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Abstract

Discrete event simulations (DES) provide a powerful means for modeling com-
plex systems and analyzing their behavior. DES capture all possible interactions
between the entities they manage, which makes them highly expressive but also
compute-intensive. These computational requirements often impose limitations
on the breadth and/or depth of research that can be conducted with a discrete
event simulation.

This work describes our approach for leveraging the vast quantity of com-
puting and storage resources available in both private organizations and public
clouds to enable real-time exploration of discrete event simulations. Rather
than directly targeting simulation execution speeds, we autonomously generate
and execute novel scenario variants to explore a representative subset of the
simulation parameter space. The corresponding outputs from this process are
analyzed and used by our framework to produce models that accurately forecast
simulation outcomes in real time, providing interactive feedback and facilitating
exploratory research.

Our framework distributes the workloads associated with generating and exe-
cuting scenario variants across a range of commodity hardware, including public
and private cloud resources. Once the models have been created, we evaluate
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their performance and improve prediction accuracy by employing dimensional-
ity reduction techniques and ensemble methods. To make these models highly
accessible, we provide a user-friendly interface that allows modelers and epi-
demiologists to modify simulation parameters and see projected outcomes in
real time.

Keywords: Discrete Event Simulation, Latin Hypercube Sampling,
Distributed Execution, Cloud Infrastructure

1. Introduction

The behavior of complex, real-world systems is often difficult to predict or
fully understand. These systems may be influenced by any number of internal
or external stimuli, and direct experimentation is often prohibitively expensive,
time-consuming, or simply not feasible. In these situations, computer simu-
lation is a compelling solution. Specifically, discrete event simulations (DES)
model all possible interactions between entities in a system, making them highly
expressive. To model uncertainty in these interactions, stochastic discrete event
simulations associate probabilities with each of their events. However, this ex-
pressiveness comes at the cost of increased computational complexity and pro-
longed execution times.

Our subject discrete event simulation, the North American Animal Disease
Spread Model (NAADSM) [1] is an epidemiological model of disease outbreaks
in livestock populations. Livestock are simulated as individual herds and in-
teract with their environment through events; for instance, an exposure event
may occur when a particular herd has come into contact with a disease of in-
terest. The simulation has been applied in studies of several different diseases,
including foot-and-mouth disease [2], avian influenza [3], and pseudorabies [4].
NAADSM is a stochastic DES: simulations are run many times, with each itera-
tion contributing to an overall representation of the output variables’ probability
distributions. Iterations often require several hours of CPU time to execute de-
pending on how events unfold.

The computational complexity of these stochastic iterations makes it diffi-
cult for planners and epidemiologists to perform exploratory “what if” analysis
that plays an important role in planning and preparedness. For instance, a
planner may make subtle adjustments to quarantine procedures or the number
of vaccines available in order to analyze economic consequences or how disease
spread might change. Each modification of the input parameters requires a new
set of iterations to be run. Dividing the target simulation into several units
and executing them in parallel is one way to improve overall execution times
[5, 6], but generally does not enable real-time exploration. In this work, we
target real-time computational guarantees that involve providing sub-second,
interactive responses to the user as simulation parameters are changed.

This paper describes our approach for retaining the expressiveness of stochas-
tic DES while addressing the weaknesses in the timeliness of their outcomes. We
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achieve this by utilizing voluminous epidemic simulation data to glean insights
and derive relationships between scenarios and outcomes. We then use this
information to create models that can forecast the results for an entire class
of input parameters, enabling our system to provide real-time answers to ex-
ploratory investigations.

1.1. Research Challenges

We consider the problem of generating fast, accurate DES forecasts for a
given subset of the input parameter space. These forecasts are generated in lieu
of compute-intensive simulation runs. Challenges involved in accomplishing this
include:

1. Data Dimensionality : Each input parameter represents a dimension, the
number of which can be quite high (approximately 1800-2500 in this par-
ticular study). Furthermore, input parameters come in a variety of types:
integers, floats, or even probability distributions.

2. Interactive Exploration: The “what if” scenarios in question must provide
immediate feedback during exploration; every parameter change will result
in slightly different outputs that must be forecast in real time.

3. Accuracy : Outputs produced during exploration must be reasonably accu-
rate to ensure their usefulness. Once a planner has determined parameters
of interest, he or she may decide to perform a set of actual simulation runs.

1.2. Research Questions

Specific research questions we explore include:

1. How can we minimize the number of iterations required to build our models
while still ensuring statistical coverage of the parameter space?

2. What are the implications of our execution model, and how can we obtain
necessary processing resources?

3. A large amount of training data is necessary for making predictions. How
can this data be managed in a scalable and fault-tolerant manner?

4. How can we deal with increases in dimensionality as the number of input
parameters grows?

5. What prediction models can provide both accurate and real-time re-
sults?

6. How can we improve model performance? What impact does the rela-
tive error, feature correlations, and input dataset size have on predictive
performance?

7. Once the models are built, how can we make their insights available to
users in an accessible and efficient manner?
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1.3. Summary of Approach

Our approach treats the DES in question as a black box and focuses on
deriving relationships between the inputs and outputs. Given a disease spread
scenario, our framework views input tuples as points in the multidimensional
parameter space. We first derive bounds for each of the dimensions from both
historical data and subject-matter experts, and then sample within this param-
eter space to create novel scenario variants. Our objective is two-fold: we wish
to ensure adequate coverage of the parameter space, while also controlling the
size of computational workloads.

For each scenario, we inspect the variances of key output variables to derive
the number of iterations that must be executed. Both the variant generation
and their subsequent simulation iterations are implemented as MapReduce [7]
jobs that are orchestrated by our Forager framework. Forager deals with highly
elastic resource pools and can scavenge for CPU cycles on both physical and
virtual machines, including spot instances in the cloud. These simulation runs
generate a large amount of data, often producing terabytes of outputs in a few
hours. To cope with these storage demands, we use a distributed storage system
to manage the data in a scalable and fault-tolerant manner.

Once the simulation iterations have been executed, we model the relation-
ships between inputs and outputs. To facilitate predictions, we create a model
for each output variable. We consider both linear (multivariate linear regression)
and non-linear (artificial neural networks) methods to construct these models,
and use k-fold cross-validation to assess their generalizability. To further im-
prove predictive performance, we investigate the use of ensemble methods to
reduce model bias (gradient boosting) and variance (random forests). We also
consider the effects of dimensionality and collinearity in the input dataset to
reduce model noise and creation times.

The technologies discussed in this study enable our system to provide ac-
curate answers to “what if” scenarios in real time. We make this information
accessible to planners and epidemiologists through a web-based user interface
that targets a broad range of devices and platforms. This allows interactive
modification of scenario parameters with direct feedback.

1.4. Paper Contributions

This paper describes our approach for supporting interactive exploration of
discrete event simulations. The research involves several key features, including
the use of analytics to ensure accurate and timely forecasts that account for
statistical coverage of the parameter space, orchestration of workloads, genera-
tion and management of training data, correlations between inputs and outputs,
dimensionality reduction, and the use of learning structures. Our specific con-
tributions include:

• Applicability : The framework is broadly applicable to other compute-
intensive simulations. We treat a given simulation as a black box and
focus on deriving the relationship between inputs and outputs.
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• Dimensionality : Our approach copes with high dimensionality and diver-
sity of dimension types.

• Data Management : Scenario variants and their outputs comprise a vo-
luminous dataset. We use a distributed key-value store and MapReduce
computations to deal with these storage and processing demands.

• Resource Management : Processing and storage resources can be sourced
from physical or virtual machines. Our framework accounts for running
in a highly elastic environment and can scale both up and down to meet
changing requirements.

• Forecasting : The proposed approach learns from the data to derive rela-
tionships between inputs and outputs. We have incorporated support for
both linear and nonlinear models and exploration of the parameter space
can be performed in real time.

1.5. Paper Extensions

Since the publication of Using Distributed Analytics to Enable Real-Time Ex-
ploration of Discrete Event Simulations [8], we have extended our manuscript
to incorporate several new techniques for increasing prediction accuracy during
the knowledge extraction process, as well as details on the design and function-
ality of our “What-If” interactive exploratory analytics tool. The prediction
improvements discussed in this work come from multiple techniques: bias-
variance analysis, ensemble methods including random forests and gradient
boosting, and collinearity analysis. Sections 6 and 7 discuss the development
of our predictive models and the design of our What-If tool, respectively. The
addition of these two sections accounts for a 50% increase in overall manuscript
content.

1.6. Paper Organization

The rest of the paper is organized as follows. Section 2 describes our sce-
nario variant generation process. Section 3 focuses on our distributed execution
platform, Forager. Section 4 outlines how we manage outputs and distributed
state, followed by Section 5, which describes how we build our models and make
predictions. Section 6 discusses improvements to increase predictive accuracy
of the models, and Section 7 describes our “What-If” tool, its user interface,
and system integration. Section 8 surveys related work, and Section 9 provides
concluding material and our future research directions.

2. Generating Novel Scenario Variants

In our subject simulation, input parameters are used to describe disease
properties and outbreak characteristics. These variables include factors such
as the probability of infection transfer, maximum airborne distance of disease
spread, and the overall area at risk for infection. The first piece of information
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required to generate a new scenario is the data type for each input variable,
which could include booleans, integers, floating point values, or even line charts
and probability density functions (PDFs). Our framework can identify most
data types automatically, but for more exotic parameters we provide an XML-
based variable description language (shown in Figure 1).

While some input variables have predefined ranges of valid values (such as
a percentage ranging from 0 to 100%), others are completely unconstrained. In
both cases, a value may be valid but not plausible, i.e., extremely unlikely to
occur due to environmental conditions or other factors. To produce plausible
ranges for the input variables, our framework consults historical data available
in previous scenarios as a preliminary step; for instance, Figure 2 contains a
variety of probability density functions that were used previously for the “cattle
latent period” input parameter (amount of time between an infection and the
onset of infectiousness, in days). Next, the ranges determined by this process
are inspected and refined by subject-matter experts if necessary. This helps
reduce or potentially avoid user intervention while maintaining accuracy.

2.1. Complex Data Types: Charts and Probability Densities

While most input variables represent a numerical value or discrete state,
simulations also frequently employ two-dimensional line charts or probability
density functions to describe complex behavior. These data types play a vital
role in simulation outcomes and must be varied to enable the exploration of a
scenario’s parameter space. However, a simple range of values does not capture
the multidimensional relationships that these data types describe.

To generate a 2D line chart variant, we consider four variables that describe
chart behavior: the span of x- and y-values, maximum x- and y-values, x-value
at the maximum y-value, and the percent distance across the x-axis where the
maximum y-value occurs. Next, we perturb the data points to create a new chart
that exhibits behavior similar to the source chart, while still representing the

<param name="max-spread" type="range">
  <bounds>2.83106, 6.0</bounds>
</param>

<param name="latent" type="distribution">
  <bounds>0, 9.3631</bounds>
  <mean>1.98418, 4.1</mean>
  <variance>1.21, 4.20754</variance>
  <skewness>-0.235034, 1.16052</skewness>
</param>

Figure 1: A sample XML variable description file showing range and probability distribution
parameters.
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Data Mining: Cattle Latent Period PDFs

Figure 2: A variety of probability density functions (PDFs) that were used to describe the
“cattle latent period” parameter in previous scenarios. Historical data provided by modelers
and epidemiologists is used to determine upper and lower bounds of valid parameter ranges.

shift in values derived from historical trends and feedback from subject-matter
experts.

Probability density functions can often be decomposed into a few distin-
guishing variables as well: mean, variance, and skewness can all be manipulated
to create new PDF variations. Unfortunately, each type of distribution has its
own formulas for modifying these attributes, and the fact that our simulation
supports 22 different types of distributions only further complicates matters.
Instead of dealing with this issue as 22 separate problems (or possibly more
for other simulations), we generalize the PDFs by transforming them to piece-
wise linear approximations. Once this step has been completed, we inspect the
resulting upper and lower bounds, mean, variance, and skewness. These at-
tributes are modified to create a new linear approximation of a curve. Next,
a beta distribution is mathematically fit to the curve. Beta distributions are
described by two shape parameters, α and β, which can be adjusted to model a
wide range of distributions: normal, continuous, skew normal, exponential, etc.
An overview of our PDF generation algorithm is provided in Figure 3. We have
verified that this approach works with the 22 PDFs supported by NAADSM,
including Bernoulli, hypergeometric, binomial, and logistic distributions.

2.2. Latin Hypercube Sampling

After establishing plausible input ranges, one might elect to generate new
scenario variants with random samples across the parameter space. However,
simple random sampling assigns an equal probability to each possible input
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Figure 3: A visual overview of our probability density function (PDF) variation algorithm.
The original PDF (a) is converted to a piecewise linear approximation (b) by inspecting y-
coordinates at each LHS bin. Next, key attributes (upper and lower bounds, mean, variance,
and skewness) are modified to create a linear approximation of a new PDF (c). Finally, a
beta distribution is fit to the modified linear approximation to create a new PDF variant (d).
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Figure 4: A 3 × 3 Latin square.

without considering the plausibility of the values. To circumvent this limitation,
weighted sampling draws values from a probability distribution. This preserves
the plausibility curve of potential inputs, but also increases the likelihood of
choosing highly probable values; if a small number of samples are drawn from
the probability distribution, a correspondingly small portion of the input space
will be represented. This means that we would have to generate (and execute)
a large number of scenario variants to adequately explore the parameter space
with weighted sampling.

Unlike simple random sampling or weighted sampling methods, Latin Hyper-
cube Sampling (LHS) [9] stratifies the input probability distributions to better
represent their underlying variability. This reduces the number of samples re-
quired for our algorithms to adequately explore the scenario parameter space,
which in turn decreases the overall computational footprint of the framework.
LHS owes its name to Latin squares, which are N×N arrays that contain N dif-
ferent elements. Each element in a Latin square occurs exactly once in each row
and column (see Figure 4). When this concept is applied in a multidimensional
setting the elements occur once in each hyperplane, forming a Latin hypercube.
This allows us to produce samples across all the variables in the parameter
space in a single sampling step. Based on the number of samples required, each
stratum represented by the elements in the hypercube is divided into equal in-
tervals. These produce samples in the range [0, 1], which are converted back to
the original units using the information from our data mining process. A visual
comparison of unweighted, weighted, and Latin Hypercube sampling is provided
in Figure 5. Latin Hypercube Sampling provides the best overall representa-
tion of the underlying distribution (a standard normal distribution) when the
number of samples is held constant across methods.

2.3. Measuring and Verifying Output Variance

Once a scenario variant has been created, it must be executed several times
to obtain an understanding of its output distribution and behavior. To begin
this process, 32 pilot runs are executed for each variant. After the pilot runs are
complete, our framework determines whether the overall variation of the out-
put variables is of practical significance or not. Doing so requires two pieces of
information: (1) the outputs that are most meaningful from an analytical stand-
point, and (2) the minimal significant difference in output variances that must
be achieved. As with input range discovery, both of these items are obtained
from mining historical data and subject-matter experts.

9



3 2 1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

U
n
w

e
ig

h
te

d

3 2 1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

W
e
ig

h
te

d

3 2 1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

La
ti

n
 H

y
p
e
rc

u
b
e

Sampling Techniques

Figure 5: Sampling performed over a normal distribution using unweighted, weighted, and
Latin Hypercube sampling. In each case 1,000 samples were taken and are represented by 50
bins.
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To establish a set of variables that have a strong analytical significance, our
framework inspects reports generated from past scenario executions to deter-
mine which variables were requested most frequently by end users. This process
can be supervised by subject-matter experts or performed autonomously. Once
the prediction engine has been initialized, our framework can also make recom-
mendations on which output variables might warrant further analysis.

Determining the minimal significant difference in output variables requires
the knowledge of a subject-matter expert. These values can be expressed as
percentages, numeric ranges, or confidence intervals, and tell the framework
whether or not there is enough variation in the output variables. They also
determine how well the input parameter space has been explored based on the
overall variance of the outputs. If the minimum variance is met, execution of
the scenario variant is complete. Otherwise, the observed variance is used to
calculate how many more executions of the scenario must be carried out to
achieve the required minimum variance.

3. Distributed Simulation Orchestration: Forager

Our framework requires a large number of processing resources, with each
scenario produced by the simulation variant generator representing several dis-
crete units of computation. In our initial tests, 10,000 variants were generated
and each was run for at least 32 iterations. After running additional simula-
tions to achieve target output variances (as discussed in the previous section),
the total number of iterations reached approximately 400,000. This makes our
framework an ideal candidate for execution in an elastic cloud or clustered en-
vironment due to its computational footprint and the uncertainty in total iter-
ations required. Compared to the problems addressed by distributed execution
frameworks such as Hadoop [10], Dryad [11], or the myriad of other MapRe-
duce [7] implementations, the tasks we execute and manage have several distinct
features:

• Run times are uncertain, and vary due to the stochastic nature of the
underlying simulation.

• The overall number of tasks is significantly larger than the number of
available processing resources.

• Tasks can be completed out-of-order, and there are no “waves” of execu-
tion.

• The pool of processing resources is highly elastic, fluctuating constantly
as availability changes over time.

• The framework must deal with other users and processes contending for
resources.
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Because of these processing requirements, we chose to design a new distributed
execution engine, called Forager. Similar to animal behavior observed in na-
ture, Forager must adapt to constantly changing external conditions to acquire
resources. Forager is based on our Granules cloud runtime [12, 13], and pro-
vides new scheduling and orchestration functionality for our specific use case.
Granules is backed by the NaradaBrokering project [14], a reliable content dis-
tribution infrastructure and messaging substrate. Each of these related projects
is an open source effort.

3.1. Resource Acquisition

For a given scenario, our framework may produce hundreds of thousands of
executable tasks. This creates a large demand for processing elements, which
Forager acquires from a variety of sources: clusters, idle workstations, and both
public and private clouds. Unlike volunteer computing [15] deployments, typical
Forager installations are managed by a single entity in a trusted environment.
This constraint helps us ensure that confidential or proprietary information
being used by the simulation is not made publicly available.

A lightweight Forager daemon is run on each participating resource. Rather
than being managed by a central server or a coordinating node, the daemons
securely connect to a distributed file system that maintains a set of pending tasks
and processing directives. These processing directives allow the administrator(s)
of the Forager cluster to assign specific rules to the resources. Directives include
items such as the particular time of day that the resource may be used, the
maximum number of cores that should be assigned to tasks, process priorities,
and requirements for specific hardware. When the processing directives permit,
the daemon will remove one or more of the tasks from the pending task queue
and begin execution. The pending task queue contains a task entry for each
task submitted to the system. Task entries describe:

• Current status (pending or executing)

• The process to be executed and its parameters

• Time of submission

• Resources actively executing the task and their associated start times

An additional list is maintained to record completed and failed tasks. Modi-
fications to the lists are submitted as transactions, ensuring the list state will
remain consistent even in the event of a failure.

3.2. Task Composition

Forager tasks are composed of several processing steps. Scenario variants
are created in an initial partitioning phase and stored in the distributed file
system. Next, the variants are loaded and executed during the map phase.
In the reduce phase that follows, raw simulation outputs are compressed and
filtered to produce a final dataset that is used for knowledge extraction.
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Since our MapReduce implementation must deal with frequently changing
execution conditions, it provides three options for stopping a running task: im-
mediate termination, memory-resident suspension, and hibernation. Immediate
termination results in the loss of all progress made on the task, but releases all
resources immediately. This feature is useful in situations where the host ma-
chine must shift resources at a moment’s notice. Memory-resident suspension,
on the other hand, ceases execution but keeps the simulation in memory, which
is helpful when an idle resource becomes busy for a short period of time. Finally,
we added an optional hibernation function that Forager tasks can implement to
gracefully serialize their state and store it in the distributed file system. This
allows Forager to cope with situations where a task needs to be migrated to a
different machine or when processing directives will prohibit execution for a sub-
stantial amount of time. Hibernating a task requires some time to complete; for
our particular simulation, tasks took about 4.2 seconds to hibernate on average
(over 1000 samples).

3.3. Situational Scheduling

Diverging from the standard MapReduce execution model, Forager daemons
pull tasks from the distributed task queue when they can contribute CPU cycles
or other resources. This allows dedicated hardware to continually execute new
tasks, while daemons on shared systems can wait for free resources or until
processing directives are met. To facilitate this approach, the Forager daemon
monitors performance statistics on a per-machine basis. These statistics include
the CPU idle time, steal time (in virtualized environments), memory and disk
usage, load averages, the context switch rate, and the current number of active
users on the machine. The lack of keyboard or mouse activity can also be used
to inform the system of an idle resource, but is used on a case-by-case basis;
modern workstations often have several CPU cores available, and our goal is to
be able to partially leverage resources even while others are using them.

While a scenario variant that has been running much longer than usual may
simply represent a particularly CPU-intensive chain of events unfolding in the
simulation, it can also indicate that the daemon managing the task has insuf-
ficient resources. We use the aforementioned performance statistics to track
resource utilization, and generate speculative tasks in the event of a slowdown.
Speculative tasks in our framework have the option of using previously hiber-
nated state information to help reduce duplicate processing work, unlike the
speculative tasks seen in frameworks such as Hadoop [10].

Idling workstations and servers were one of the primary motivating factors
cited by Tanenbaum [16] for distributed computing. These idle resources are
especially prevalent in large businesses and academic settings, and are prime
targets for cycle scavenging (exploiting unused processing resources). Figure 6
demonstrates this phenomenon on a busy web server at Colorado State Uni-
versity: during working hours (from about 7 AM to 3 PM) the load average
(number processes waiting for or using the CPU) remains fairly high. However,
during nighttime the server is mostly idle, presenting an opportunity for our
framework to run scenario variants. Forager conducts situational scheduling to
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Figure 6: One-minute load average on a busy 4-core web server. Note the increase in peak
load during working hours (7 AM to about 3 PM). At night, the server is mostly idle.

exploit these occurrences, where task scheduling is based on current machine
load characteristics and the time of day (derived from temporal usage patterns
or preset intervals).

3.4. Leveraging Elastic Clouds

For situations where the processing requirements of a simulation outstrip
the capabilities of the resources acquired through cycle scavenging and private
clusters, we incorporated support for cloud deployments as well. Forager allows
participating hardware to join and leave the system at any time, making elastic
cloud services an ideal means to supplement its resource pool. Furthermore,
Amazon provides EC2 spot instances, which enable users to trade reliability for
lower prices. In essence, spot instances apply the laws of supply and demand
to virtualization: users issue a spot request with their desired virtual machine
(VM) characteristics, a maximum price, and the dates and times the request is
valid for. If the market price of the VM exceeds the maximum specified, the
spot instance is terminated. On average, spot instances cost 50-60% less than
their traditional counterparts.

In our use case, reliability is a secondary concern behind overall process-
ing throughput. Tasks are lightweight, self-contained, and are executed over
a relatively short period of time. However, the spot VMs we used were never
terminated during our testing period (likely due to running during low-demand
summer months). We tested a range of VM configurations on the Amazon pub-
lic cloud as well as our own private cloud. Table 1 illustrates the performance
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differences between the configurations. These include VMs from the Amazon
m1, c1, m3, c3, and t2 instance families, along with virtualized and bare metal
results for our hosts running OpenStack Compute with the KVM hypervisor on
Fedora 20 (Xeon E5620 with 12 GB RAM, Xeon E3-1220v2 with 8 GB RAM).

Table 1: Scenario execution times in a virtualized environment averaged over 1000 iterations.

Hardware Mean Execution Time (s) SD σ (s)

t2.micro 442.94 215.79

m3.medium 118.84 21.04

c3.large 57.07 10.06

m1.medium 51.80 8.87

c1.xlarge 50.79 8.82

c1.medium 48.66 7.03

E5620 (KVM) 64.90 10.47

E5620 (Bare) 60.02 8.60

E3-1220v2 (KVM) 49.86 7.76

E3-1220v2 (Bare) 47.33 5.70

While these results closely mirror the theoretical performance differences
between instances, it is worth noting that the t2.micro can also achieve compet-
itive results when enough CPU credits are available for “burst” performance,
which temporarily allows the instance to consume more than its baseline al-
lotted CPU time. When burstable, the average scenario execution time on a
t2.micro was 99.27 seconds. Since Forager can migrate longer-running tasks and
monitor CPU steal time at each resource, burstable instances are a viable option
for cycle scavenging as long as the primary function of the VM does not tax
the CPU. Interestingly, the previous-generation m1 and c1 instances exhibited
better performance than their newer counterparts for our particular workload.
We configured our AWS spot requests based on the price:performance ratio de-
rived from these results and also set a hard upper bound for price based on our
budget. In general, our spot requests were designed to choose the lowest priced
VMs available, and avoided m3.medium instances unless there was a substantial
cost benefit. Our systems experienced 8.1% and 5.3% virtualization overheads
on the E5620 and E3-1220v2 processors, respectively.

4. Output Management and Storage

Rather than relying on a central server or coordinator process, our framework
stores its persistent state in a distributed file system. This information includes
pending and executing tasks, resource performance statistics, and the overall
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Minnesota_Variant542.json
{
    "OutbreakDuration" : 16,
    "Infections" : {
        "Direct" : 32,
        "Indirect" : 6,
        "Airborne" : 0,
    },
    "AnimalsDestroyed" : {
        "SwineSmall" : 0,
        "Sheep" : 24,
        "Beef" : 542,
        "Dairy" : 312,
    },

    ...
}

Figure 7: A simplified example of the JSON output produced by a simulation run. Each
output file contains a separate entry for every simulation day and its corresponding outputs.

system status. Even more importantly, the distributed file system is tasked
with managing and storing simulation outputs as well. These outputs must be
stored in a scalable and fault-tolerant manner: the 400,000 iterations produced
from our single pilot scenario (one in a multitude of exploration possibilities)
consumed about 1 TB of storage space. We use our Galileo [17, 18, 19, 20] DHT-
based key-value store to fulfill these requirements. Galileo is a distributed, fault-
tolerant, and document-oriented storage system, making it an ideal candidate for
managing the JSON output files produced by our subject simulation. Figure 7
provides an example of a JSON output file along with some of the variables
that might be produced by a simulation run. These variables are used by our
framework during the dimensionality reduction and modeling process.

4.1. Output Compression

To help manage output file sizes, we evaluated each of the compression al-
gorithms available in Galileo: LZO, DEFLATE, Burrows-Wheeler, and LZMA.
Outputs were stored in append-only blocks of approximately 1,000 MB each
(320 simulation iterations) before compression. Table 2 contains the resulting
file sizes and their corresponding compression ratios for each of the algorithms
surveyed.

For the JSON outputs produced by our simulation, the LZMA algorithm
provided the best average compression ratios. However, we also considered
compression speed; Table 3 provides compression and decompression times for
each of the algorithms.
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Table 2: Output compression averaged over 32,000 iterations.

Algorithm File Size (MB) Compression Ratio

No Compression 978.2 1.0

LZO 174.1 5.6

DEFLATE 97.2 10.0

Burrows-Wheeler 37.6 26.0

LZMA 34.1 28.6

Table 3: Compression and decompression times averaged over 32,000 iterations.

Algorithm Compression (s) Decompression (s)

LZO 1.9 6.4

DEFLATE 16.5 6.6

Burrows-Wheeler 179.0 15.7

LZMA 211.43 7.61

In our specific use case, raw outputs will be compressed once and decom-
pressed several times later during analysis and forecasting. This led us to choose
the LZMA algorithm due to the compression ratios it achieved on our dataset
as well as its decompression times, which were competitive with the fastest
algorithms (LZO and DEFLATE). Ultimately, output compression saves a sub-
stantial amount of disk space and greatly increases exploration capabilities on
a given set of hardware.

5. Knowledge Extraction: Modeling and Prediction

After orchestrating our scenario variants across the resource pool and storing
their outputs, we begin the final processing step of our framework: building
predictive models. These models generalize the scenarios to allow interactive
exploration of their parameter space. Building the models is a one-time process
that initializes our real-time forecasting engine. To make the predictions, we
used both multivariate linear regression and artificial neural networks (ANNs).

5.1. Dimensionality Reduction

Our particular simulation involves a large number of inputs and outputs.
When making predictions, these values contribute to a very high overall dimen-
sionality. To help reduce the effects of the curse of dimensionality, we evaluated
two methods commonly used for dimensionality reduction: principal component
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analysis (PCA) and correlation analysis. PCA is a method that can be used to
project a dataset onto a lower dimensional space. This is achieved by selecting
components that contribute the most to the underlying variability in the data.
However, PCA does not consider the relationship between input and output
variables in our case, which can lead to the removal of some inputs that may
influence outcomes. To avoid this issue, we used correlation analysis with the
Pearson correlation coefficient (PCC) to measure the degree of correlation be-
tween input variables and the outputs. Using this approach enables us to select
input variables that tend to have a strong influence on simulation outcomes,
which are then used to build our models.

5.2. Prediction Methods

To create our validation and test datasets, we used k-fold cross-validation
with k = 10. We generated our models with artificial neural networks (ANNs)
and multivariate linear regression, and then evaluated the root-mean-square
error (RMSE), creation times, and prediction times of both methods. In our
case, RMSE (the average prediction deviation) and prediction times are critical
in evaluating both the accuracy of our forecasts and the overall forecasting
speed. For both methods, we generated an individual model for each output
variable.

Artificial neural networks are non-linear computational models inspired by
the characteristics of biological neural networks. ANNs can be used for a variety
of machine learning applications, and are composed of interconnected neurons
that are responsible for processing information. In our framework we used a
feedforward neural network from the PyBrain machine learning library, which
was trained with backpropagation. The network was configured with one hid-
den layer, and the number of hidden units was selected empirically through an
iterative process.

Multivariate linear regression is an approach used for modeling the relation-
ships between multiple dependent variables and multiple independent variables.
It produces a set of linear predictor functions that we then use to forecast sce-
nario outcomes. We also evaluated several methods for optimizing regression
results and settled on the Least Absolute Shrinkage and Selection Operator
(Lasso), which penalizes the absolute size of regression coefficients to help re-
duce the influence of variables that have little impact on the model. Out of the
optimization methods we tested, Lasso provided the best predictive results.

5.3. Experimental Results

To evaluate our models, we used the inputs and outputs from the 10,000
scenario variants produced by our framework. We considered a total of 1,812 raw
input variables, and selected 10 key output parameters based on the guidance
we received from epidemiologists. These outputs include items such the disease
duration and number of infected animals in the scenario, which are helpful
in various forms of analysis (such as determining the economic impact of a
particular type of outbreak).
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Forecasting Outcomes: Multivariate Linear Regression

Figure 8: Prediction accuracy for disease duration using multivariate linear regression. Sam-
ples close to the 45-degree reference are highly accurate.
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Forecasting Outcomes: Artificial Neural Network

Figure 9: Prediction accuracy for disease duration using an artificial neural network. Samples
close to the 45-degree reference are highly accurate.
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Table 4 contains performance statistics for both of our prediction models
built with a 133 input parameter set that exhibited high correlation with the
output parameters. Predictions were performed 1,000 times to illustrate how
the framework would perform in a situation that required results from a large
number of models. Multivariate linear regression offered the best performance
in both of our timing criteria (time to build the model, and time to make
a prediction), but it is worth noting that both methods provided sub-second
prediction performance.

Table 4: Model generation times and prediction performance.

Model Build (s) Predict 1,000 Times (ms)

Regression 1.5 0.2

Neural Network 7998.0 75.0

To visualize the prediction accuracy of our framework, Figures 8 and 9 con-
tain the actual values of the disease duration output variable plotted against
predictions for both multivariate linear regression and an artificial neural net-
work. Values close to the 45-degree reference line are highly accurate. The
root-mean-squared error (RMSE) for the multivariate linear regression test was
4.4 days, while the RMSE exhibited by our neural network was 5.7 days.
Overall, these values indicate that both models were able to fit the data and
provide forecasts in a timely manner, but multivariate linear regression provided
better performance in our specific use case. Figure 10 demonstrates prediction
accuracy using an alternative representation; 70 randomly-selected points have
been plotted from the predicted outcomes along with their corresponding actual
values to illustrate how closely the predictions have fit the data.
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Figure 10: Predictions using multivariate linear regression for 70 randomly-selected samples.
Here predicted values are overlaid on the actual values to illustrate how closely our predictions
fit the data.

6. Increasing Prediction Accuracy

Our initial experiments with multivariate linear regression and artificial
neural networks illustrate the efficacy of our framework in making accurate,
real-time projections of discrete event simulation outputs. While these mod-
els provide a baseline predictive performance measure, there are several other
techniques that we considered to improve the accuracy of our predictions: (1)
analysis of model errors to determine which methods would yield accuracy im-
provements, (2) use of ensemble methods to combine the insights of several
disparate models, and (3) improvements to our dimensionality reduction pro-
cess to avoid collinearity and decrease training times. To determine whether our
models would benefit from a larger training set, we generated a new 100,000-
variant dataset. This dataset was also used to retrain the model with the best
performance from the previous section (multivariate linear regression) to act as
a point of reference for performance comparisons.

6.1. Prediction Error Analysis

The first step we took toward improving model performance was to investi-
gate prediction errors and determine their source. We chose to analyze the mean
squared error (MSE) of the predictions, which measures the average squared
difference between the expected and predicted outputs produced by a model.
For a given predictor θ̂, the MSE can be decomposed into bias and variance
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Figure 11: An illustration of the Bias-Variance Trade-off. An ideal model, shown in the lower
left-hand corner, has low bias and variance.

components [21, 22, 23]:

MSE(θ̂) = Bias(θ̂)2 + V ar(θ̂)

Bias is influenced by assumptions made in the model that cause some of the
relationships between inputs and outputs to be overlooked. High bias relative to
the MSE often results in underfitting, which means that the model does not fully
capture underlying trends in the data. On the other hand, variance describes
how sensitive the model is to variations (noise) in the training dataset. Models
with high variance relative to the MSE are greatly influenced by noise in the
data, often resulting in overfitting. These components and their respective influ-
ences are referred to as the Bias-Variance Trade-off [21]. Figure 11 illustrates
this concept; an ideal model should have low variance and be unbiased.

In practice the entire training set is used to build a model, resulting in a
single output space. This complicates the process of determining the bias and
variance of a model. To overcome this issue, we use bootstrapping [21] to gener-
ate additional training sets. Bootstrapping involves sampling with replacement
from the base training set to create several new representative training sets.
In this particular study we created 100 new models from the base training set
and produced 100 individual forecasts for each output variable. Table 5 illus-
trates the bias-variance decomposition of the errors associated with predicting
the NAADSM outbreak duration output variable. These results were produced
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Table 5: Bias-Variance decomposition of our multivariate linear regression model for the
outbreak duration output variable on our 100,000-variant dataset. In this case, the model
exhibits high bias but low variance.

Dimensions RMSE MSE Bias2 V ariance

333 6.31 39.83 39.75 0.08

309 6.31 39.84 39.76 0.08

261 6.32 39.89 39.84 0.05

200 6.42 41.20 41.17 0.03

170 6.75 45.50 45.48 0.02

121 6.81 46.38 46.36 0.02

59 7.48 55.94 55.93 0.01

using our 100,000-variant dataset and the multivariate linear regression model
described in the previous section, and include a spectrum of dimensionality
reduction levels to capture the impact of dimensionality on the prediction error.

Testing the influence of dimensionality on the predictions enables us to re-
duce dimensionality while retaining accuracy; in general, having a large number
of input dimensions results in longer model generation and training times. Ad-
ditionally, analyzing the influence of bias and variance on model accuracy allows
us to select the appropriate methods for reducing overall prediction error. How-
ever, there is a trade-off between bias and variance: a model could significantly
reduce bias while also increasing variance, for example. To help manage this
trade-off, ensemble methods employ multiple models to improve aggregate fore-
cast performance.

6.2. Applying Ensemble Methods

To improve model accuracy, we use ensemble methods to build a collection
of models for each output parameter. Ensemble methods rely on the combined
insights of multiple learning algorithms to form several models (an ensemble).
A homogeneous ensemble applies a single learning algorithm multiple times,
whereas a heterogeneous ensemble makes use of multiple algorithms. The en-
semble learning process for regression can be divided into three phases [24]:

1. Model creation , where several models are generated for each output
parameter;

2. Pruning , which removes under-performing models from the ensemble to
increase overall performance;

3. Integration , where the aggregate insights from the models are merged
into a single forecast

The main advantages derived from using ensemble methods over a single model
are increased prediction accuracy and better robustness (ability to function well
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on new, unseen data). Several methods exist for creating ensembles, but the
two most widely used approaches are bootstrap aggregating (commonly referred
to as bagging) and boosting.

Bagging [25] aims to build ensembles with stable outputs by combining sev-
eral models that make highly accurate predictions at a particular part of the
input space, but may be less accurate for other inputs. Similar to the method
described in the previous subsection for performing prediction error analysis,
model inputs are created by generating several bootstrap samples. These sam-
ples incorporate duplicate information, causing portions of each model input
space to overlap with the others. This ensures coverage of the input space while
allowing each model to specialize for its unique inputs, boosting accuracy. Com-
pared to the base predictor, ensembles created with bagging have a tendency to
reduce the overall prediction variance of the model [25, 26]. Additionally, each
model in the ensemble is completely independent, enabling parallel creation and
execution.

Boosting [27, 28] refers to a number of techniques that iteratively convert
weak predictors to strong ones. A weak predictor is only somewhat effective at
forecasting outputs, whereas a strong predictor will produce results with low
relative error. Unlike bagging, boosting builds the prediction models in a se-
quential stagewise fashion. Boosting methods assign each observation a weight
and then update the weights at each iteration of the training process based
on observed prediction errors. Weights associated with weak predictions will
be increased, while those associated with strong predictions will be decreased.
This process guides the subsequent training stages by shifting the focus of the
models toward observations that were inaccurately predicted. In general, boost-
ing methods are most applicable in situations where the base model is highly
biased.

This study evaluates both bagging and boosting ensemble methods; we se-
lected random forests as a bagging method to reduce prediction variance, and
gradient boosting to target reductions in model bias. Comprehensive discus-
sion of these methods along with their experimental results are provided in the
following subsections. Similar to the experiments reported in the previous sec-
tion, we used k-fold cross-validation with k = 10 to create and validate our test
datasets. The reported results are based on the averages for predictive accuracy
over the k rounds.

6.3. Random Forests

Random forests are an ensemble method that independently build decorre-
lated decision trees on different bootstrap sampled versions of the training data.
Decision trees are used because they are able to capture complex patterns in
the data and have relatively low bias. By averaging the decision trees, random
forests tend to reduce prediction variance. We have applied random forests on
our 100,000 scenario variant dataset to build prediction models for each output
variable. In this experiment, we observed different degrees of improvement in
prediction accuracy for some output variables; Figure 12-b shows the prediction
improvement for the disease duration NAADSM output variable, and Table 6
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compares RMSE values produced by linear regression and random forests across
a variety of output variables. The ensemble was composed of 300 decision trees
whose depth extended until there was only one observation left to split.

Table 6: Prediction RMSE for linear regression and random forests across a variety of
NAADSM output variables.

Output Parameter Linear Regression Random Forest

Vaccine immune units 390.00 395.00

Destroyed units 8.09 4.88

Disease Duration (days) 4.38 2.84

6.4. Gradient Boosting
Gradient boosting is a method that attempts to optimize a differentiable loss

function, which iteratively increases the expressive power of the base prediction
model. In turn, this decreases prediction bias. We built prediction models
based on decision trees for each output variable using gradient boosting with
our 100,000 scenario variant dataset. The prediction results we obtained show
improvement across all output variables. Figure 12-c shows the predicted disease
duration in days using gradient boosting against the actual disease duration.
Gradient boosting outperformed linear regression (which was configured to use
216 input variables for this particular experiment) and random forests for all
output parameters. Table 7 includes the lowest RMSE of the three approaches
across a variety of output variables. This experiment involved 300 gradient
boosting stages and limited the maximum depth of the decision trees to three
levels.

Table 7: Prediction RMSE for linear regression, random forests, and gradient boosting across
a variety of NAADSM output variables.

Output Linear Random Gradient

Parameter Regression Forest Boosting

Outbreak duration (days) 6.23 6.53 4.68

Total units infected 7.79 7.71 5.28

Disease duration (days) 4.38 2.84 2.18

6.5. Performance Evaluation
Both of the ensemble methods we evaluated outperformed the multivariate

linear regression model trained on our 100,000-variant dataset. Figure 12 com-
pares all three approaches; note that there was a slight improvement in RMSE
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Table 8: Model generation times, in seconds (s), across a variety of dimensionality reduction
levels.

Dimensions
Linear Random Gradient

Regression Forest Boosting

28 2.5 318 293

55 234 642 616

107 175 1248 984

153 659 1741 1730

Table 9: Time to make 10,000 predictions for each model, in milliseconds (ms). A variety of
dimensionality reduction levels is provided for comparison.

Dimensions
Linear Random Gradient

Regression Forest Boosting

28 2 900 90

55 2 1410 110

107 2 1280 110

153 4 2420 130

over the previous experiments conducted with multivariate linear regression,
but both random forests and gradient boosting have clearly improved over our
previous models.

To further compare the trade-offs between techniques, we evaluated model
training times on 90,000 scenario variants from our training set, as well as the
time taken to produce 10,000 predictions for each model. These benchmarks
were run on hardware from our test cluster equipped with a Xeon E5620 pro-
cessor and 12 GB of RAM. Table 8 reports generation times for each of our
models across a variety of dimensionality reduction levels. Based on our ob-
served model performance there is a trade-off between prediction accuracy and
generation times, but since model generation occurs infrequently these results do
not pose a significant obstacle for our framework. Table 9 contains benchmark
results from each model for after producing 10,000 predictions. All three mod-
els are capable of making a single prediction in far less than a second, ensuring
the responsiveness of our framework.
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(a) Multivariate Linear Regression
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Figure 12: A comparison of predictions for the disease duration NAADSM output variable
produced by multivariate linear regression, random forests, and gradient boosting on our
100,000-variant dataset.
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Figure 13: A comparison of prediction performance across a variety of dimensions with and
without accounting for collinearity. In all three cases, removing inputs with high collinearity
resulted in improved performance and required fewer dimensions.

6.6. Accounting for Collinearity

To further improve predictive performance, we extended our dimensionality
reduction process to remove collinearity from the input data. The presence
of collinearity is marked by very strong correlations between input variables,
which could be used to linearly predict one another with high accuracy. In
general, effective models contain input variables that exhibit strong correlations
with the outputs, but not with each other. These inter-input correlations result
in increased model noise because small variations in the variables with high
collinearity can cause large changes in the model outputs.

We reduce dimensionality in two stages: first, input and output variables
are inspected and any inputs that are not correlated with an output are re-
moved. This decision is made using a configurable correlation threshold. Next,
we inspect input variables and create subsets with high correlation coefficients
based on a collinearity threshold. For each of these subsets we remove inputs
that exhibit the lowest correlation with the output variables, ensuring that the
variables that play the largest role in model outcomes are preserved. This pro-
cess significantly reduces the number of input variables that must be considered
when building our models, which in turn reduces processing times.

In general, reducing dimensionality will decrease processing times while also
improving accuracy. However, finding the appropriate level of dimensional-
ity depends on the models and input datasets. To select our correlation and
collinearity thresholds, we ran several experiments that gradually decreased
both thresholds iteratively and then inspected the RMSEs. Figure 13 plots the
RMSE of the disease duration NAADSM output variable against dimensionality
for each model, with and without accounting for collinearity. In all three cases,
removing input variables that exhibited high collinearity improved the perfor-
mance of the model and reduced the number of dimensions required to achieve
best performance. Also note that higher dimensionality does not always result
in improved prediction performance; in this experiment, both multivariate linear
regression and random forest performance decreases as dimensions are added.
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Figure 14: A demonstration of the What-If tool user interface. Changes made to the input
parameters on the left are reflected in the output variables on the right.

7. The What-If Tool

To facilitate exploratory analysis, we integrated the prediction models dis-
cussed in the previous sections into a user-friendly “What-If Tool.” This tool
allows modelers to interactively adjust input parameters and observe their effect
on a set of output variables in real time. The primary goal of the What-If tool
is to remove the time lag imposed by needing to re-run a simulation after each
change to the parameters. To target the largest possible audience (including
both users in a lab setting as well as mobile devices in the field), the tool is
implemented as a web interface. We used the Twitter Bootstrap framework for
basic page layout tasks and jQuery UI for the widgets. The layout works in
a two-pane setup: input parameters on the left, output variables on the right.
Changes to an input parameter result in immediate recalculation of any outputs
dependent on the input. Figure 14 illustrates this process.

The large number of input parameters is managed by using “accordion”
widgets, which display one “open” section of parameters at a time, automatically
closing all other sections of parameters. Some sections of parameters have sub-
sections: for example, the “Direct Contact Spread” section opens to reveal
sections for spread from each farm type, which in turn open to reveal sections
for spread from the selected farm type to the other farm types.

The tool has three kinds of input parameters: numeric, probability density
function (PDF), and line chart (a piecewise linear function). Numeric param-
eters are represented by a simple slider. PDF parameters are represented by a
5-handle slider, styled to resemble a box-and-whisker plot. The 5 handles corre-
spond to 0, 25, 50, 75, and 100% of the cumulative area. (If the original model
scenario used PDFs with infinite left or right tails, the leftmost and rightmost
slider handles are positioned to cover 99% of the PDF’s area.) For line chart
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Figure 15: (a) A decision tree transformed to Javascript code by depth-first traversal. (b)
Each Predictor (in this example, an artificial neural network) operates on a subset of the input
parameters.

parameters, the chart from the original model scenario is drawn using embedded
SVG graphics. A pair of range sliders, one vertical and one horizontal, allow
the modeler to shift, stretch, or compress the chart along either or both axes.
This is the same set of transformations to an line chart that are allowed by the
scenario variant generator (described in Section 2).

The web interface is generated using PageFactory objects, which read the
original model scenario file containing the names of the farm types, zones, etc.,
and set up the sections of input parameters. A PredictorFactory generates
Predictor objects from the files created by the training process, with one output
variable per Predictor. Each prediction model (artificial neural network, linear
regression model, etc.) is implemented as a subclass of the Predictor class and is
responsible for generating the appropriate Javascript code for its prediction task.
Figure 15-a illustrates how a decision tree is translated to Javascript by system,
and Figure 15-b shows how predictors operate on subsets of the input space.
Similarly, a LinearRegressionPredictor will generate a JavaScript expression of
the form:

output = a1x1 + a2x2 + ...+ anxn + intercept
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Random forest decision trees are translated into ternary expressions:

output = ai > thresholdj ? right : left

Where right and left may be either nested ternary expressions (interior nodes in
the tree) or numbers (leaf nodes). Several expressions of this form are averaged
to compute the final prediction from the Random Forest.

An artificial neural network is translated into JavaScript that sets up three
2D arrays, representing the input layer (li), the weights connecting the input
layer to the hidden layer (wih), and the weights connecting the hidden layer to
the output layer (who). The code to compute the output node’s value given the
weights and activation function then looks like:

output = matrixMult([matrixMult(li, wih)[0].map(tanh)], who)[0][0]

Translating each prediction model into a JavaScript expression avoids the need
to load specialty libraries (e.g., a neural network library) along with the web
interface. However, the expressions generated for Random Forest and artificial
neural network predictors may be bulky. We are examining options for managing
the size, for example, reducing the precision of numbers, or unpacking the data
from a compressed binary form. We may also shift computations to a web
service for models that require large amounts of memory or processing time.

8. Related Work

Parallel and distributed discrete event simulation has been well-studied in
the literature [5, 29, 30]. While these simulations often have numerous paral-
lelization opportunities, they also generally require fine-grained synchronization.
Most importantly, a parallel version of a DES must ensure correctness, i.e., the
parallelization does not change the output of an identical simulation run on a
single thread. Our framework avoids these issues by treating the DES as a black
box, and contrasts with parallel DES by providing real-time forecasts. However,
parameters discovered with our framework that produce an outcome of scientific
interest could also be run in a parallel DES to confirm the results in an efficient
manner.

Distributed task queues like Celery [31] leverage the technologies behind
message-oriented middleware (such as RabbitMQ [32]) to manage distributed
execution. Like Forager, Celery supports automatic scaling, resource moni-
toring, and rate/time limits. However, these limits are generally designed to
enable load balancing rather than sharing resources with other users. This class
of system is often designed for short-lived task execution and requires a more
involved setup and administration process. Additionally, many message broker
implementations are centralized or represent single points of failure. Further,
implementing an execution queue on a system with transactional semantics in-
stead (such as a distributed database) has several advantages [33].
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Hadoop [10, 34] and its accompanying file system, HDFS [35] share some
common objectives with our framework. Hadoop is an implementation of MapRe-
duce [7], which often involves multiple waves of execution that must be com-
pleted before the next wave can start. Additionally, the system is often installed
on a dedicated cluster and does not need to suspend or migrate tasks when the
underlying resources become busy. Like the distributed file system we use in
this work, HDFS replicates information across multiple physical machines to
ensure failures do not result in data loss.

MongoDB [36] is a distributed document store that can employ MapReduce
computations for analysis. Similar to Galileo, MongoDB supports range queries,
data replication, and clustering. Its storage format, BSON, is a binary serial-
ization of JSON documents. This means that other formats (such as XML, INI,
YAML) must be converted to their equivalent JSON representation before be-
ing stored in the system. While MongoDB is scalable and efficient at resolving
queries, it also imposes some limitations on the size and quantity of documents
being stored.

The Berkeley Open Infrastructure for Network Computing (BOINC) [15]
is a volunteer computing platform that enables home users or organizations to
contribute their idle processing resources towards a variety of scientific projects.
The platform can also be used privately by organizations to create a lightweight
grid environment. Unlike our framework, BOINC is generally run on untrusted
hardware and requires duplication of tasks to ensure the validity of their outputs.
Additionally, BOINC clients are usually deployed on single-user computing de-
vices rather than public resources, and are administered individually.

Grid computing technologies, such as the Globus Toolkit [37] or computing
management frameworks such as HTCondor [38] share a common goal of creat-
ing distributed processing and storage environments. These deployments often
combine the computing hardware of multiple organizations into a single coher-
ent (and heterogeneous) resource pool. They also support cycle scavenging,
where idle resources are used for background processing. Unlike volunteer com-
puting, these execution frameworks are administered by a central organization
and do not have to deal with untrusted resources. Our framework is designed
for single-organization installations, and requires less administrative setup and
maintenance.

GEODISE [39, 40, 41] is a user-friendly wrapper for HTCondor that enables
multidisciplinary processing and data management functionality. GEODISE
supports scripting environments such as MATLAB and Jython and can model
the dependencies and flow of information with an integrated scientific workflow
editor. Like Forager, GEODISE monitors resources to determine which are
currently available for use. However, the framework is much more involved
compared to the ad-hoc usage pattern Forager is intended for.
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9. Conclusions and Future Work

Producing accurate forecasts for discrete event simulations involves: (1) en-
suring coverage of the parameter space, (2) efficient orchestration of workloads,
(3) amortizing the I/O costs associated with data accesses, (4) coping with di-
mensionality, (5) building and training lightweight prediction models, and (6)
carefully planning which aspects of the framework are in the critical path.

Ensuring statistical coverage of the parameter space provides us with better
training data for the learning structures and prediction models. Forager’s pull-
based approach during orchestration of workloads allows nodes to take on tasks
when they are able: lightly used machines execute more tasks than others and
a have greater share of the computational workload. Our orchestration scheme
works well with both physical machines in shared, public clusters and virtual
machines in cloud settings, including spot instances. The use of a DHT-based
key-value store, Galileo, allows us to distribute the I/O loads of the outputs
generated by the simulation for training of the prediction models.

Dimensionality reduction allows us to identify inputs that contribute to the
outputs. Pruning of the input parameter space allows us to better train the pre-
diction models. The pruning process reduces training times and also improves
the accuracy of the predictions by eliminating inputs that are sources of statisti-
cal noise. Our approach balances the costs associated with training and making
predictions. Though the training process is compute-intensive, it is not in the
critical path during predictions. Once the training process is complete, making
the forecasts based on the constructed models is lightweight and simply involves
dot product calculations that can be done in real time. Building a prediction
model per output parameter allows identification of inputs (and their respective
contributions) to the output. Though this increases the overall training time,
the improved accuracy in the predictions offsets this cost.

Our future work will focus on both the orchestration framework and our
predictive models. While Forager can exploit spot instances, learning struc-
tures or rule-based directives could be used to optimize for the cost of VMs
as well. On the prediction front, we will investigate additional learning struc-
tures and dimensionality reduction techniques. The ensemble methods that we
have explored (random forests and gradient boosting), attempt to reduce only
one of the prediction error components, but other ensemble approaches have
been proposed to reduce the bias and variance simultaneously. Examples of
such approaches include stochastic gradient boosting and iterated bagging. In
stochastic gradient boosting, the ensemble is built with the objective of reducing
prediction variance of a gradient boosting ensemble that has already reduced the
model bias. Iterated bagging, on the other hand, attempts to reduce the pre-
diction bias of bagging ensemble methods. As part of our future efforts we will
be exploring the suitability of these methods in the construction of prediction
models.

33



Acknowledgments

This research has been supported by funding (HSHQDC-13-C-B0018) from
the US Department of Homeland Security’s Long Range program and the US
National Science Foundation’s Computer Systems Research Program (CNS-
1253908).

References

[1] N. Harvey, A. Reeves, M. Schoenbaum, F. Zagmutt-Vergara, C. Dubé,
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