in takes place
gradually with one subregion (one sketchlet) at a time.

4.6 Query Evaluation Performance
To evaluate distributed query performance, we executed rep-
resentative workloads based on observed access patterns over
our test dataset across a variety of sketchlet sizes. These queries
were categorized as conventional lookups and tree retrievals.
Figure 11 depicts the end-to-end efficiency of the query evalua-
tions over the distributed sketch. Cumulative query throughput
and latencies were measured with varying numbers of concur-
rent query funnels. A query funnel continuously generates and
dispatches representative queries at the maximum possible rate
to stress test the system and saturate its capacity. For example, a
query could request summary statistics or feature relationships
when the temperature is 20–30◦, humidity is above 80%, and
the wind speed is 16 km/h. These queries fluctuated in both the
ranges of values and spatial scope, resulting in high variability
in the number of sketchlets required to resolve the query as
well as the depth and breadth of the tree traversals.

Next we evaluated the query speedup gained by maintain-
ing an in-memory sketch of the data compared to a traditional
ETL pipeline. We extracted the timestamp, location information
(as a geohash), temperature, surface visibility, humidity and
precipitation in the southeast United States during the months
of May–August, 2011–2014 and loaded them into Spark as a
DataFrame which was then queried using Spark SQL. Given
that the underlying RDD of the DataFrame cannot be shared
between multiple Spark applications, we used a multi-threaded
driver to issue concurrent queries. Similarly, SYNOPSIS was

TABLE 3: Profiling the update performance of sketchlet and sketch at high data ingest rates

Ingester Count
Sketchlet Throughput (msgs/s) Sketch Throughput (msgs/s) Sketchlet Update Latency (µs)

Mean Std. Dev. Mean Std. Dev. Mean 95th Perc. Std. Dev.
1 15124.562 575.728 44082.476 5984.503 64.752 67.175 5.503
2 14067.452 491.783 44060.889 6206.208 64.971 71.170 4.012
4 11319.321 1003.462 41645.317 13553.462 74.026 78.364 3.125
8 5223.280 717.254 38369.745 14008.308 81.034 85.842 2.502

11

Fig. 9: Analysis of a snapshot of the distributed sketch during data ingestion demonstrating the size and distribution of the
information corresponding to different prefixes against the observed record count. If the information is dispersed over multiple
sketchlets, it is likely to be a prefix with higher number of records and/or a wide range of observed values.

evaluated using a multi-threaded query funnel. In order to
minimize the data transfer between the Spark cluster and the
driver, a count action was performed on the results of the
SQL query and its result was retrieved at the client. For SYN-
OPSIS, we performed equivalent tree retrieval queries where
sections of the distributed sketch is serialized and sent back
to the query funnel. End-to-end latencies of the queries were
recorded for different concurrency levels. Spark was evaluated
under two different settings: caching enabled and disabled for
the Dataframe. The results of this evaluation is depicted in
Figure 12. When caching is enabled, the Dataframe will be
pinned in memory once materialized for the first time reducing
the subsequent access times. Caching the entire Dataframe in
memory may not be feasible in most real world spatiotem-
poral analytical tasks where the size of the dataset exceeds
the available memory capacity of the cluster. The end-to-end
latency of the SYNOPSIS queries is significantly less despite
the larger size of the query results (section of the sketch for
SYNOPSIS vs the number of matching records for Spark SQL)
transferred from the cluster to the query funnel. Spark queries
provides higher accuracy because queries are answered after
scanning the entire dataset, but it requires more resources
— mainly memory and storage – and incurs higher query
latencies. Resource requirements and query latencies with such
ETL systems drastically increase with the number of features
and geospatial and temporal scopes.

Time
0

50

100

150

200

250

300

350

400

D
a
ta

 I
n
g
e
st

io
n
 R

a
te

(M
sg

s/
s)

0

200

400

600

800

1000

N
u
m

b
e
r

o
f

S
ke

tc
h
le

ts

Data Ingestion Rate Number of Sketchlets

Fig. 10: Responding to variable load using dynamic scaling.

5 APPLICATIONS

Herein we profile the effectiveness of SYNOPSIS as a surrogate
for on-disk data in visualization and analytical settings.

5.1 Visualization
To demonstrate the potential applications of SYNOPSIS, we
created two visualizations. Our first visualization generated
a climate chart by issuing statistical queries to retrieve high,
low, and mean temperature values as well as precipitation
information for a given spatial region. Climate charts are often
used to provide a quick overview of the weather for a location;
Figure 13 summarizes the temperature and precipitation in
Snowmass Village, Colorado during 2014. While a standard
approach for producing these visualizations over voluminous
atmospheric data would likely involve several MapReduce
computations, our sketchlets make all the necessary informa-
tion readily available through queries, avoiding distributed
computations altogether. Furthermore, retrieving the data for
this evaluation consumed considerably less time (1.5 ms) than
rendering the image on the client side (127.1 ms).

Our second visualization issued queries to retrieve cloud
cover information for the entirety of North America. To reduce
processing load on the client side, we specified minimum visi-
bility thresholds to eliminate data points that would not be vis-
ible in the final output figure. After retrieving this information,
we executed a second query that located all areas that exhibited
high correlations between cloud cover and precipitation. Fig-
ure 14 illustrates the results of this process for data in July of
2014; cloud cover is represented by white contours with varying
opacity, while blue contours describe the correlation between
cloud cover and precipitation (darker blues, such as those seen
in the top-center of the globe, represent a stronger correlation).
Due to the large scope of this visualization (retrieving all data
points for a given month across all spatial regions), retrieval
took approximately 2.82 seconds, with graphics rendering con-
suming an additional 1.51 seconds at the client application.

5.2 Use with Analytic Engines
Synthetic data queries in SYNOPSIS can be used to generate
representative datasets that require less space while still pro-
viding high accuracy. Such datasets can be used efficiently with

12

Fig. 11: Distributed query evaluation performance — cumulative throughput and latency in a 40-node SYNOPSIS cluster.

analytic engines such as Apache Spark [1] and TensorFlow
[4]. We used Spark to train regression models based on the
Random Forest ensemble method to predict temperatures (in
Kelvin) using surface visibility, humidity and precipitation in
the southeast United States during the months of May–August,
2011–2014. These models were generated using the original full-
resolution data as well as synthetic data sets that were sized at
10%, 20%, and 100% of the original data. For another point of
comparison, we also generated datasets using 10% and 20%
samples of the original data. The accuracy of these models was
measured using a test dataset extracted from actual observa-
tions (30% of the overall dataset size). All five datasets were
staged on HDFS and loaded into Spark to train the models.

We evaluated our approach based on the on-disk and in-
memory storage requirements, data loading time, training time
and the accuracy of the model. Our observations are summa-
rized in Table 4; overall, the accuracy of the synthetic data
models is comparable to that of the actual data, while requir-
ing less space, training, and loading times; for instance, our
10% synthetic dataset produces a model with similar accuracy
while incurring 54% less training time and reducing space
requirements by 90%. Additionally, based on the number of
RDD partitions used, the smaller synthetic datasets require
substantially less computing resources. It is worth noting that
these particular models do not appear to benefit from a larger
set of training samples, and could potentially begin to exhibit
over-fitting if trained on more data. We believe signs of this
are demonstrated by the 100% synthetic dataset, where fidelity

1 2 4 8 16

Number of Concurrent Worker Threads

10-1

100

101

102

103

104

105

106

M
e
d
ia

n
 Q

u
e
ry

 L
a
te

n
cy

 (
m

s)

Spark SQL

Spark SQL (Caching Enabled)

Synopsis

5th and 95th Percentiles

25th and 75th Percentiles

Fig. 12: Contrasting SYNOPSIS query performance with an ETL
system built with Spark SQL.

limits of the sketch result in training data points that slightly
decrease the expressiveness of the model.

6 RELATED WORK

Tao et al. [25] answers distinct sum and count queries over
spatiotemporal data with a sketch index similar to an aRB-
tree [26] where spatial indexing is implemented is using an
R-tree and temporal indexing is implemented as a B-tree. At
the leaf nodes of the B-tree, a sketch that follows the Flajolet-
Martin algorithm [27] is used to capture an approximate view
of the observations. This approach significantly reduces the
space requirements for answering distinct sum/count queries
on spatiotemporal data and provides efficient query evalua-
tions due to its ability to prune portions of the search space.
SYNOPSIS differs in its ability to capture multiple features and
their interactions, which facilitates a broader set of queries.

Data Cubes [28], [29], [30], [31] are a data structure for On-
line Analytical Processing that provide multidimensional query
and summarization functionality. These structures generalize
several operators provided by relational databases by project-
ing two-dimensional relational tables to N-dimensional cubes
(also known as hypercubes when N > 3). Variable resolution
in Data Cubes is managed by the drill down/drill up operators,
and slices or entire cubes can be summarized through the roll up
operator. While Data Cubes provide many of the same features
supported by SYNOPSIS, they are primarily intended for single-
host offline or batch processing systems due to their compute-
and data-intensive updates. In fact, many production deploy-
ments separate transaction processing and analytical processing
systems, with updates pushed to the Data Cubes periodically.

Galileo [32], [33] is a distributed hash table that supports
the storage and retrieval of multidimensional data. Given the
overlap in problem domain, Galileo is faced with several of the
same challenges as SYNOPSIS. However, the avenues for over-
coming these issues diverge significantly due to differences in
storage philosophy: SYNOPSIS maintains its dataset completely
in main memory, avoiding the orders-of-magnitude disparity
in I/O throughput associated with secondary storage systems.
This makes SYNOPSIS highly agile, allowing on-demand scaling
to rapidly respond to changes in incoming load. Additionally,
this constraint influenced the trade-off space involved when
designing our algorithms, making careful and efficient memory
management a priority while striving for high accuracy.

Simba (Spatial In-Memory Big data Analytics) [34] extends
Spark SQL [2] to support spatial operations in SQL as well as

13

TABLE 4: Comparing Random Forest based regression models generated by Spark MLlib using synthetic vs. real data

Dataset Size (GB) RDD Partitions
Data Loading Time (s) Model Training Time (s) Accuracy - RMSE (K)
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Original 25.350 208 28.035 2.249 506.493 9.500 5.981 0.027
Original - 10% Sample 2.535 21 5.136 0.909 205.627 5.798 5.960 0.049
Original - 20% Sample 5.069 41 6.102 1.607 216.857 7.994 5.994 0.026
Synthetic - 10% 2.549 21 5.097 0.912 231.221 13.459 5.951 0.027
Synthetic - 20% 5.098 41 6.208 0.637 235.018 16.148 5.981 0.051
Synthetic - 100% 25.066 207 25.670 2.947 454.964 16.446 6.192 0.076

DataFrames. It relies on data being stored in Spark [1]. Despite
its higher accuracy, it is not scalable for geospatial streams in
the long term due to high storage requirements. In SYNOPSIS,
spatial queries can be executed with a reasonable accuracy
without having to store the streaming data as-is.

Dynamic scaling and elasticity in stream processing systems
has been studied thoroughly [35], [36], [22], [37], [38], [39].
StreamCloud [36] relies on a global threshold-based scheme
to implement elasticity where a query is partitioned into sub-
queries which run on separate clusters. It relies on a centralized
component, the Elastic Manager, to initiate the elastic recon-
figuration protocol, whereas in SYNOPSIS each node indepen-
dently initiates the dynamic scaling protocol. This difference
is mainly due to different optimization objectives of the two
systems; StreamCloud tries to optimize the average CPU usage
per cluster while SYNOPSIS attempts to maintain stability at
each node. The state recreation protocol of StreamCloud is
conceptually similar to our state transfer protocol, except that
tuples are buffered at the new location until the state transfer is
complete, whereas in SYNOPSIS the new sketchlet immediately
starts building the state which is later merged with the state
(transferred asynchronously) from the parent sketchlet.

Gedik et al. [39] also uses a threshold-based local scheme
similar to SYNOPSIS. Additionally, this approach keeps track of
the past performance achieved at different operating conditions
in order to avoid oscillations in scaling activities. The use of
consistent hashing at the splitters (similar to geohash based
stream partitioning in SYNOPSIS) achieves both load balancing
and monotonicity (elastic scaling does not move states between
nodes that are present before and after the scaling activity).
Similarly, our geohash-based partitioner together with control
algorithms in SYNOPSIS balance the workload by alleviating
hotspots and sketchlets with lower resource utilization. Our
state migration scheme doesn’t require migrating states be-

40

30

20

10

0

10

20

30

40

Te
m

pe
ra

tu
re

 (C
)

2

-29

4

-24

8

-23

19

-19

28

-21

30

-5

33

0

32

0

29

-2

21

-5

15

-25

5

-31

Jan Feb Mar Apr
May Jun Jul

Aug Sep Oct
Nov Dec

0
10
20
30
40
50
60
70
80
90

P
re

ci
pi

ta
tio

n
(c

m
)

63.0 66.0 61.1

29.4

46.0

8.5

25.3

71.5
57.6

36.8

54.2

83.9

Climate Overview: Snowmass Village, CO (SI Units)

Fig. 13: A climate chart generated using a statistical query.

tween sketchlets that do not participate in the scaling ac-
tivity, unlike with a reconfiguration of a regular hash-based
partitioner. Unlike in SYNOPSIS, in their implementation, the
stream data flow is paused until state migration is complete us-
ing vertical and horizontal barriers. Finally, SYNOPSIS’ scaling
schemes are placement-aware, meaning certain nodes are pre-
ferred when performing scaling with the objective of reducing
the span of the distributed sketch.

7 CONCLUSIONS AND FUTURE WORK

SYNOPSIS, our framework for constructing a distributed sketch
over spatiotemporal streams, is able to (1) maintain a compact
representation of the observational space, (2) support dynamic
scaling to preserve responsiveness and avoid overprovisioning,
and (3) explore the observational space with a rich set of
queries. Our methodology for achieving this is broadly ap-
plicable to other stream processing systems and our empirical
benchmarks demonstrate the suitability of our approach.

We achieve compactness in our sketchlet instances by dy-
namically managing the number of vertices in the SIFT hierar-
chy as well as the range each vertex is responsible for. We also
maintain summary statistics and metadata within these vertices
to track the distribution/dispersion of feature values and their
frequencies. As a result, SYNOPSIS is able to represent datasets
using substantially less memory (RQ-1). Given variability in the
rates and volumes of data arrivals from different geolocations,
our scaling mechanism avoids overprovisioning and alleviates
situations where sketch updates cannot keep pace with data
arrival rates. Memory pressure is also taken into account during
replica creation as well as when scaling in and out (RQ-2).
During evaluations, only the sketchlets that hold portions of
the observational space implicitly or explicitly targeted by the
query are involved, ensuring high throughput. We support
several high-level query operations allowing users to locate and
manipulate data efficiently (RQ-3).

Fig. 14: Global contour visualization showing cloud cover
(white contours) and the correlation with precipitation (blue
contours) in July of 2014 across North America.

14

Our future work will target support for SYNOPSIS to be used
as input for long-running computations. Such jobs would exe-
cute periodically on a varying number of machines and could
target the entire observational space or only the most recently-
assimilated records. We also plan to implement continuous
queries that can autonomously evolve with the feature space.

Acknowledgements: This research was supported by the
US Dept of Homeland Security [HSHQDC-13-C-B0018,
D15PC00279]; the US National Science Foundation [ACI-
1553685, CNS-1253908]; and the Environmental Defense Fund.

REFERENCES

[1] M. Zaharia et al., “Spark: cluster computing with working sets.”
HotCloud, vol. 10, pp. 10–10, 2010.

[2] M. Armbrust et al., “Spark sql: Relational data processing in
spark,” in Proc. of the 2015 ACM SIGMOD International Conference
on Management of Data. ACM, 2015, pp. 1383–1394.

[3] M. Abadi, “Tensorflow: Learning functions at scale,” in Proc.
of the 21st ACM SIGPLAN International Conference on Functional
Programming, ser. ICFP 2016, New York, NY, USA, 2016, pp. 1–1.

[4] M. Abadi et al., “Tensorflow: Large-scale machine learning on
heterogeneous distributed systems,” 2015. [Online]. Available:
http://download.tensorflow.org/paper/whitepaper2015.pdf

[5] ASF, “Hadoop,” http://hadoop.apache.org, 2016.
[6] K. Shvachko et al., “The hadoop distributed file system,” in 2010

IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST), May 2010, pp. 1–10.

[7] D. Borthakur, “Hdfs architecture guide,” Hadoop Project, 2008.
[8] J. Langford et al., “Vowpal wabbit online learning project,” 2007.
[9] G. Niemeyer. (2008) Geohash. [Online]. Available: http://en.

wikipedia.org/wiki/Geohash
[10] National Oceanic and Atmospheric Administration. (2016) The

North American Mesoscale Forecast System. [Online]. Available:
http://www.emc.ncep.noaa.gov/index.php?branch=NAM

[11] B. Welford, “Note on a method for calculating corrected sums of
squares and products,” Technometrics, vol. 4(3), pp. 419–420, 1962.

[12] M. Kristan et al., “Multivariate online kernel density estimation
with gaussian kernels,” Pattern Recognition, vol. 44, no. 1011, 2011.

[13] M. Malensek et al., “Autonomously improving query evaluations
over multidimensional data in distributed hash tables,” in Proc. of
the 2013 ACM Cloud and Autonomic Computing Conference (CAC),
Sep 2013, pp. 15:1–15:10.

[14] B. W. Silverman, Density estimation for statistics and data analysis.
CRC press, 1986, vol. 26.

[15] M. Maurer et al., “Revealing the MAPE loop for the autonomic
management of cloud infrastructures,” in Computers and Commu-
nications (ISCC), 2011 IEEE Symposium on, pp. 147–152.

[16] T. Lorido-Botrán et al., “Auto-scaling techniques for elastic appli-
cations in cloud environments,” University of Basque Country, Tech.
Rep. EHU-KAT-IK-09, vol. 12, 2012.

[17] Facebook, Inc. (2015) GraphQL. [Online]. Available: graphql.org
[18] A. Guttman, R-trees: A dynamic index structure for spatial searching.

ACM, 1984.
[19] D. E. Knuth, “The art of computer programming: Fundamental

algorithms (volume 1),” Addison-Wesley, 1968.
[20] B. H. Bloom, “Space/time trade-offs in hash coding with allowable

errors,” Communications of the ACM, vol. 13(7), pp. 422–426, 1970.
[21] P. Flajolet et al., “HyperLogLog: The analysis of a near-optimal

cardinality estimation algorithm,” in AOFA ’07: Proc. of the 2007
International Conference on the Analysis of Algorithms.

[22] R. Castro Fernandez et al., “Integrating scale out and fault toler-
ance in stream processing using operator state management,” in
Proc. of the 2013 ACM SIGMOD international conference on Manage-
ment of data. ACM, 2013, pp. 725–736.

[23] P. Hunt et al., “Zookeeper: Wait-free coordination for internet-scale
systems.” in USENIX Annual Technical Conference, vol. 8, 2010, p. 9.

[24] US Environmental Protection Agency. (2017) Daily Summary
Data - Criteria Gases. [Online]. Available: https://aqsdr1.epa.
gov/aqsweb/aqstmp/airdata/download files.html#Daily

[25] Y. Tao et al., “Spatio-temporal aggregation using sketches,” in Proc.
of the Intl. Conference on Data Engineering, March 2004, pp. 214–225.

[26] D. Papadias et al., “Indexing spatio-temporal data warehouses,” in
Proc. of the Intl. Conference on Data Engineering, 2002, pp. 166–175.

[27] P. Flajolet et al., “Probabilistic counting algorithms for data base
applications,” Journal of computer and system sciences, vol. 31, no. 2,
pp. 182–209, 1985.

[28] J. Gray et al., “Data cube: A relational aggregation operator
generalizing group-by, cross-tab, and sub-total,” in Proc. of the
12th International Conference on Data Engineering, ser. ICDE ’96.
Washington, DC, USA: IEEE Computer Society, 1996, pp. 152–159.

[29] V. Harinarayan et al., “Implementing data cubes efficiently,” in
Proc. of the 1996 ACM SIGMOD International Conference on Manage-
ment of Data, New York, NY, USA, 1996, pp. 205–216.

[30] I. S. Mumick et al., “Maintenance of data cubes and summary
tables in a warehouse,” in Proc. of the 1997 ACM SIGMOD Interna-
tional Conference on Management of Data, NY, USA, pp. 100–111.

[31] C.-T. Ho et al., “Range queries in olap data cubes,” in Proc. of the
1997 ACM SIGMOD International Conference on Management of Data,
New York, NY, USA, pp. 73–88.

[32] M. Malensek et al., “Analytic queries over geospatial time-series
data using distributed hash tables,” IEEE Transactions on Knowledge
and Data Engineering, vol. 28, no. 6, pp. 1408–1422, Jun 2016.

[33] ——, “Fast, ad hoc query evaluations over multidimensional
geospatial datasets,” IEEE Transactions on Cloud Computing, vol. 5,
no. 1, pp. 28–42, Jan 2017.

[34] D. Xie et al., “Simba: Efficient in-memory spatial analytics.”
[35] T. Heinze et al., “Auto-scaling techniques for elastic data stream

processing,” in Data Engineering Workshops (ICDEW), 2014 IEEE
30th International Conference on. IEEE, 2014, pp. 296–302.

[36] V. Gulisano et al., “Streamcloud: An elastic and scalable data
streaming system,” Parallel and Distributed Systems, IEEE Transac-
tions on, vol. 23, no. 12, pp. 2351–2365, 2012.

[37] S. Loesing et al., “Stormy: an elastic and highly available streaming
service in the cloud,” in Proc. of the 2012 Joint EDBT/ICDT Work-
shops. ACM, 2012, pp. 55–60.

[38] T. Heinze et al., “Elastic complex event processing under varying
query load.” in BD3@ VLDB. Citeseer, 2013, pp. 25–30.

[39] S. Schneider et al., “Elastic scaling of data parallel operators
in stream processing,” in Parallel & Distributed Processing, 2009.
IPDPS 2009. IEEE International Symposium on, pp. 1–12.

Thilina Buddhika is a Ph.D. candidate in the
Computer Science department at Colorado State
University. His research interests are in the area
of real time, high throughput stream processing
specifically targeted to environments such as In-
ternet of Things (IoT) and health care applica-
tions. Email: thilinab@cs.colostate.edu

Matthew Malensek is a Ph.D. student in the De-
partment of Computer Science at Colorado State
University. His research involves the design and
implementation of large-scale distributed sys-
tems, data-intensive computing, and cloud com-
puting. Email: malensek@cs.colostate.edu

Sangmi Lee Pallickara is an Assistant Professor
in the Department of Computer Science at Col-
orado State University. She received her Masters
and Ph.D. degrees in Computer Science from
Syracuse University and Florida State University,
respectively. Her research interests are in the
area of large-scale scientific data management.
She is a recipient of the NSF CAREER award.
Email: sangmi@cs.colostate.edu

Shrideep Pallickara is an Associate Professor in
the Department of Computer Science and a Mon-
fort Professor at Colorado State University. His
research interests are in the area of large-scale
distributed systems. He received his Masters and
Ph.D. degrees from Syracuse University. He is
a recipient of an NSF CAREER award. Email:
shrideep@cs.colostate.edu

http://download.tensorflow.org/paper/whitepaper2015.pdf
http://en.wikipedia.org/wiki/Geohash
http://en.wikipedia.org/wiki/Geohash
http://www.emc.ncep.noaa.gov/index.php?branch=NAM
graphql.org
https://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/download_files.html#Daily
https://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/download_files.html#Daily

	Introduction
	System Overview and Preliminaries
	Methodology
	Sketch
	Sketchlet
	SIFT Structure
	Structural Compaction
	Density-Driven Quantization
	Temporal Dimensionality Reduction
	Facilitating Scalability

	Coping with High Loads: Scaling out
	Scaling In: Conserving Resources
	Query Evaluations
	Query Types Supported by Synopsis

	Coping with Failures in Synopsis

	Performance Evaluation
	Dataset and Experimental Setup
	Distributed Sketch Memory Evaluation
	Sketch Ingestion Rate
	Analyzing a Snapshot of the Distributed Sketch
	Dynamic Scaling: Responding to Variable Load
	Query Evaluation Performance

	Applications
	Visualization
	Use with Analytic Engines

	Related Work
	Conclusions and Future Work
	References
	Biographies
	Thilina Buddhika
	Matthew Malensek
	Sangmi Lee Pallickara
	Shrideep Pallickara

