
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2017; 00:1–24
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

A Framework for Scalable Real-Time Anomaly Detection
over Voluminous, Geospatial Data Streams

Walid Budgaga, Matthew Malensek, Sangmi Lee Pallickara, and Shrideep Pallickara

Computer Science Department, Colorado State University, Fort Collins, CO, USA

SUMMARY

This study presents a framework to enable distributed detection, storage, and analysis of anomalies in
voluminous data streams. Individual observations within these streams are multidimensional, with each
dimension corresponding to a feature of interest. We consider time-series geospatial datasets generated by
remote and in situ observational devices. Three aspects make this problem particularly challenging: (1) the
cumulative volume and rates of data arrivals, (2) evolution of the datasets over time, and (3) spatiotemporal
correlations associated with the data. Further, solutions must minimize user intervention and be amenable
to distributed processing to ensure scalability.

Our approach achieves accurate, high-throughput classifications in real time, which we demonstrate with our
reference anomaly detector implementations. We also provide interfaces that allow new implementations
to be developed and parallelized automatically, ensuring applicability across problem domains. To help
quantify the magnitude of anomalous observations, detector implementations provide a corresponding
degree of irregularity. We have incorporated these algorithms into our distributed storage platform,
Galileo, and profiled their suitability through empirical analysis that demonstrates high throughput (10,000
observations per-second, per-node) on a real-world Petabyte dataset.

Copyright c© 2017 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Distributed Geospatial Anomaly Detection, Time Series Analytics, Online Anomaly
Detection, Spatiotemporal Data Streams

1. INTRODUCTION

The focus of this study is twofold: (1) providing a distributed framework for detection and
classification of anomalies in spatiotemporal data streams, and (2) supporting analytics activities
that follow the discovery of an anomaly (including visualizations). In the context of this work, an
anomaly may constitute an irregular event, inconsistent sensor readings, or other types of situations
that result in data points outside of the expected norm. We leverage individual anomaly detector
implementations to determine what data should be classified as anomalous for a given problem
domain. Each observation comprises n-dimensional tuples with each dimension representing a
feature of interest. Examples of such features include temperature, air pressure, humidity, etc.
Features may also have linear or non-linear relationships with each other; for instance, there may
be a relationship between temperature and precipitation at certain geographic locations. Ultimately,
these relationships result in a classification by our framework as either normal or anomalous with a
corresponding degree of irregularity.

The datasets we consider are composed of streams that continually report readings from
observational devices. Some of these observational devices, such as radars and satellites, can

∗Correspondence to: 1873 Campus Delivery, Fort Collins, CO 80523-1873, USA. Email: malensek@cs.colostate.edu

Copyright c© 2017 John Wiley & Sons, Ltd.
Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]

2 W. BUDGAGA ET AL.

remotely sense features of interest while other features may require in situ measurements by devices
such as piezometers and barometers. The measurements are reported as observations in discrete
packets that comprise a stream.

Anomaly detection is a precursor to the discovery of impending problems or features of interest.
Timely detection of anomalies is critical in several settings. Often such detection needs to be made
in real time to be able to detect potential emergencies. Our specific problem relates to voluminous
data streams and anomaly detection that accounts for evolution of the feature space over time.
Also, given the rate of data arrivals and the volumes involved, human intervention is rendered
infeasible. This work is applicable in domains where observations have geospatial and chronological
components, including atmospheric sciences, meteorology, environmental and ecological modeling,
epidemiology, and traffic monitoring.

The range of values that each feature takes on may be rather large, and simple checks for
breaching upper and lower bounds are generally not viable. Other dimensions such as location
and time may determine whether a particular feature value is considered anomalous. For example,
temperatures at night are often lower than those in the day for a particular location. Also, in the case
of geospatial data, what is considered normal will vary by region and anomaly classifications must
account for this as well.

Given the data volumes involved, observations must be stored over a collection of resources.
However, disk I/O operations should also be reduced so as to not preclude real-time classification.
In-memory data structures must be compact to avoid page-faults and thrashing. To cope with scaling
issues, viable solutions must be able to take advantage of increases in the number of resources
available to the system.

1.1. Research Challenges

There are several challenges involved with the proposed research:

1. Streams have no preset lifetimes, and readings arrive continually. This makes it infeasible to
inspect all previous records when making a classification.

2. Observations are multidimensional. Individually, feature values (i.e. values along a
dimension) may be normal, but when collectively accounting for all the dimensions, the tuple
may be anomalous.

3. There are spatial and chronological dimensions associated with feature values. How features
evolve is spatiotemporally correlated. What is considered normal for a particular geographical
extent would be considered anomalous for another. Anomaly classifications must take these
into account.

4. What is considered anomalous evolves over time. A good exemplar of this is temperature
readings. Over the past several years, average temperatures at various geographic locations
have trended higher overall but fluctuate from year to year.

5. The combination of legitimate feature values is very large. Building a single model of what
constitutes anomalous data is infeasible and impractical.

6. Anomaly detection must be done in real time despite the constant feature space evolution and
data volumes involved.

1.2. Research Questions

In this paper we explore the following research questions:

RQ-1 How can we account for spatiotemporal properties associated with features, and what are the
implications for system design in such cases? (§2.3, §3.4)

RQ-2 How can we achieve timeliness when detecting anomalies in voluminous data streams while
also ensuring accuracy and a reasonable balance of load? (§2.4, §3.2, §3.3)

RQ-3 What features are required in the anomaly detector interfaces to make them generalizable to
a number of problem domains? (§3)

RQ-4 Given that human intervention is infeasible in this work, how can we allow anomaly detector
implementations to adapt autonomously to changes in the data? (§4)

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

SCALABLE ANOMALY DETECTION OVER VOLUMINOUS GEOSPATIAL DATA STREAMS 3

1.3. Approach Summary

Our approach provides a configurable framework for anomaly detection and analysis over
continuous data streams. Since anomalies evolve over time, the framework addresses online
adaptation of models in its anomaly detector interfaces. Our design allows for domain-specific
behavior to handle changes in the data that must be treated as normal rather than anomalous, a
feature that can be toggled at run time.

To deal with spatial properties in the dataset, we partition incoming streams based on geographical
extents. We then initialize an instance of our anomaly detection model for the geographic regions,
each of which continually adapts based on observations recorded for the region. Depending
on the data volumes involved and the number of resources available within the system, both
geographic boundaries and the number of model instances can be tuned appropriately. Anomaly
detector instances and data routing/partitioning are managed by Galileo, our distributed storage
framework [1, 2]. Galileo provides support for multidimensional, time-series geospatial datasets,
and is organized as a distributed hash table (DHT). Each Galileo storage node manages a geographic
subset of the incoming data streams and passes the information on to the anomaly detectors. This
ensures that our framework is decentralized, scalable, and capable of achieving high throughput.
We have also augmented the indexing structures in Galileo to provide efficient lookup and analysis
capabilities for anomalous observations and any related data points.

Our framework provides a mechanism for incorporating different anomaly detection algorithms,
and allows them to scale and be specific (based on temporal or spatial attributes). Scaling
out is supported by allowing multiple model instances rather than an all-encompassing model.
Specificity is achieved by restricting training and classification data for model instances to
a particular geographical scope. In our reference anomaly detector implementations, we have
incorporated support for multiple detection methods: density, distance, Bayesian, and ensemble
based approaches. We chose this wide range of anomaly detection techniques to illustrate the
extensibility of our framework. However, we do not advocate for any particular approach over
another.

In our density based implementation, we use Expectation Maximization (EM) to build Gaussian
Mixture Models (GMMs) that model the densities of the training data by using different
combinations of Gaussian distributions. EM is an iterative method that aims to maximize log-
likelihood by modifying GMM parameters. Within each iteration, the log-likelihood is improved by
fitting Gaussian distributions to the given data. The iterative process is stopped when no significant
improvement can be achieved. For brevity, this method is referred to as “EM” throughout the text.

In our distance based approach, we rely on k-means to cluster observations in a multidimensional
space. For each instance, we use canopy clustering to compute the initial number of clusters.
We explore the use of two distance measures: the commonly-used Euclidean distance, and the
Mahalanobis distance [3], which accounts for correlation between the dimensions (features). For
brevity, this approach is referred to as “K-Means” in the text.

Our Bayesian approach employs Dirichlet Process Mixture Models (DPMMs) to generate clusters
over observations without requiring parameterization [4]. DPMMs do not require specification of the
number of underlying clusters and instead assume that the observations were derived from an infinite
mixture of distributions. In this approach, clusters adapt dynamically to changes in the underlying
data stream. As a result, a small number of data points being assigned to a particular cluster may
indicate an anomaly. We refer to this approach as “DPMM” throughout the text.

In our ensemble approach, we use Isolation Forests (also known as iForests) [5] to create an
ensemble of randomized decision trees. In this algorithm, trees with the shortest paths are most
likely to represent anomalies. Compared to many other approaches, isolation forests are unique
in that they separate anomalies from the rest of the dataset without needing to profile the norm.
Throughout the text, we refer to this approach as “iForest” for brevity.

We provide support for continuous adaptation for each of our approaches. Determination of
whether an observation is anomalous or not does not require specification of thresholds by the user.
Observations are tagged as normal or anomalous based on their fitness to the underlying models
and their locations within a d-dimensional space. Two factors determine whether an observation

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

4 W. BUDGAGA ET AL.

is anomalous or not: fitness scores and distance measures. The fitness score represents how well
an observation fits the current model, and the distance measure is calculated based on the distance
between the observation and the cluster centroid to which the observation was assigned. These
factors are also used to produce degree of irregularity scores that describe the magnitude of the
anomalies.

To aid in analysis of events leading up to an anomalous observation, we provide several distributed
query primitives. These queries can be used to determine what states led up to the anomaly, how
detector instances in other geographic regions would classify the observation, and the geographic
impact of various events. Distributed query results can be expressed as raw data points, a traversable
graph, or graphical overlays on a map. Additionally, these queries can be leveraged by anomaly
detector instances to submit observations to other, similar spatial regions for evaluation or to gain
confidence in weak classifications by consulting neighboring detectors.

Each instance of the anomaly detector tunes itself autonomously based on the data distributions it
has observed. The instances are executed in a thread pool, which allows us to calibrate the degree of
concurrency in the system to better exploit available cores and execution pipelines. Our performance
benchmarks show that each node in the system can evaluate more than 10,000 data stream packets
per second.

1.4. Paper Contributions

This paper describes our approach for detecting and analyzing anomalies in voluminous
multidimensional datasets. The work presented herein includes the following contributions:

1. Our approach scales with increases in data volumes and the number of machines available.
2. We provide a general interface for implementing and parallelizing anomaly detectors in a

variety of problem domains, with support for degree of irregularity scores.
3. We can fine-tune the specificity of classifications by controlling the geographical scope

associated with anomaly detection models.
4. Detector instances are able to come to a consensus on anomalous observations with distributed

queries rather than needing explicit communication and coordination.
5. We demonstrate how a variety of clustering methods and anomaly detection techniques can

be incorporated at scale.
6. Since model instances tune themselves autonomously based on the data available to them, we

can cope with variability in the density and availability of readings from different geospatial
locations.

Our empirical evaluations with diverse datasets and across different volumes of information
confirm the suitability of our approach. Our benchmarks also demonstrate that we can perform
these classifications in real time, processing 10,000 observations per second at each node.

1.5. Paper Organization

This paper is organized as follows. The next section provides background information on
our distributed storage framework, followed by Section 3 that outlines the anomaly detection
framework. Section 4 describes our reference anomaly detection implementations, and Section 5
discusses analysis and visualization features supported by the system. Section 6 provides a
performance evaluation and experimental results. Finally, Section 7 reviews related work from the
literature and Section 8 concludes the paper.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

SCALABLE ANOMALY DETECTION OVER VOLUMINOUS GEOSPATIAL DATA STREAMS 5

2. DISTRIBUTED STORAGE FRAMEWORK

Our distributed storage system, Galileo, is responsible for managing incoming observations. Galileo
offers spatiotemporal partitioning functionality, distributed indexing and query support, and ensures
our approach can scale up as resources are added. In this study we added several anomaly
detection features to Galileo, including support for visualization. However, it is worth noting that
the components in our framework are loosely coupled and could be used with a variety of distributed
storage systems, such as HBase (see Section 6.4).

2.1. Galileo

Galileo is a high-throughput distributed storage framework designed for managing multidimen-
sional data. The system’s network design is modeled as a hierarchical distributed hash table
(DHT), which allows incremental assimilation of storage resources and the use of multi-tiered
hash functions to enable development of novel partitioning schemes. By focusing on spatiotemporal
datasets, Galileo provides functionality that is generally not provided by standard DHTs, such as
expressive query support [2], time series analysis capabilities, and polygon- or proximity-based
geospatial retrieval functions [6]. Galileo is decentralized and composed of a network of storage
nodes that facilitate data management.

2.2. Storage Nodes

Each storage node in Galileo manages a single instance of our anomaly detection framework. Based
on the classification output by the framework, the storage node can take appropriate action (which
may vary across problem domains). The storage node does not need to wait for the result of each
evaluated observation during the storage process, and will assume the observations are normal until
informed otherwise.

The storage node treats the anomaly detection framework as a black box, but can control some
of its behavior. Configurable parameters include enabling or disabling adaptive classifications, as
well as how fast adaptations should be made. The storage node can also modify the size of the
geospatial area that will be assigned to each detector instance, which is critical in situations where
the geographic scope of the node changes due to fluctuations in the underlying resource pool.

2.3. Metadata Management and Information Retrieval

As data is streamed into the system, Galileo maintains a hierarchical metadata graph
instance at each storage node. Metadata graphs are memory-resident data structures that index
multidimensional data points and share some functionality with k-d trees [7] and tries [8]. Traversing
through the graph hierarchy reduces the overall search space, which can be accomplished by
interacting directly with the graph nodes or by issuing queries in an SQL-like syntax that supports
range-based selections and join operators across distributed graphs. Leaf nodes represent on-disk
data points, called file blocks, which are labeled by our anomaly detector framework as anomalous
with a corresponding degree of irregularity. To ensure the metadata graph can fit in main memory,
vertices in the graph may be responsible for ranges of values called tick marks. These ranges
are augmented with incrementally-updating summary statistics that include the min, max, mean,
and standard deviation of the data points stored under each vertex. Figure 1 contains a simplified
representation of a metadata graph at one of the storage nodes in Galileo. Once a user has selected
relevant portions of the overall graph, subgraphs can be used to launch locality-aware MapReduce
computations on the cluster [9]. In the context of our anomaly detection framework, a distributed
computation may include additional analysis on data points that have been labeled as anomalous.

2.4. Geospatial Data Partitioning

Data partitioning in Galileo is done based on the observed Geohash prefixes of incoming records
[10]. The Geohash algorithm is a geocoding scheme that divides the earth into a hierarchy of spatial
bounding boxes referenced by Base-32 strings. Figure 2 provides an example of how the Geohash

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

6 W. BUDGAGA ET AL.

DJJS

Mar Apr May Jun

24 28 24 26 25 23

32% 33%45% 54% 72% 50% 20% 30%

Spatial Location

Time

Temperture

Humidity

File

Range: 22-23 C
Count: 8
Min: 22.1, Max: 23.0
μ: 22.58, σ: 0.39
Anomalies: 4

Temperature

Location: /galileo/...
Anomalous: TRUE
Deg. of Irregularity: 4.2

File Block

Figure 1. A simplified metadata graph hierarchy with our feature additions for anomaly detection. As more
query parameters are specified, the graph is traversed to find matching file blocks. Note that each vertex in
the graph manages a range of values, as well as statistics about the blocks under its purview. An anomaly
count is provided at each vertex to summarize anomalous readings throughout the hierarchy; at the root

node, this count represents the total number of anomalies observed by the storage node.

9Q9Q

9R9R
9X9X

9W9W

9R9R

 9XB 9XC 9XF 9XG 9XU 9XV 9XY

 9X8 9X9 9XD 9XE 9XS 9XT 9XW

 9X2 9X3 9X6 9X7 9XK 9XM 9XQ

 9X0 9X1 9X4 9X5 9XH 9XJ 9XN

 9XB 9XC 9XF 9XG 9XU 9XV 9XY

 9X8 9X9 9XD 9XE 9XS 9XT 9XW

 9X2 9X3 9X6 9X7 9XK 9XM 9XQ

 9X0 9X1 9X4 9X5 9XH 9XJ 9XN

Figure 2. A visual overview of the Geohash geocoding scheme showing two hierarchical divisions of the
western United States.

algorithm works. For example, the latitude and longitude of the coordinates N 28.8927, W 81.9796
would map to the Geohash string djjsqeb2. Longer strings result in higher precision coordinates, and
two Geohash strings with the same prefixes will be located in a similar geographic region; a Geohash
of djjs would describe a broader area that also encompasses the aforementioned coordinates. These
prefixes ultimately determine where data records will be routed, processed, and stored.

The prefix length used for partitioning in Galileo is configured based on the size and scope of the
particular deployment. The default length, four characters, assigns incoming records to 39.1 km x
19.5 km regions. This naturally divides a broad geographic region into manageable pieces that can
be maintained by individual nodes in the system, and also allows future reconfiguration to scale up
and down to meet changing problem requirements. This scheme also enables data partitioning to be
carried out in a decentralized manner while facilitating parallel computations.

Classification accuracy is also impacted by how data is partitioned across nodes in the system.
If a small number of partitions are used, classifications must be made across a broader range
of geography and ambient conditions, whereas a fine-grained partition allows for similarly fine-
grained classifications. Data is partitioned once again at each node using a longer (finer-grained)
Geohash string to divide the workload up among anomaly detector instances, making analysis across
a hierarchy of spatial regions possible.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

SCALABLE ANOMALY DETECTION OVER VOLUMINOUS GEOSPATIAL DATA STREAMS 7

Anomaly
Detector

Storage Node Observation
Container

Coordinator

Creates

Passed To

Incoming
Observations

Anomaly
Detector

Anomaly
Detector

Chooses
Detector

anomalousAlarm()
Callback

Anomaly
Queries

Figure 3. The anomaly detection processing cycle.

3. ANOMALY DETECTION FRAMEWORK

Our design simplifies integration of multiple anomaly detection algorithms. The framework assists
these algorithms by controlling the amount and type of observations that are made visible to them.
Rather than having an all-encompassing instance of the anomaly detection model, our approach
allows multiple model instances to be dispersed over the collection of storage nodes; each model
instance is responsible for a particular geospatial scope, allowing for specificity in the classification
of anomalies. This also assists algorithms in accounting for spatial correlations between features
since each model instance learns from the data in a particular geographical region. The use of
multiple model instances ensures: (1) scalability: as the number of storage nodes increase, the
number of model instances scales as well, with each responsible for a specific geographical
scope, and (2) high throughput: there are no bottlenecks since observations do not need to be
funneled through an all-encompassing model. Incidentally, properties (1) and (2) contribute to faster
turnaround times for classifications. Finally, our approach allows multiple algorithms to operate
on the same set of observations for a geographical scope. Such combinations allow us to exploit
the properties of different techniques to minimize mis-classifications – specifically, observations
classified as anomalous by multiple algorithms are likely to be truly anomalous, but a particular
algorithm may capture subtle variations that were missed by the others.

3.1. Storage Node Integration

Each distributed storage node manages a single instance of the detection framework, which contains
a single coordinator process and multiple detector instances. As observations are streamed into
the system, the storage node forwards them to the appropriate anomaly detectors based on their
geographical location. Figure 3 depicts how events are passed between each of the components;
observations sent from the coordinator to the anomaly detectors are queued and classified in
order. The detector tags observations that are classified as anomalous by triggering a callback,
anomalousAlarm. This method can be overridden to perform post-processing steps, which generally
includes flushing the identifiers of the anomalous observations to disk for further analysis.

To ensure high throughput and minimize I/O, data management tasks in our framework are
performed asynchronously. Upon receipt of a new observation, the storage node updates its in-
memory metadata graph and generates a unique file identifier for the data. Once this step is complete,
the observation is encapsulated in an observation container and passed to the anomaly detection
coordinator for processing. Note that no disk I/O has occurred up until this step; only after the
anomaly detection process begins is the observation placed in a queue for on-disk storage. This
approach helps interleave I/O and processing operations on separate threads. Further, when an

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

8 W. BUDGAGA ET AL.

observation is classified as anomalous and assigned a degree of irregularity, the metadata graph
is updated without requiring any changes to files stored on disk.

3.2. The Coordinator

The primary task of the coordinator is creating and managing anomaly detector instances. The
coordinator receives observations from the node and then forwards them to the appropriate detector
instances based on the spatial partitioning scheme in use. If a detector instance for the region does
not exist, the coordinator creates a new instance. The coordinator uses an abstract class called
AnomalyDetector to load and manage detectors that use different detection algorithms. This makes
it possible to add, manage, and combine different anomaly detection techniques concurrently. Also,
because of the loose coupling between the coordinator and detectors, any changes made to either
component will not require corresponding changes in the other.

Our approach ensures available cores and execution pipelines are used efficiently by managing
a thread pool to facilitate parallel detection activities. During initialization, the coordinator creates
a thread pool of a configurable size and provides its reference to the anomaly detectors. Detector
instances submit classification tasks that contain a queue of incoming observations to be processed
concurrently, and the queues can be updated as more observations are assimilated.

3.3. Anomaly Detector

The primary concern of the anomaly detector is to collect training data from the coordinator, build
models for finer-grained geospatial scopes, and then use the appropriate model to detect observations
whose behaviors are outside the observed norm. Collecting the training data and training a model
is done automatically for each detector regardless of the actual implementation of the anomaly
detector instances. Each anomaly detector starts in the data collection phase where it collects
observations in memory and transitions to the training phase when the amount of data collected
reaches a configurable threshold. The coordinator can also override the threshold to begin training
immediately, if the particular problem warrants such an action. In the training phase, a training
task will be created and queued to the thread pool. While the training task is running in a separate
thread, observations are buffered for classification until the training process is complete. Finally, in
the classification stage, the models are used to classify incoming data.

Our framework allows anomalies to be detected in an online manner, enabling evaluations to occur
on the fly without retraining the underlying models. Further, the detectors can adapt to changes that
occur over time. For example, temperature values at a particular region that were unusual thirty
years ago may be considered normal now. In such a case, detector implementations are given the
opportunity to adapt to these changes and not tag such data as anomalous. However, this feature
can be disabled to handle situations where adaptation is not beneficial; for instance, models dealing
with heart rate measurements do not need to be adapted because valid measurements do not change
over time. When an anomaly is detected, implementations can include a degree of irregularity to
demonstrate the relative magnitude of the anomaly. Finally, the detector can serialize and deserialize
its model to and from disk to allow migration to other systems and to cope with failures or planned
outages.

3.4. Anomaly Queries

In some problem domains (especially spatial applications), it is useful for anomaly detectors to
communicate and come to a consensus on their classifications. Rather than requiring anomaly
detector implementations to coordinate amongst themselves manually, we provide a set of SQL-
like query interfaces from Galileo that allow detectors to build confidence in their classifications
without knowledge of the underlying distributed system. In essence, this enables detectors to be
queried in a fashion similar to observations and feature values.

During classification operations, anomaly queries can be submitted to other detector instances that
match a set of criteria. For example, a detector managing observations in Oregon, USA may submit
a questionable observation to all other instances in the same state and use the resulting classifications

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

SCALABLE ANOMALY DETECTION OVER VOLUMINOUS GEOSPATIAL DATA STREAMS 9

to make its final decision. In some cases these queries will be resolved on the same physical machine
as the initiating anomaly detector, but submitting the requests and retrieving results proceeds in the
same fashion regardless of the geographic scope of the query.

Since administrative boundaries often do not take geography into account, anomaly queries can
be used to find regions with similar characteristics; for instance, a detector in a region with high
altitudes and low humidity may constrain its anomaly queries to similar detector instances. To
ease this type of search, we provide feature similarity queries that will inspect the underlying
distributions of the observations at each storage node and return a set of candidate detector instances
that can be used to confirm anomalous data points. With feature similarity queries, all the usual query
operations are supported to further restrict the scope of the search.

4. REFERENCE ANOMALY DETECTOR IMPLEMENTATIONS

We designed our reference anomaly detectors with three primary goals in mind: (1) real-
time classification, (2) minimizing human intervention, and (3) domain neutrality, allowing the
detectors to be used for different problems without extensive adjustment. While achieving real-
time classification is largely a function of the efficiency of the algorithms used, avoiding user-
defined thresholds was a key factor in achieving goals (2) and (3). An overview of the design is
shown in Figure 4; the classifier has access to the model’s parameters and can update them at
run time, making adaptation possible. This feature has been exploited in our implementation by
modifying model parameters at a configurable time interval. We have incorporated support for
two different algorithms — density and distance based multidimensional clustering — to detect
anomalies in an N-dimensional feature space. We support a broad variety of functionality in our
reference implementations to ensure the interfaces in our framework are generalizable and can be
leveraged by other anomaly detector designs.

4.1. Anomaly Detection Algorithms

We implemented four anomaly detection methods to demonstrate the flexibility of our framework:
density, distance, Bayesian, and ensemble. Our density, distance, and Bayesian methods iterate
over two main steps: (1) assigning observations to clusters and (2) updating cluster parameters
based on the assignments. These steps are repeated until the models converge. The density based
approach assumes the data points were generated by a finite number of mathematical distributions
and focuses on iteratively improving the distributions’ parameters to better fit the training data. On
the other hand, the distance based algorithm clusters observations that are in close proximity on the
multidimensional hyperplane and then refines the cluster centroids to minimize the overall distance
between related observations. Our Bayesian approach, based on Dirichlet Process Mixture Models,
supports an infinite number of mixture components. As a result, the number of clusters does not
need to be predefined. Finally, our ensemble approach uses isolation forests to generate decision
trees based on incoming observations, and uses path lengths to determine which data points are
anomalous.

The density based anomaly detector employs Gaussian Mixture models (GMMs) built with
Expectation Maximization (EM), while the distance based anomaly detector uses a clustering model

Anomaly Detector

Anomaly
Detection
Algorithm

Binary
ClassifierAnomalous

Observation Observation

Figure 4. An overview of our reference anomaly detector designs, which are composed of a Anomaly
Detection Algorithm and a Binary Classifier.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

10 W. BUDGAGA ET AL.

built with K-Means. These techniques, as well as our ensemble approach, rely on implementations
provided by the WEKA software package [11]. Our Bayesian approach was underpinned by
functionality sourced from the Datumbox Framework [12].

4.1.1. Density Based Anomaly Detection: GMMs and EM

In general, mixture models are used to represent the densities of multidimensional data. Gaussian
Mixture Models (GMMs) are able to approximate almost any continuous density distribution with
high accuracy [13]. GMMs achieve this by: (1) applying a sufficient number of Gaussians, (2) fitting
them to the data by adjusting parameters such as the means and covariances, and (3) choosing
the coefficients for the linear combinations of different densities. GMMs are also used by many
techniques that build models based on class densities. For instance, a mixture of Gaussian densities
is used in linear and quadratic discriminant analysis to identify nonlinear decision boundaries in
data [14].

We estimate GMM parameters using Expectation Maximization (EM). EM is a iterative
refinement technique used for estimating the maximum likelihood of parameters in probabilistic
models. For Gaussian Mixture models, EM is used to determine the means and covariance matrices
for each Gaussian component.

4.1.2. Distance Based Anomaly Detection: K-Means

K-Means is a clustering technique that assigns N observations to K clusters. The algorithm starts
with an initial set of clusters represented by their centroids and then iterates over two main steps:
(1) assigning observations to clusters based on their proximity to cluster centroids and (2) updating
each cluster’s centroid by computing the mean of the assigned observations. The two steps are
repeated until no changes occur in the clusters. We use canopy clustering [15] as a preprocessing
step to determine the initial cluster centroids and reduce the overall number of distance calculations
required for K-Means to converge. Our K-Means detector implementation also supports two
functions to measure the distances of observations from the cluster centroids: Euclidean and
Mahalanobis. Both distance measures use Formula 1 to compute the distance between two points
(x and y). The distance is scaled in different dimensions based on the weight matrix (W):

D(x, y)
2

= (x− y)W−1(x− y)T (1)

The Euclidean distance uses the identity matrix as its weight matrix, which results in the features
being equally weighted. Thus, Euclidean distances do not consider the correlations between
features. On the other hand, the Mahalanobis distance [3] considers the correlation between features
by weighting the equation with the covariance matrix Σ. In this case, features that are correlated will
have a stronger influence on the distance measure.

4.1.3. Bayesian Anomaly Detection: Dirichlet Process Mixture Models (DPMMs)

Dirichlet Process Mixture Models (DPMMs) is a Bayesian unsupervised learning technique that
does not require predefining the number of clusters, unlike many other approaches [4, 16, 17]. This
property is particularly useful because it allows for dynamic adaptation in the number of clusters as
the data points evolve. DPMMs construct a single mixture model in which the number of mixture
components is infinite, and extensions can allow incoming data points to be assigned to multiple
clusters. In our implementation, we used a Gaussian base distribution and a scaling parameter (α)
of 0.01.

4.1.4. Ensemble Anomaly Detection: Isolation Forests

Isolation forests represent a particularly unique approach to anomaly detection. The algorithm
generates decision trees by inspecting incoming observations and splitting them randomly based
on the observed minimum and maximum values of each feature. This process isolates abnormal
observations as only a few features must be deviate from the norm to produce an irregular path

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

SCALABLE ANOMALY DETECTION OVER VOLUMINOUS GEOSPATIAL DATA STREAMS 11

through the trees. Path lengths are then used to determine an anomaly score (which is in turn used to
calculate the degree of irregularity in our framework). Due to the stochastic nature of this approach,
the process must be repeated several times to gain confidence in the resulting anomaly scores.
However, isolation forests have linear time complexity and low memory requirements, allowing
them to scale up to handle voluminous datasets [5].

4.2. Binary Classifiers

The clustering techniques we have described are used to create binary classifiers, which are
responsible for making decisions about whether an observation is anomalous or not. The
classification process begins by clustering incoming observations, deciding whether they are
anomalous, and then updating model parameters for adaptation (if enabled). Our reference
implementation computes thresholds that determine whether a given input sample is anomalous
or not, with raw outputs used to assign degrees of irregularity to the data. The following subsections
describe how the classifiers carry out anomaly detection and adaptation.

4.2.1. Anomaly Detection Without Threshold Parameterization

Given the volumes of data we consider in this work, human intervention in the anomaly
classification process must be avoided. Additionally, manually choosing thresholds that accurately
classify observations as normal or anomalous is often challenging [18, 19]. Further complicating
matters, even if an optimal threshold could be found offline, it may not remain valid as the incoming
data evolves. To address these issues, we autonomously select classification thresholds.

In our density and Bayesian clustering approaches, log-likelihood values are produced that
describe the possibility that a given observation could be generated by the underlying distributions.
Since the likelihood of GMMs is the average of the log-likelihood observed in ‘normal’ training
data, it can be used as a baseline reference for determining a threshold for normal observations.
Observations with likelihood values that are equal or greater than the GMMs’ likelihood will not be
tagged as anomalous. However, further investigation is required for observations whose likelihood
is less than the GMMs’ likelihood. We use the following formula to compute fitness scores, fscore,
that will have negative values only for suspect observations:

fscore =
obsllk −modelllk
|modelllk|

(2)

Where:
obsllk is the log-likelihood of an observation
modelllk is log-likelihood of the model

We consider the distance of an observation from its assigned cluster centroid to adjust the values
of fscore such that the observation’s likelihood increases as its distance to the cluster centroid
decreases, and vice versa. The fitness scores are adjusted by multiplying them by a distance factor
Xdist which is derived from a normalized Euclidean distance and always has a positive value:

Xdist =

√√√√ d∑
i=1

(xi − µi)2

σi
(3)

Where:
d is the dimensionality of the observation
xi is the value of feature i of observation X
µi is the mean of the Gaussian distribution that models the feature density in space i
σi is the standard deviation of feature i

The value of Xdist will decrease as long as the distance from an observation to its cluster
decreases, and vice versa. The final resulting value obtained from fscore ×Xdist will be used to

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

12 W. BUDGAGA ET AL.

classify an observation. We found empirically that comparing this value with −1.0 gives accurate
classification results, even across different application domains. Therefore, an observation will be
tagged as anomalous if the computed result is less than−1.0 and as normal if it is greater than−1.0.

In our distance based clustering approach we rely on the Mahalanobis distance, which gives us
the scaled distance in terms of standard deviations. Based on Chebyshev’s rule, 93.75% of the data
of any distribution lies inside the range of 4 standard deviations of the mean. Thus, we compare the
distance value with 4 to classify the observation.

Finally, our ensemble based approach with isolation forests does not require parameterization.
However, iForests produce anomaly scores in the range [0, 1] based on path lengths, where a score
of 0 represents normal data with high confidence and a score of 1 represents definite anomalies.
Path lengths are determined by the number of edges traversed from the isolation tree root node to
the terminal edge node. While determining a threshold for what should be considered anomalous
data is problem-specific, observations with an anomaly score much less than 0.5 are presumably
normal. Additionally, if all observations return a score of 0.5, then there is a high likelihood that
no anomalies exist in the data. Given these factors, a threshold of 0.6 is generally acceptable for
most problem types [5]. We allow this default value to be changed by users, and alternatively can
compute an appropriate score based on the dataset contamination (estimated number of probable
outliers).

4.2.2. The Adaptive Algorithm

Since we are dealing with continuous data streams, our goal is to allow adaptive behavior without
impacting performance. This is ensured for our distance, density, and Bayesian detectors by
incrementally updating the clusters’ parameters, µ and Σ, without the need to have all observations
resident in memory. How often the cluster’s parameters should be updated depends on a configurable
adaptation speed that can be changed at run time.

Incremental updates of the current mean (µt−1) is performed by retrieving the previous sum and
using it with the new observation to compute the new mean (µt). Equations 4 and 5 update the
means and sizes of a cluster to which the observation xi was assigned:

µt =
µt−1 ∗ nt−1 + xi

nt
(4)

nt = nt−1 + 1 (5)

In both of our approaches, each element σ2
i,j in the covariance matrix is incrementally updated by

following the same concept that was used for updating the mean. Equation 6 computes the new σ2
t

of the features xi and xj (We use Bessel’s Correction to estimate variance):

σ2
t =

(nt − 2)σ2
t−1 + (nt − 1)(µi,t−1 − µi,t)(µj,t−1 − µj,t) + (xi − µi,t)(xj − µj,t)

n− 1
(6)

By updating these values, we ensure that our models will adapt to evolutions in the dataset over
time. This is particularly important in a variety of fields, such as atmospheric science, environmental
modeling, and epidemiology.

Unlike our other anomaly detection methods, isolation forests do not require additional logic to
handle adaptation as the observations evolve. Path lengths through the isolation trees will vary over
time, responding to changes in the incoming data points. As a result, the isolation score produced by
the algorithm for the same input data may change in response to transformations in the underlying
data stream. Conversely, data streams that do not evolve over time will produce similar sets of
isolation trees and path lengths.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

SCALABLE ANOMALY DETECTION OVER VOLUMINOUS GEOSPATIAL DATA STREAMS 13

4.3. Evaluation of the Anomaly Detection Metric

To evaluate our reference anomaly detector, we used five classification datasets sourced from the
UCI Machine Learning Repository [20]. The datasets were selected from different application
domains and have varying amounts of observations and features. The datasets we used are shown in
Table I.

Table I. UCI datasets used to evaluate the efficiency of our anomaly detection approaches.

Dataset Observations Features
Arrhythmia 452 279

Breast Cancer Wisconsin 569 32

Cardiotocography 2126 23

Seeds 210 7

Statlog (Shuttle) 58000 9

To establish ground truth for testing purposes, we considered data from the largest class as non-
anomalous and used it for training, with the rest of the classes used for testing. The K-Means and
EM based detectors were separately applied to each dataset. Binary classification results represented
by sensitivity and specificity are listed in Table II. As illustrated by the results, both detectors
perform well in most cases. The lowest-performing dataset, Arrhythmia, contained a large number
of attributes but very few observations, which may explain its performance.

Table II. Binary classification evaluation for UCI datasets.

EM K-Means
ID Sensitivity Specificity Sensitivity Specificity
D1 0.978 0.33 0.983 0.162

D2 0.740 0.972 0.917 0.642

D3 0.820 0.466 0.860 0.509

D4 0.919 0.951 0.961 0.793

D5 0.974 0.976 0.983 0.826

5. ANOMALOUS EVENTS: ANALYSIS AND VISUALIZATION

Once anomalies have been discovered and tagged with a degree of irregularity by a detector
implementation, integrated analysis operations help deduce the cause of the event and what it
means in the context of the particular problem domain. We support two types of analysis: metadata
inspection to discover contextual information about anomalies, and integrated visualization to
provide graphical representations of the data.

After being alerted of an anomalous observation, practitioners can issue Galileo queries to help
discover why the event occurred. This metadata inspection process involves gathering data across
distributed nodes to form traversable result datasets that contain metadata about the underlying
observations. Metadata records include feature ranges, degrees of irregularity, and identifiers for the
sensor(s) responsible for generating the observations in question. If the practitioner suspects that
a sensor may be faulty, he/she can issue a query that selects all anomalous observations produced
by a specific sensor identifier. The resulting datasets, which are returned as traversable graphs,

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

14 W. BUDGAGA ET AL.

5 6 7 8 9 10 11 12 13 14 15

Degree of Irregularity: Temperatures

Figure 5. Degree of irregularity visualization generated by our framework. Detector instances were trained
with data from 2008 – 2010, and then classified data from August, 2014. Anomalous observations are

indicated in red.

provide context for the observations: if a certain combination of other environmental factors causes
the malfunction, it will be evident in the dataset. Another scenario supported by our framework is
temporal feature inspection: normal changes across a number of dimensions may influence another
feature and cause an anomaly. In this case, a temporal range query can be issued to inspect the
evolution of the feature space leading up to the anomalous event.

Our framework also supports several geospatial visualizations to provide graphical insights. These
include contour maps, spatial binning, and scatter plots. When a visualization is requested, the
storage nodes holding relevant data will produce graphical tiles that are stitched together to produce
a final output graphic. Figure 5 demonstrates this capability; detector instances covering North
America were trained with data from 2008 through 2010, and were then given temperature data from
August 2014 to classify. As one might expect, recent temperatures have trended hotter, especially
in colder northern regions. This resulted in several observations being flagged as anomalous
(highlighted in red in the figure). Once a visualization has been created, it can be manipulated
by the client (zoomed, cropped, etc.). We also support brushing and linking functionality, where
layers or particular features can be turned on and off, ranges of interest can be modified, and query
parameters updated [21].

6. EXPERIMENTAL RESULTS

We designed a series of experiments to evaluate the performance of each part of our distributed
anomaly detection framework. The experiments answer the following questions:

1. Does the framework scale out as more resources are added, and is data partitioned efficiently
among the resources?

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

SCALABLE ANOMALY DETECTION OVER VOLUMINOUS GEOSPATIAL DATA STREAMS 15

2. Can our framework operate in real time while processing continuous data streams? While each
anomaly detector implementation will have its own resource requirements, the framework
itself should be lightweight.

3. Can anomalies be detected based on geospatial locations? Detector instances may be
applicable to some regions but not others.

4. Given our adaptation interfaces, is the framework able to accurately adapt its model as the
dataset evolves over time?

5. Can the framework detect anomalous observations whose features have normal values, but a
combination of some features values are unusual?

6.1. Building the Models: Test Dataset

This study uses real-world climate data obtained from the National Oceanic and Atmospheric
Administration (NOAA) North American Mesoscale Forecast System (NAM) [22]. The readings in
this dataset are collected regularly from various weather and climate stations and stored in the self-
describing NetCDF format [23]. Each file contains spatiotemporal information as well as several
climate feature readings that include surface pressure, surface temperature, snow cover, snow depth,
relative humidity, and wind speed. The particular data used in this study was collected over a eleven-
year period from 2004 to 2014. Each year comprised roughly 1,000,000,000 observations on average
(10 KB each), which were stored alongside compressed geographical map tiles (40 KB each). The
entire dataset spanned over 1 PB of raw data and 20 billion files.

Observations from the first three years (2004 through 2006) were used as training data to build
the models used in this section. Observations from the remaining years were used for verification
and classification.

6.2. Experimental Setup

Our framework was run on a 78-node cluster with 48 HP DL160 servers (Xeon E5620 CPU, 12
GB of RAM) and 30 HP DL320 servers (Xeon E3-1220 V2 CPU, 8 GB of RAM). Each server was
equipped with four hard disks. Ten clients running on machines outside the cluster were used to
read the observations from the NOAA dataset and send them to Galileo, which operated under the
OpenJDK Java Runtime, version 1.7.0 65.

Each storage node maintains an anomaly detection framework instance that receives incoming
observations, and data is partitioned spatially using the Geohash-based scheme described earlier.
Each storage node is responsible for a number of regions that are subdivided based on a 4-
character prefix to assign a 39.1 × 19.5 km region to each anomaly detector instance. Figure 6
shows the distribution of anomaly detection instances across the cluster (note the relatively uniform
distribution of load). In these benchmarks, the total number of anomaly detector instances was
60,922, and the training data for each model consisted of 49,241 observations on average.

6.3. Anomaly Detection Throughput

Our partitioning scheme and network layout help facilitate real-time anomaly detection at scale. To
evaluate the scalability of our framework, we conducted a throughput test across all 78 machines in
our test cluster with varying anomaly detection adaptation speeds. With adaptation disabled, the 78-
node cluster could process about one million observations per second in parallel. Figure 7 illustrates
the number of classified observations per second using both the EM and KM detectors at different
adaptation speeds. Even when the model parameters are recomputed for every other new record, our
framework is able to achieve an overall throughput of about 500,000 classifications per second. This
efficiency could be leveraged in cloud based settings with low-power or low-cost resources, or used
to process live data streams.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

16 W. BUDGAGA ET AL.

0 10 20 30 40 50 60 70 80
Cluster Nodes

0

100

200

300

400

500

600

700

800

900

N
u
m

b
e
r

o
f

D
e
te

ct
o
rs

 -
 T

o
ta

l:
 6

0
,9

2
2

Figure 6. Anomaly detector instances at each storage node. Note the relatively uniform distribution of
detectors due to our Geohash-based spatial partitioning scheme.

Figure 7. Observations classified per second for a variety of adaptation speeds; an adaptation rate of 100
means that the model parameters are updated each time 100 new observations have been received.

6.4. Storage Throughput

To evaluate our storage interfaces, we replaced Galileo with an HBase [24] cluster. HBase supports
a wide column data model similar to BigTable [25], Cassandra [26], and Accumulo [27]. Wide-
column stores are well-suited for observational data and allow for basic spatial query capabilities
by using Geohash values as indexed row keys. HBase is also appropriate for smaller files or
observational records such as those found in our atmospheric dataset, whereas systems such as
HDFS are designed for general-purpose storage and larger files.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

SCALABLE ANOMALY DETECTION OVER VOLUMINOUS GEOSPATIAL DATA STREAMS 17

Observation Read Speed Observation Write Speed
0

200000

400000

600000

800000

1000000

O
bs

er
va

tio
ns

/s
ec

Galileo
HBase

Cumulative Storage Throughput Comparison

Figure 8. Storage throughput comparison between Galileo and HBase. Galileo is able to achieve higher write
throughput due to its network layout and partitioning strategy.

In this benchmark, we retrieved and stored records from our test dataset using multiple concurrent
client nodes. We increased the number of clients until the system reached a steady state for both
read and write throughput and then compared the results produced by Galileo and HBase, shown in
Figure 8. Note that for the read test, a randomized four-character Geohash lookup was performed,
and in the write test adaptation was disabled to ensure the anomaly detection framework would not
bottleneck the system. While both deployments exhibited similar read performance characteristics,
Galileo provided considerably higher write performance due to its network layout and partitioning
scheme; in Galileo, anomaly detector instances were collocated with appropriate storage nodes,
resulting in reduced communication overhead.

6.5. Impact of Geospatial Scope on Model Accuracy

In this experiment, we demonstrate the impact of the geographic regions being managed by anomaly
detector instances. We trained two models for each approach, one built with observations taken
from Florida in the United States, and another built from observations belonging to Hudson Bay in
Canada. Figure 9 shows the geographic differences between the two locations.

Random observations were sampled from both regions and used to test the models. If the models
have specialized to their particular regions correctly, then being fed with observations from the
other region should produce classifications that are definitively anomalous. On the other hand,
observations that were taken from the model’s own spatial region should be considered normal.
Table III outlines the results of this experiment; observations from a different region are correctly
tagged as anomalous while those from the model’s own region are considered normal. This shows
that each model instance captures fine-grained details within its own spatial region, and reinforces
our decision to use multiple detection instances.

6.6. Evaluating Model Adaptation

In this experiment, we tested how the framework copes with changes occurring in observed behavior
when the adaptation feature is turned on. We drew a random observation from the test data and
created 300,000 copies of it. In each copy, the temperature was set to a value generated randomly
between 330 and 360 Kelvin, which would constitute anomalous temperatures. Adaptation speed
was set to 100, which means that adaptation will be performed once every 100 classification

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

18 W. BUDGAGA ET AL.

Figure 9. Two different geographic regions with correspondingly different climates: Hudson Bay, Canada,
and Florida, USA.

Table III. Classification results obtained by applying EM and K-Means detectors to observations taken in
January 2013 for both Hudson Bay (Geohash f4du) and Florida (djjs). To demonstrate that the models have
specialized for their particular geographic region we fed in observations from the other region, which are

correctly labeled as anomalous.

EM K-Means
Sample Location Florida Hudson Bay Florida Hudson Bay
Hudson Bay -1.1E22 -0.5 419.04 2.3

Hudson Bay -1.1E22 -0.5 343.9 2.16

Hudson Bay -1.1E22 -0.4 329.2 1.13

Florida 0.017 -538577 1.03 38.4

Florida -0.089 -708725 1.27 46

Florida 0.007 -538253 0.34 61

operations. Because both EM and K-Means use the same adaptation algorithm we report results
for only the EM-based approach, which was used to classify the 300,000 copies of the observation,
followed by another 300,000 classifications with adaptation turned off.

The outcomes of two cases can be seen in Figure 10. In the figure, the x-axis represents
the evaluation steps and the y-axis represents the outcomes. When the adaptation feature was
disabled, the observation outcomes shown in blue were not changed over the 300,000 evaluation
steps and were always considered anomalous based on our threshold of -1.0. However, when the
adaptation feature was enabled, the same observations were evaluated as anomalous early on in
the test but began being considered normal over time. Consequently, we can conclude that our

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

SCALABLE ANOMALY DETECTION OVER VOLUMINOUS GEOSPATIAL DATA STREAMS 19

Evaluation steps
20

15

10

5

0

5

10

O
u
tc

o
m

e
s

T=-1
Outcomes(adapt.=OFF)
Outcomes(adapt.=ON)

Figure 10. Outcomes obtained by running the EM-based approach twice, with and without the adaptation
feature.

adaptation feature allows continuously-anomalous observations to eventually become normal over
time, whereas the non-adaptive model would not be able to handle such changes.

6.7. Comparison of Anomaly Detection Methods

After the anomely detectors have been built on observations from the training data using each of
our approaches, the detectors were used to classify observations from the remaining 9 years (2006
through 2014). Table IV lists the number of anomalies detected by each approach across eight
different spatial locations, underscoring the influence of spatial regions on our climate dataset.
Table V lists the number of common anomalies that were detected by both approaches (set
intersection). This experiment illustrates that there are indeed corner cases in the dataset that can
be detected by some approaches but not others. Isolation forests, for instance, have been shown
to be robust to the effects of swamping and masking that cause the number of outliers to be over-
or underestimated [5]. In general, it is important to be able to evaluate several approaches as each
dataset contains unique properties that may be best suited for a particular approach.

Table IV. Number of anomalies detected by each of our classification methods.

Region EM K-Means DPMM iForest
9pkv 49,207 48,974 35,737 26,870

f2y8 329 308 1,153 276

dk6m 22,473 21,799 12,446 29,133

dk63 9,776 3,882 2,517 3,156

c3w6 1,014 982 1,897 1,071

c1f2 1,874 1,571 333 2,888

9wwh 430 429 2,160 929

9s0j 25,895 25,616 27,752 37,307

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

20 W. BUDGAGA ET AL.

Table V. Intersection of anomalies detected by each of our classification methods.

Region EM ∩ KM KM ∩ DPMM EM ∩ iForest DPMM ∩ iForest
9pkv 48,974 34,580 9,675 10,246

f2y8 308 63 40 53

dk6m 21,799 11,079 4,640 4,659

dk63 3,882 1,472 321 436

c3w6 982 531 79 220

c1f2 1,571 271 289 198

9wwh 429 295 84 174

9s0j 25,616 20,644 6,196 9,735

7. RELATED WORK

Extensive research has been conducted in the realm of anomaly detection over data streams [28].
This includes identifying deviations based on historical trends [29], irregularities in the data itself
based on entropy or relative uncertainty [30, 31], and other approaches such as Hierarchical
Temporal Memory (HTM) [32] or RS-Trees/Forests [33, 34]. In general, streaming anomaly
detectors require a training phase or ground truth data to define ‘normal’ observations. Over time,
data points that are considered normal or anomalous may change.

While the main focus of this work is not anomaly detection itself, there are approaches that differ
from our implementations that could also be used in conjunction with the distributed framework
we have developed. A class of problems referred to as conditional anomaly detection requires
dividing observation attributes into environmental (context) and indicator attributes [35, 36, 37, 38].
Solutions to this problem attempt to detect anomalies within specific contexts where a feature value
could be normal in one context and anomalous in another. An anomalous observation in this case is
one that has an unusual indicator value at a specific environmental value. Correlated attributes have
to be specified by a user or detected by performing additional processing.

Approaches have also performed anomaly detection by comparing the log-likelihood value of
an observation with a sorted list containing log-likelihood values of the training data [35]. An
observation is tagged as anomalous if its log-likelihood is less than the threshold specified by
the user. Unlike our anomaly detector implementation, this approach requires human intervention,
including specification of the context and indicator variables. Some approaches tend to be non-
general and require specification of a threshold. For example, Catterson et al. use an approach
similar to the one described by Song et al. to monitor aging power transformers, where both
environmental and indicator values are known in advance [37, 35].

Distributed approaches often incorporate anomaly detection into the devices or sensors that
produce the data. This ensures scalability, but also enforces an upper bound on the computational
complexity of the algorithm in use and constrains analysis from a high-level or broad-reaching
perspective. Chhabra et al. investigates distributed anomaly detection in the context of network
traffic flow analysis [39]. In this case, spatial anomalies may constitute broken or overwhelmed
links and their respective locations in the network. Detection is performed in real time by
participating routers, with anomalies confirmed by neighboring nodes. Anomalous classifications
are accompanied by a significance score to provide a relative measure of confidence in the
classification. While our approach also targets real-time classification of incoming data streams,
its scope includes storage and analysis as well. In some cases, an anomaly may simply represent the
first step towards a deeper investigation to uncover the origin or timeline leading up the event(s).

Distributed anomaly detection is particularly relevant in wireless sensor networks to determine
faulty or misbehaving equipment. In general, these networks are composed of hundreds or thousands

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

SCALABLE ANOMALY DETECTION OVER VOLUMINOUS GEOSPATIAL DATA STREAMS 21

of low-power, unsophisticated sensors that cannot be monitored or administered by traditional
means. Analyzing data produced by sensors in close proximity or with similar functionality
helps pinpoint events of interest, or potentially anomalous behavior in cases where a strong
consensus among disparate sensors cannot be reached. Rajasegarar et al. proposes a distributed,
spatial anomaly detection system for wireless sensor networks that uses a bottom-up approach to
accumulate readings and classify them [40]. In this case, either the devices producing the data
or intermediary nodes are used to combine and pre-process incoming records. To contrast, our
framework allows untouched sensor readings (or other types of data) to be streamed in with the
intention of both (1) detecting potential anomalies and their significance, (2) persisting the readings
on stable storage for future analysis. An additional benefit of this scheme as opposed to pushing
anomaly detection activities out to the devices producing them is scalability in situations where the
computational requirements of the anomaly detection algorithm are high.

Zhao et al. proposes a parallel K-Means implementation that relies on the MapReduce framework
[41, 9, 42]. However, as we have demonstrated, clustering-based anomaly detectors are only one of
several valid approaches and performance may vary depending on the dataset. Further techniques
that rely on MapReduce are proposed to detect anomalies in large scale datasets [43, 44]. Despite
the powerful computation capabilities provided by MapReduce, its execution model is not always
amenable for online anomaly detection; in many cases, effective detection of anomalies requires an
iterative approach, with records kept in main memory while analysis is conducted.

As a general parallel computing abstraction for distributed data, Resilient Distributed Datasets
(RDDs) along with MLBase could be leveraged for anomaly detection [45, 46]. RDDs are able to
maintain datasets in memory across a cluster, allowing for iterative and multi-stage computations
without needing to read or write from secondary storage. However, RDDs do not contain provisions
for spatiotemporal data or integrated anomaly analysis. Hagedorn et al. [47] proposes a set of
RDD transformation operators that allow spatiotemporal correlation analysis within the Spark
framework [48]. After transforming raw textual input data into RDD-based event records, the
framework supports calculating the spatiotemporal distance between events as well as clustering
via the DBSCAN (density-based spatial clustering of applications with noise) [49] algorithm,
which could be leveraged by our anomaly detector instances. By designing our framework for this
specific problem domain, we can provide similar functionality as well as geospatially-aware data
partitioning, computation primitives designed for anomaly detection, and analytics functionality for
tracing and tracking the source of anomalies.

While not strictly designed for streaming data, Apache GeoMesa [50, 51] provides spatiotemporal
storage and retrieval functionality that could be used as a storage backend for our anomaly detection
components. Similar to Galileo, GeoMesa uses the Geohash algorithm to represent spatial locations.
To provide indexing capabilities through an underlying wide-column store such as Cassandra [26]
or Accumulo [27], spatiotemporal attributes are encoded as flat lexicographic strings. Unlike our
framework, this approach favors load balancing characteristics over data locality. GeoMesa is
extensible and can be used as a Kafka [52] data source or with GeoServer [53] for rendering and
manipulating spatial data.

8. CONCLUSIONS

This paper presented our approach, encompassing algorithms and system design, for scalable
detection of anomalies in multidimensional, geospatial data streams.

RQ-1: To deal with observations that are spatiotemporally correlated, each of our models are
responsible for a particular geographical extent and include timestamps associated with incoming
data points. Each model instance tunes itself independently based on the data it observes. Rather
than employing a single model that attempts to preserve such correlations, using individual instances
that span smaller geographical extents improves accuracy. This approach is well-suited for situations
where there is variability in the data streams for particular geographical extents, allowing the regions
to be adaptively refined with corresponding additions of model instances. Ultimately, our approach

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

22 W. BUDGAGA ET AL.

allows fine-tuning of the specificity of the classifications by controlling the geographical scope
associated with the classification models.

RQ-2: Associating model instances with particular geographical extents results in a scalable
design; i.e., we can scale with increases in data volumes and the number of machines available.
This approach is also amenable to dispersion, with models executing on multiple machines and
performing concurrent, distributed classifications as observations arrive. Multiple model instances
are also maintained at each node using a thread pool, which allows for concurrent classifications of
data streams within a particular geospatial area. Our empirical results validate the scalability and
throughput of our approach at both the individual nodes and in a distributed cluster, which is capable
of reaching an overall throughput of over 1,000,000 classifications per second. The specificity of our
models — controlled by the granularity of the Geohash — allows us to account for spatiotemporal
correlations associated with the observations and achieve greater accuracy.

RQ-3: Our anomaly detector interfaces are agnostic to their underlying algorithms and
implementations. The interfaces automate three key phases in detection of anomalies: collection,
training, and classification. The training phase buffers and prepares data for training, while the
training phase creates and trains models on the collected data. Finally, the classification phase
uses the trained models to classify observations as either normal or anomalous. Our reference
implementation incorporates support for distance (Euclidean and Mahalanobis), density, Bayesian,
and ensemble-based clustering algorithms. The feasibility of this approach was verified with well-
known datasets.

RQ-4: Given the associated data volumes, dimensionality, and the rates at which observations
arrive, it is infeasible to employ human intervention in the anomaly classification process. Our
approach does not require human intervention for the adjustment of anomaly detection thresholds
and provides degree of irregularity scores to help users direct their efforts. Our classifiers continually
and autonomously adapt themselves based on the data observed by models, i.e., both the adaptation
and the classification are performed concurrently. Rather than requiring explicit coordination
amongst detector instances, we allow a consensus to be reached through distributed anomaly
queries. Our empirical benchmarks demonstrate both the efficiency (per-packet classifications) and
accuracy of these adaptations.

ACKNOWLEDGMENT

This research was supported by funding from the US Department of Homeland Security (HSHQDC-
13-C-B0018, D15PC00279), the US National Science Foundation’s Advanced Cyberinfrastructure
and Computer Systems Research Programs (ACI-1553685, CNS-1253908), and the Environmental
Defense Fund (0164-000000-10410-100).

REFERENCES

1. Malensek M, Pallickara SL, Pallickara S. Exploiting geospatial and chronological characteristics in data streams to
enable efficient storage and retrievals. Future Generation Computer Systems 2012; .

2. Malensek M, Pallickara SL, Pallickara S. Expressive query support for multidimensional data in distributed hash
tables. Utility and Cloud Computing (UCC), 2012 Fifth IEEE International Conference on, 2012.

3. Mahalanobis PC. On the generalized distance in statistics. Proceedings of the National Institute of Sciences
(Calcutta) 1936; 2:49–55.

4. Escobar MD, West M. Bayesian density estimation and inference using mixtures. Journal of the American
Statistical Association 1995; 90(430):577–588. URL http://www.jstor.org/stable/2291069.

5. Liu FT, Ting KM, Zhou ZH. Isolation-based anomaly detection. ACM Trans. Knowl. Discov. Data Mar
2012; 6(1):3:1–3:39, doi:10.1145/2133360.2133363. URL http://doi.acm.org/10.1145/2133360.
2133363.

6. Malensek M, Pallickara SL, Pallickara S. Polygon-based query evaluation over geospatial data using distributed
hash tables. Utility and Cloud Computing (UCC), 2013 Sixth IEEE International Conference on, 2013.

7. Bentley JL. Multidimensional binary search trees used for associative searching. Commun. ACM Sep 1975;
18(9):509–517.

8. Fredkin E. Trie memory. Commun. ACM Sep 1960; 3(9):490–499.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

http://www.jstor.org/stable/2291069
http://doi.acm.org/10.1145/2133360.2133363
http://doi.acm.org/10.1145/2133360.2133363

SCALABLE ANOMALY DETECTION OVER VOLUMINOUS GEOSPATIAL DATA STREAMS 23

9. Dean J, Ghemawat S. Mapreduce: Simplified data processing on large clusters. Commun. ACM Jan
2008; 51(1):107–113, doi:10.1145/1327452.1327492. URL http://doi.acm.org/10.1145/1327452.
1327492.

10. Niemeyer G. Geohash 2008. URL http://en.wikipedia.org/wiki/Geohash.
11. Hall M, et al.. The WEKA data mining software: An update. SIGKDD Explor. Newsl. Nov 2009; 11(1):10–18.
12. Datumbox Machine Learning Framework. Datumbox 2016. URL http://www.datumbox.com.
13. Bishop CM. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag New

York, Inc.: Secaucus, NJ, USA, 2006.
14. Hastie T, Tibshirani R, Friedman J, Hastie T, Friedman J, Tibshirani R. The elements of statistical learning, vol. 2.

Springer, 2009.
15. McCallum A, Nigam K, Ungar LH. Efficient clustering of high-dimensional data sets with application to reference

matching. Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’00, ACM: New York, NY, USA, 2000; 169–178, doi:10.1145/347090.347123. URL http:
//doi.acm.org/10.1145/347090.347123.

16. Antoniak CE. Mixtures of dirichlet processes with applications to bayesian nonparametric problems. Ann.
Statist. 11 1974; 2(6):1152–1174, doi:10.1214/aos/1176342871. URL http://dx.doi.org/10.1214/
aos/1176342871.

17. Görür D, Edward Rasmussen C. Dirichlet process gaussian mixture models: Choice of the base distribution.
Journal of Computer Science and Technology 2010; 25(4):653–664, doi:10.1007/s11390-010-9355-8. URL http:
//dx.doi.org/10.1007/s11390-010-9355-8.

18. Patcha A, Park JM. An overview of anomaly detection techniques: Existing solutions and latest technological
trends. Computer Networks 2007; 51(12):3448–3470.

19. Raginsky M, Willett RM, Horn C, Silva J, Marcia RF. Sequential anomaly detection in the presence of noise and
limited feedback. Information Theory, IEEE Transactions on 2012; 58(8):5544–5562.

20. Bache K, Lichman M. UCI machine learning repository 2013. URL http://archive.ics.uci.edu/ml.
21. Koontz J, Malensek M, Pallickara SL. Geolens: Enabling interactive visual analytics over large-scale,

multidimensional geospatial datasets. Proceedings of the 2014 IEEE/ACM International Symposium on Big Data
Computing (BDC), 2014; 35–44, doi:10.1109/BDC.2014.12.

22. National Oceanic and Atmospheric Administration. the north american mesoscale forecast system. http://www.
emc.ncep.noaa.gov/index.php?branch=nam 2013.

23. Rew R, Davis G. Netcdf: an interface for scientific data access. Computer Graphics and Applications, IEEE 1990;
10(4):76–82.

24. The Apache Software Foundation. Apache HBase: A distributed database for large datasets ; URL http:
//hbase.apache.org.

25. Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A, Gruber RE. Bigtable:
A distributed storage system for structured data. ACM Trans. Comput. Syst. Jun 2008; 26(2):4:1–4:26, doi:
10.1145/1365815.1365816. URL http://doi.acm.org/10.1145/1365815.1365816.

26. Lakshman A, Malik P. Cassandra: A decentralized structured storage system. SIGOPS Oper. Syst. Rev.
Apr 2010; 44(2):35–40, doi:10.1145/1773912.1773922. URL http://doi.acm.org/10.1145/1773912.
1773922.

27. The Apache Software Foundation. Apache Accumulo ; URL https://accumulo.apache.org.
28. Chandola V, Banerjee A, Kumar V. Anomaly detection: A survey. ACM Comput. Surv. Jul 2009; 41(3):15:1–15:58,

doi:10.1145/1541880.1541882. URL http://doi.acm.org/10.1145/1541880.1541882.
29. Aggarwal CC. On abnormality detection in spuriously populated data streams. SDM, SIAM, 2005; 80–91.
30. Lee W, Xiang D. Information-theoretic measures for anomaly detection. Proceedings of the 2001 IEEE Symposium

on Security and Privacy, SP ’01, IEEE Computer Society: Washington, DC, USA, 2001; 130–. URL http:
//dl.acm.org/citation.cfm?id=882495.884435.

31. Arning A, Agrawal R, Raghavan P. A linear method for deviation detection in large databases. Proceedings of
the Second International Conference on Knowledge Discovery and Data Mining, KDD’96, AAAI Press, 1996;
164–169. URL http://dl.acm.org/citation.cfm?id=3001460.3001495.

32. Hawkins J, George D. Hierarchical temporal memory: Concepts, theory and terminology. Technical Report,
Technical report, Numenta 2006.

33. Tan SC, Ting KM, Liu TF. Fast anomaly detection for streaming data. Proceedings of the Twenty-Second
International Joint Conference on Artificial Intelligence - Volume Volume Two, IJCAI’11, AAAI Press,
2011; 1511–1516, doi:10.5591/978-1-57735-516-8/IJCAI11-254. URL http://dx.doi.org/10.5591/
978-1-57735-516-8/IJCAI11-254.

34. Wu K, Zhang K, Fan W, Edwards A, Philip SY. Rs-forest: A rapid density estimator for streaming anomaly
detection. 2014 IEEE International Conference on Data Mining, IEEE, 2014; 600–609.

35. Song X, Wu M, Jermaine C, Ranka S. Conditional anomaly detection. Knowledge and Data Engineering, IEEE
Transactions on 2007; 19(5):631–645.

36. Wang X, Davidson I. Discovering contexts and contextual outliers using random walks in graphs. Data Mining,
2009. ICDM’09. Ninth IEEE International Conference on, IEEE, 2009; 1034–1039.

37. Catterson VM, McArthur SD, Moss G. Online conditional anomaly detection in multivariate data for transformer
monitoring. Power Delivery, IEEE Transactions on 2010; 25(4):2556–2564.

38. McArthur SD, Booth CD, McDonald J, McFadyen IT. An agent-based anomaly detection architecture for condition
monitoring. Power Systems, IEEE Transactions on 2005; 20(4):1675–1682.

39. Chhabra P, Scott C, Kolaczyk E, Crovella M. Distributed spatial anomaly detection. INFOCOM 2008. The 27th
Conference on Computer Communications. IEEE, 2008, doi:10.1109/INFOCOM.2008.232.

40. Rajasegarar S, Leckie C, Palaniswami M, Bezdek J. Distributed anomaly detection in wireless sensor networks.
Communication systems, 2006. ICCS 2006. 10th IEEE Singapore International Conference on, 2006; 1–5, doi:
10.1109/ICCS.2006.301508.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

http://doi.acm.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492
http://en.wikipedia.org/wiki/Geohash
http://www.datumbox.com
http://doi.acm.org/10.1145/347090.347123
http://doi.acm.org/10.1145/347090.347123
http://dx.doi.org/10.1214/aos/1176342871
http://dx.doi.org/10.1214/aos/1176342871
http://dx.doi.org/10.1007/s11390-010-9355-8
http://dx.doi.org/10.1007/s11390-010-9355-8
http://archive.ics.uci.edu/ml
http://www.emc.ncep.noaa.gov/index.php?branch=nam
http://www.emc.ncep.noaa.gov/index.php?branch=nam
http://hbase.apache.org
http://hbase.apache.org
http://doi.acm.org/10.1145/1365815.1365816
http://doi.acm.org/10.1145/1773912.1773922
http://doi.acm.org/10.1145/1773912.1773922
https://accumulo.apache.org
http://doi.acm.org/10.1145/1541880.1541882
http://dl.acm.org/citation.cfm?id=882495.884435
http://dl.acm.org/citation.cfm?id=882495.884435
http://dl.acm.org/citation.cfm?id=3001460.3001495
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-254
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-254

24 W. BUDGAGA ET AL.

41. Zhao W, Ma H, He Q. Parallel k-means clustering based on mapreduce. Proceedings of the 1st International
Conference on Cloud Computing, CloudCom ’09, Springer-Verlag: Berlin, Heidelberg, 2009; 674–679.

42. Lämmel R. Googles mapreduce programming modelrevisited. Science of computer programming 2008; 70(1):1–30.
43. Lee J, Cha S. Page-based anomaly detection in large scale web clusters using adaptive mapreduce (extended

abstract). Proceedings of the 11th International Symposium on Recent Advances in Intrusion Detection, RAID
0́8, Springer-Verlag.

44. Wang K, Wang Y, Yin B. A density-based anomaly detection method for mapreduce. Network Computing and
Applications (NCA), 2012 11th IEEE International Symposium on, IEEE, 2012; 159–162.

45. Kraska T, Talwalkar A, Duchi JC, Griffith R, Franklin MJ, Jordan MI. Mlbase: A distributed machine-learning
system. CIDR, 2013.

46. Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauley M, Franklin MJ, Shenker S, Stoica I. Resilient
distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. Proceedings of the 9th USENIX
Conference on Networked Systems Design and Implementation, NSDI’12, USENIX Association: Berkeley, CA,
USA, 2012; 2–2. URL http://dl.acm.org/citation.cfm?id=2228298.2228301.

47. Hagedorn S, Sattler KU, Gertz M. A Framework for Scalable Correlation of Spatio-temporal Event Data. Springer
International Publishing: Cham, 2015; 9–15, doi:10.1007/978-3-319-20424-6 2. URL http://dx.doi.org/
10.1007/978-3-319-20424-6_2.

48. Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I. Spark: Cluster computing with working
sets. Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing, HotCloud’10,
USENIX Association: Berkeley, CA, USA, 2010; 10–10. URL http://dl.acm.org/citation.cfm?id=
1863103.1863113.

49. Ester M, Kriegel HP, Sander J, Xu X. A density-based algorithm for discovering clusters in large spatial databases
with noise. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD),
AAAI Press, 1996; 226–231.

50. Fox A, Eichelberger C, Hughes J, Lyon S. Spatio-temporal indexing in non-relational distributed databases. 2013
IEEE International Conference on Big Data, Institute of Electrical and Electronics Engineers (IEEE), 2013, doi:
10.1109/bigdata.2013.6691586. URL http://dx.doi.org/10.1109/BigData.2013.6691586.

51. Hughes JN, Annex A, Eichelberger CN, Fox A, Hulbert A, Ronquest M. GeoMesa: a distributed architecture for
spatio-temporal fusion. Geospatial Informatics, Fusion, and Motion Video Analytics V, Pellechia MF, Palaniappan
K, Doucette PJ, Dockstader SL, Seetharaman G (eds.), SPIE-Intl Soc Optical Eng, 2015, doi:10.1117/12.2177233.
URL http://dx.doi.org/10.1117/12.2177233.

52. Kreps J, Narkhede N, Rao J, et al.. Kafka: A distributed messaging system for log processing. Proceedings of the
NetDB, 2011; 1–7.

53. Deoliveira J. Geoserver: uniting the geoweb and spatial data infrastructures. Proceedings of the 10th International
Conference for Spatial Data Infrastructure, St. Augustine, Trinidad, 2008.

Copyright c© 2017 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2017)
Prepared using cpeauth.cls DOI: 10.1002/cpe

http://dl.acm.org/citation.cfm?id=2228298.2228301
http://dx.doi.org/10.1007/978-3-319-20424-6_2
http://dx.doi.org/10.1007/978-3-319-20424-6_2
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://dx.doi.org/10.1109/BigData.2013.6691586
http://dx.doi.org/10.1117/12.2177233

	1 Introduction
	1.1 Research Challenges
	1.2 Research Questions
	1.3 Approach Summary
	1.4 Paper Contributions
	1.5 Paper Organization

	2 Distributed Storage Framework
	2.1 Galileo
	2.2 Storage Nodes
	2.3 Metadata Management and Information Retrieval
	2.4 Geospatial Data Partitioning

	3 Anomaly Detection Framework
	3.1 Storage Node Integration
	3.2 The Coordinator
	3.3 Anomaly Detector
	3.4 Anomaly Queries

	4 Reference Anomaly Detector Implementations
	4.1 Anomaly Detection Algorithms
	4.1.1 Density Based Anomaly Detection: GMMs and EM
	4.1.2 Distance Based Anomaly Detection: K-Means
	4.1.3 Bayesian Anomaly Detection: Dirichlet Process Mixture Models (DPMMs)
	4.1.4 Ensemble Anomaly Detection: Isolation Forests

	4.2 Binary Classifiers
	4.2.1 Anomaly Detection Without Threshold Parameterization
	4.2.2 The Adaptive Algorithm

	4.3 Evaluation of the Anomaly Detection Metric

	5 Anomalous Events: Analysis and Visualization
	6 Experimental Results
	6.1 Building the Models: Test Dataset
	6.2 Experimental Setup
	6.3 Anomaly Detection Throughput
	6.4 Storage Throughput
	6.5 Impact of Geospatial Scope on Model Accuracy
	6.6 Evaluating Model Adaptation
	6.7 Comparison of Anomaly Detection Methods

	7 Related Work
	8 Conclusions

