
1

Evaluating Geospatial Geometry and Proximity
Queries Using Distributed Hash Tables

Matthew Malensek, Sangmi Pallickara, and Shrideep Pallickara, Members, IEEE

Abstract

Data volumes in the geosciences and related domains have grown significantly as sensing equipment designed to
continuously gather readings and produce data streams for geographic regions have proliferated. The storage requirements
imposed by these datasets vastly outstrip the capabilities of a single computing resource, leading to the use and
development of distributed storage frameworks composed of commodity hardware.

In this paper, we explore the challenges associated with supporting geospatial retrievals constrained by arbitrary
geometric bounds, geographic proximity, and relevance rankings. Our solution involves the use of a lightweight, distributed
spatial indexing structure, the geoavailability grid. Geoavailability grids provide global, coarse-grained representations of
the spatial information stored within these ever-expanding datasets, allowing the search space of distributed queries to be
reduced by eliminating storage resources that do not hold relevant information. The index can also be used in non-distributed
settings, and performs competitively with other spatial indexing technologies.

Index Terms

Geospatial Query Evaluation, Distributed Hash Tables, Cloud Infrastructure

F

1 INTRODUCTION

The proliferation of observational devices such as in situ sensors and remote sensing equipment such as satellites and
radars have contributed to ever-increasing data volumes. These sensors measure and report on various environmen-
tal and atmospheric phenomena that are used in weather forecasting, ecology, hydrology, erosion, and agricultural
models. The rate, resolution, and precision at which these measurements are performed have all increased over time,
leading to the collection of extreme-scale datasets that logically fuse information gathered from diverse equipment.

To cope with these data volumes and their concomitant I/O loads, such datasets are dispersed over a collection
of machines for future analysis and retrieval. We investigate this problem in the context of distributed hash tables
(DHTs). DHTs are robust, scalable systems for managing large networks of heterogeneous computing resources.
Often underpinned by a consistent hashing scheme, DHTs offer excellent load balancing properties and are well-
suited for scale-out architectures where commodity hardware can be added incrementally to meet rising storage or
processing demands.

Analysis of such datasets often involves queries on spatial bounds of interest in the form of user-specified
geometric shapes. Such queries can correspond to administrative or natural boundaries, and provide greater freedom
to apply various types of investigation or processing. Storage and retrieval of predefined polygon-based shapes is
well researched; a typical approach involves sorting polygon coordinates along one dimension (such as latitude or
longitude) to generate a deterministic array that can be used to compute a hash value for storage and retrieval.
However, the datasets we focus on in this work are multidimensional and continually assimilate additional data
at varying resolutions from diverse sources. This renders solutions that rely on precomputed or static shapes
ineffective, necessitating an alternate approach. Consequently, the geometry-based query support in question must
be decoupled from the generation and storage of data.

1.1 Research Challenges
We consider the problem of fast and scalable evaluation of queries constrained by arbitrary shapes over time series
datasets with geospatial properties. The challenges involved in doing so include:

1) The data being managed is both voluminous and distributed over multiple computing resources.
2) The system is decentralized; distributed query evaluations can be performed by any of the machines that

comprise the storage network.

• M. Malensek, S. Pallickara, and S. Pallickara are with the Department of Computer Science, Colorado State University, Fort Collins, CO 80523. E-mail:
{malensek,sangmi,shrideep}@cs.colostate.edu

2

3) Broadcasting to all machines for query evaluation is inefficient and latency-prone; the search space must be
reduced to efficiently service query requests and facilitate timely analysis.

4) Data points have multiple dimensions that represent a variety of readings for a particular geolocation.
5) Queries may specify chronological bounds to request a portion of the available time series information.
6) Distributed data structures used for query evaluation must be compact to avoid excessive state exchange.

1.2 Research Questions
Key research questions that we explore in this paper include the following:

1) How can we manage the trade-off space between memory consumption and the resolution of data structures?
How does this impact the speed of query evaluations?

2) How do we strike a balance between global and local information maintained by each node, and what is the
impact on the overall search space?

3) How can we constrain query evaluations using arbitrary shapes without compromising key DHT functionality?
4) How can we support proximity queries efficiently? In some cases, query scope may be controlled by require-

ments for a specific number of results.
5) Given the high dimensionality of the data points, how can we support efficient relevance ranking of query

evaluation results?

1.3 Overview of Approach
The approach described in this paper is based on our hierarchical DHT implementation, Galileo [1], [2]. Galileo
is designed for high-throughput management of multidimensional data streams. To create an overall view of the
spatial locations of data stored in the system, we provide a distributed spatial index called the geoavailability grid.
Updates to the grid are disseminated through a lightweight gossip protocol, and we rely on an eventual consistency
model wherein nodes in the system will converge on a steady state when no new updates are available.

This work extends our previous investigation [2] on the distributed lookup capabilities that can be provided by
this indexing technology: hybrid local retrievals (Section 5), arbitrary geometric shapes or combinations of shapes
that need not be contiguous (Section 6), proximity searches (Section 7), and relevance rankings (Section 8).

1.4 Paper Contributions
A key innovation in the algorithms described in this paper is the ability to constrain search queries using arbitrary
shapes (including curves and polygons) in multidimensional, spatiotemporal datasets encompassing hundreds of
millions of files. Aspects of our algorithm are also amenable to GPU acceleration. To our knowledge, no current
system provides the real-time query evaluation capabilities described in this paper.

Additionally, our framework accelerates queries by evaluating them concurrently across relevant nodes while
supporting expressive range-based and exact-match retrievals on feature values in addition to polygon boundaries.
Most importantly, data generation and query specification are completely decoupled in our solution, and do not
rely on any of the previously-developed functionality in Galileo. This makes the Geoavailability Grid applicable to
other storage frameworks as well.

To ensure the scalability of our solution we have also conducted preliminary tests that doubled the size of the
dataset and increased the number of nodes in the cluster by 60%, while achieving a similar performance profile in
both query response times and communication per node. Results from a simulated run on a 10,000-node cluster
suggest that these trends continue at larger scales.

2 SYSTEM OVERVIEW

Galileo is a high-throughput storage framework implemented as a distributed hash table (DHT). Unlike typical
DHT designs, Galileo uses zero-hop routing, meaning requests are sent directly to their destination rather than
taking intermediate hops through the network. This reduces latency and the overall amount of communication
between network participants. To ensure scalability and flexibility, Galileo also supports the use of multiple hash
functions to create resource hierarchies or subdivide the network. The system has been tested with up to 10,000
nodes in a simulated environment and been deployed in production on clusters ranging from 48 to 150 nodes.

The primary use case for Galileo is the storage and processing of voluminous, multidimensional datasets in the
scientific domain. These datasets often have spatial and temporal characteristics along with several other features
of interest. For retrievals based on feature values, the system allows both exact-match and range-based queries
through a multi-layered indexing strategy that incorporates a global feature graph and local metadata graph instances.
To facilitate processing activities through MapReduce computations or directed, cyclic graphs, Galileo is integrated

3

with the Granules cloud runtime. Granules has been used to process data streams in settings with stringent real
time constraints [3].

Unlike a standard DHT, partitioning and retrieval operations in Galileo are completely decoupled. This approach
allows for novel load distribution configurations and hierarchical network layouts. The storage nodes in Galileo can
be placed into groups to create a network hierarchy; in this study, each group is assigned a portion of the overall
geography being managed by the system.

2.1 Metadata and Information Retrieval
Each node in the system maintains a metadata graph for quickly evaluating local queries. A metadata graph instance
is populated with relevant feature information from the files stored on the node, and traversing through the graph’s
hierarchical structure narrows queries down to their relevant files. For global lookup capabilities, a feature graph
instance is maintained at each storage node, which provides a coarse-grained view of all the data in the system.
When executing a distributed query, the feature graph can be used to reduce the overall search space before
submitting individual subqueries to local metadata graphs for evaluation. In most cases, this optimization provides
a dramatic reduction in the number of nodes that must be contacted to evaluate a given query operation.

While the combination of the metadata graphs and feature graph have proven to be effective for indexing a variety
of data types, storing two- or even three-dimensional information in these structures can involve the creation of a
substantial amount of vertices and edges. For instance, the high-resolution data subset used in this work required
the addition of at least 33 million vertices per graph under optimal conditions. These factors, as well as the analysis
capabilities that spatial indexing can afford, inspired our development of the geoavailability grid.

2.2 Experimental Configuration
Our test dataset was derived from the National Oceanic and Atmospheric Administration (NOAA) North Ameri-
can Mesoscale Forecast System [4]. The test dataset consists of one billion (1,000,000,000) files, each around 8 KB.
The features that we indexed for this work included the spatial location of the samples, the time they were recorded,
percent maximum relative humidity, surface temperature (Kelvin), wind speed (meters per second), and snow depth
(meters).

Tests in this paper were carried out on a 48-node cluster of HP DL160 servers equipped with a Xeon E5620 CPU,
12 GB of RAM, and a 15000-RPM disk. Nodes were divided into eight Galileo groups.

3 INDEXING: THE GEOAVAILABILITY GRID

Indexing in a distributed environment with highly voluminous datasets can be challenging; a central “index” server
is a single point of failure and can quickly become a bottleneck in high-load situations, but an index that is shared
across all nodes in the system can result in consistency problems and excessive state exchange over the network.

The R-tree [5] is commonly employed in non-distributed applications for spatial indexing due to its speed and
efficiency, but has several constraining properties that limit its scalability in distributed applications. Using an R-tree
as a global index for billions of files would require a substantial amount of memory, along with a high number
of distributed updates due to the frequent rebalancing operations that take place within the tree. Additionally,
splitting the tree across multiple nodes and designing a storage network around the data structure is constraining
and latency-prone.

To overcome these scalability issues, we have developed the geoavailability grid, a distributed spatial indexing data
structure that is scalable and fault-tolerant. Geoavailability grids translate points in space to a reduced-resolution
coordinate system for indexing purposes using bit vectors (bitmaps). Each bit represents a location, and its on-off
state indicates whether or not information has been stored there. Due to their concise and efficient nature, bitmap
indexes have seen considerable research and usage in a variety of relational databases and data warehousing
systems.

3.1 Geocoding
To partition information in our DHT and provide a coarse-grained representation of its spatial properties, we use the
Geohash [6] geocoding algorithm. Geohash provides a hierarchical, grid-based model of the Earth where locations
are represented by Base32 strings. The longer the Geohash string, the more precise the bounding box around the
location it references. A Geohash is derived by interleaving bits obtained from latitude-longitude pairs; for example,
the decimal coordinates of N 41.8827◦, W −87.6236◦ would map to the Geohash string DP3WQ0D2, representing
40 bits of precision (eight characters, five bits per character). Each additional bit in a Geohash doubles the number
of hash buckets it references, representing finer-grained spatial areas that lie deeper within the hierarchy.

4

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1
1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0
0 0 0 0 1 1 1 0 0 0 1 0 0 0 1 0

Fig. 1. A geographic region (left) containing several data points, with its geoavailability grid (right).

Using a geocoding algorithm is an essential component of our indexing scheme because it determines the ranges
of information that must be stored in each instance of the index. In this study, the first two Geohash characters of a
spatial location are used to determine the group of nodes responsible for storing the data. This has two key benefits:
specifying the first two characters (10 bits) of a Geohash can significantly reduce the search space for spatial queries
without additional indexing, and it also means that nodes can exclude information from their geoavailability grids
that lies outside of their geographic scope.

3.2 Generating the Index
Geoavailability grids are initially configured with a width and height based on geocoding granularity. For example,
if a gridded dataset contains readings at intervals of around 30 km, approximately 32 bits of Geohash precision
would be required to place samples in separate “bins.” Choosing an appropriate granularity is highly dependent
on the type of information being stored and the intended analysis that will be performed on the data. Finer-grained
resolutions allow more specific queries to be resolved, but also increase the overall size of the index. Each feature
of interest (such as humidity or temperature) is accompanied by a unique geoavailability grid, enabling queries to
distinguish between different feature types.

For our particular dataset, spatial locations are represented by 30-bit Geohashes. After accounting for the first 10
bits that are used to determine group membership, the remaining 20 bits are used to populate the geoavailability
grids on each node in the system:

DP3WQ0 = 01100 10101︸ ︷︷ ︸
Group Hash

00011 11100 10110 00000︸ ︷︷ ︸
Location in Bitmap Index

This is accomplished by mapping spatial coordinates to their closest bitmap coordinates, and ensuring that the
relevant bitmap location is set to a 1 to indicate that one or more data points are present in the location. 20 bits
of precision corresponds to 220 Geohash buckets, which is the total number of bits in each index instance. Since
Geohashes interleave latitude and longitude values, the width and height proportion of the index changes with
each additional bit. Therefore, an index of n Geohash bits would have a width of 2bn/2c and a height of 2dn/2e.
Figure 1 illustrates how a region could be represented as a geoavailability grid.

3.3 Compression
While bitmaps provide a simple means to index a wide variety of data types, the sheer number of bits required for
these representations can prove to be problematic both in memory consumption and processing times for bitwise
operations. Extensive investigation has been conducted on compressing bitmap representations, from simple run-
length encoding to more advanced schemes such as the Enhanced Word-Aligned Hybrid (EWAH) compression [7],
[8], which is used in this work. Table 1 illustrates the difference between uncompressed and compressed bitmap
representations for our entire dataset. For gridded data, higher resolutions (derived from the second half of the
Geohash bits) increase the sparsity of the index and improve compressibility. If our dataset was expanded to cover
the entire Earth, the total size of the geoavailability grids would be about 50 MB using 25-bit precision.

Compressed bitmaps are somewhat unique in that they generally do not require decompression before pro-
cessing occurs. In fact, compression can often speed up bitwise operations. To deal with situations that require
alternative compression algorithms, we provide an interface that allows the underlying bitmap representation of a
geoavailability grid to be changed at runtime or during system configuration.

5

TABLE 1
Bitmap Compression for Various Index Resolutions

Resolution Original Size (KB) Compressed (KB)
15-bit 309.0 294.4
20-bit 9879.02 3196.9
25-bit 316090.28 4034.7

3.4 Updating the Index
To ensure that new files’ spatial information is disseminated rapidly, geoavailability grid updates are gossiped
between groups on a regular basis along with other state information. An update consists of a set of bits that have
changed since the publication of the previous update. If a storage node finds itself out of sync with the current
updates, neighboring peers can also generate an update or transmit an entire copy of the index. Updates are also
represented as compressed bitmaps, meaning that they generally consume a minimal amount of space; in our tests,
a completely random 1000-bit update (representing an approximate worst case from a compressibility standpoint)
resulted in an update size of about 15 KB.

4 RETRIEVAL: POLYGON-BASED QUERY EVALUATION

Once the spatial information has been indexed in geoavailability grids at each storage node, the system can evaluate
user-defined geospatial queries. Geospatial query evaluation in Galileo proceeds as follows:

1) A user submits query geometry to retrieve data from.
2) The query is decomposed into subqueries by intersecting it with group geometries.
3) Geoavailability grids are consulted to determine if data may be available, eliminating any irrelevant nodes.
4) Subqueries are submitted to the remaining set of relevant nodes for evaluation.

4.1 Spatial Decomposition
Each group in Galileo is responsible for storing data pertaining to a particular geospatial region. These regions
are known by the other nodes in the system and maintained in memory as polygons. To begin decomposing a
spatial query, the minimum bounding rectangle (MBR) is calculated for the query geometry, which is the smallest
rectangle that completely surrounds the query polygon. Any group geometries that are overlapped by the query
MBR are then intersected with the query polygon. After the intersection operation, the remaining geometries are
used to produce a set of groups that are relevant to the query. Decomposing queries in this manner has two key
advantages: small queries will naturally involve fewer storage nodes, whereas larger queries that are represented
by polygons spanning greater geographic regions are processed in parallel across multiple nodes.

4.2 Geoavailability Evaluation
Before being evaluated against the collection of pertinent geoavailability grids, query polygons must be projected
onto a corresponding bitmap coordinate system. Once this process has been completed, a query bitmap is created
using the polygon geometry. To create a query bitmap, the spatial area covered by the geoavailability grid can
be thought of as a monochrome graphical canvas that will be drawn using standard graphics routines; using the
provided query polygon, the regions of interest are filled with color to set the relevant bits within the polygon
boundaries to 1. This effectively converts a user-provided polygon into a geoavailability grid by leveraging existing
graphical algorithms and any hardware acceleration available to the system. In cases where extremely large bitmaps
are being generated, GPUs can be leveraged if support is available. Another benefit of this strategy is that queries
can be easily visualized as images.

Once a query bitmap has been obtained, evaluating the presence of relevant data within the polygon boundaries
is simple: a logical AND is performed between the geoavailability grids and query bitmap. If the resulting bitmap
contains any bits set to 1, then there was a region with relevant spatial data that overlapped the query geometry,
and the subquery is passed on to relevant storage nodes. Table 2 contains timing information for processing
a geoavailability lookup. We also performed the same test with MongoDB 2.4 [9] by using the polygon-based
$geoWithin operator to query against our dataset; the evaluations took 28.42ms on average, with a standard
deviation of 1.51ms. However, the spatial index used in MongoDB does not reduce the resolution of its data points.

A complete geoavailability evaluation returns a set of storage nodes that contain spatial information within the
query boundaries. This set is intersected with results from a feature graph lookup of any other constraints specified

6

TABLE 2
Geoavailability evaluation speed, averaged over 1000 runs against each group Geohash

Resolution Lookup Time (ms) SD (ms)
15-bit 0.012 0.021
20-bit 0.163 0.203
25-bit 0.723 0.289

by the user, which further reduces the search space by eliminating any destinations that cannot satisfy the entire
query. Subqueries are submitted to the remaining set of storage nodes for the final step in the query evaluation
process: local retrieval.

5 LOCAL RETRIEVAL: GEOAVAILABILITY R-TREES

While our previous investigations showed that geoavailability grids can outperform the venerable R-tree spatial
index at extreme scales [2], the grids benefit from using coarse-grained spatial representations provided by geocod-
ing. To take advantage of the strengths present in both technologies, we developed a hybrid form of R-tree that
uses geospatial boundaries derived from geoavailability grids. In this case the R-tree contains geoavailability grid
cells rather than individual points, which decreases precision but significantly reduces the amount of information
that must be stored in the index.

To investigate the performance of the geoavailability R-tree, geoavailability grid, and a standard R-tree, we used
a polygon subquery in North America from our previous work that followed the Mississippi river down to the Gulf
of Mexico. The Java Spatial Index (JSI) [10] implementation of the R-tree algorithm was used in these benchmarks
due to its focus on performance, and the geoavailability grids were configured with 25-bit precision. Through the
course of the tests, the query polygon was upscaled to retrieve more files by including a larger portion of the dataset.
Figure 2 illustrates the performance of all three strategies when retrieving points from our test dataset, with each
point representing about 5000 files. While the standard R-tree cannot cope with large amounts of data points, the
geoavailability R-tree provides the best overall performance in our benchmarks. However, using a geoavailability
R-tree requires additional memory for each feature type, and also exhibits slower performance as the number of
points retrieved increases; evaluating a query with a geoavailability grid will generally require the same amount
of processing time regardless of the size of the query geometry.

6 ADVANCED QUERY GEOMETRY

A broad range of geometric concepts can be represented with polygons alone. However, polygons are not always
the most concise way to portray a geospatial query. For instance, circular shapes that can be described with an
origin and radius would require a large amount of very small line segments to be approximated with a polygon.
Describing a square or rectangle requires only two opposite coordinate pairs, versus four line segments in an
equivalent polygon. For this reason, we allow several additional geometry types to be used in spatial queries to a
handle a more comprehensive range of use cases.

When dealing with complicated geometry, geoavailability grids provide results that require very little post
processing, unlike indexes such as R-trees that generalize shapes to rectangles. A single query may also include
multiple shapes that are combined with operators from set notation: for example, a union of two shapes would
select the geographical regions encompassed by both shapes, whereas the complement operator can be used to
effectively “subtract” regions from an existing shape.

6.1 Shape Types and Transformations
We provide several types of shape geometry beyond standard polygons for expressing queries:
• Line segments
• Quadratic and cubic (Bézier) curves
• Squares, rectangles, and rounded rectangles
• Circles and ellipses

Each of these shape types can be combined with set operators or be modified through a shape transformation.
Transformations include translation, rotation, scaling, clipping, and shearing, which can be useful for adapating
simple geometric shapes to a particular terrain. Queries can be created programmatically or generated with any
graphics software capable of creating SVG images, which can simplify the query process for end users. Once a

7

1 2 4 8 16
Points Retrieved; 1 point = 5000 files

0

1

2

3

4

5

Qu
er

y
Ev

al
ua

tio
n

Ti
m

e
(m

s)

Geoavailability Grid
Geoavailability R-tree
Standard R-tree

Spatial Index Query Evaluation

Fig. 2. Comparison of geoavailability grids, geoavailability R-trees, and a standard R-tree for retrieval operations.
Results are averaged over 1000 runs.

(a) (b) (c)

Fig. 3. Sample query geometry. From left to right: a radiation pattern (a), a geographical area surrounding a landmark
(b), and a river/lake (c) using a combination of line segments and curves.

query geometry has been created and is ready to be evaluated by the system, it is flattened to a composite shape
and serialized to a compact binary representation for transmission across the network. Figure 3 provides example
shapes that can be used to retrieve information for a variety of use cases. When covering an area of approximately
50 km, shapes (a) and (b) can be transformed into a composite shape by the system in about 0.24ms, while the
more complex geometry in shape (c) takes about 0.39ms to produce with CPU-only graphics routines (averaged
over 1000 runs).

6.2 Support for Preset Query Geography and Shapefiles
For analyzing trends in climate conditions across the continental United States using the NOAA test dataset,
we imported geometries for congressional districts, counties, and zip code tabulation areas (ZCTAs) from the
Topologically Integrated Geographic Encoding and Referencing (TIGER) datasets provided by the United States
Census Bureau. To support these datasets, we added support for industry-standard Esri shapefiles. Shapefiles can
be quickly converted to geometry compatible with geoavailability grids and stored on storage nodes that manage
relevant geographical regions. This functionality can also be used for business-specific geographic boundaries; for

8

(a) (b)

Fig. 4. (a) Proximity query starting from a given point on a street corner (indicated by a cross) and radiating outward
with progressively wider-ranging query annuli; (b) query with boundaries constrained to the geometry of DuPage
County, Illinois, USA.

instance, an electric utility company may wish to divide their service territory based on the coverage areas of their
substations that provide power for consumers.

To analyze the performance of large-scale queries on preset geometric shapes, we used state boundaries imported
from the TIGER datasets. Files containing humidity values above 70% were requested to constrain the queries and
results were averaged over 1000 runs. Larger states required communicating with more storage nodes to resolve
the queries: Texas, California, and Rhode Island contacted 18, 14, and 2 nodes, respectively, with complete metadata
results streamed back to the client in 305.15ms, 265.07ms, and 24.81ms.

7 PROXIMITY AND NEAREST NEIGHBOR SEARCHES

While the queries described thus far enable flexible retrieval of geospatial information, they do not account for
situations where the desired geometry is not known at query time. This situation occurs frequently in geographic
information systems (GIS) or cartographic visualizations; for instance, a user may wish to locate the nearest retail
store that sells a particular range of products, but cannot estimate the breadth of his/her search. In these cases,
the query geometry is unknown and the search is represented as a single starting coordinate pair. Additionally,
proximity queries imply priority in their search results: the closest matching points should be returned first, followed
by increasingly distant matches.

Given a pair of starting coordinates, proximity queries are evaluated by first checking the corresponding geoavail-
ability grid location. If the bit in this location is set, then the search can be immediately evaluated by the storage
node that contains information for the grid point. However, there are often situations where the coarse-grained
geoavailability grid cell that was referenced does not contain matching information. In this case, circular query ge-
ometry is generated and centered over the starting coordinate pair. To broaden the scope of the search, progressively
larger annuli (donut-shaped geometry) are evaluated against the geoavailability grids. This avoids re-querying areas
that have already been inspected previously by the algorithm. Figure 4a illustrates the process behind evaluating
a proximity query, with five iterations of the algorithm shown (including the initial grid cell check).

Each subsequent query annulus retrieves information that is streamed back to clients incrementally; the first
results that a client receives will be the closest, followed by additional matches that are located geographically
further from the original coordinate pair. With 25-bit grids, 8 iterations of the algorithm over a 50km region took
5.35ms with a standard deviation of 0.41ms when averaged over 1000 runs. Using the same parameters on a single-
node installation of MongoDB 2.4 [9], the operation took 56.95ms with a standard deviation of 4.53ms. One key
performance advantage of our proximity algorithm is that it does not require results to be collected and sorted as
a post-processing step.

7.1 Geographically Constrained Proximity Queries
In circumstances that require a proximity search within a specific geographic region, we provide geographically
constrained proximity queries. As with a standard proximity query, a geographically constrained search begins
with an origin point and radiates outward to discover more information, but is limited to a particular set of
geometric bounds. Much like a query against preset geography, geographically constrained proximity queries can
take advantage of Esri shapefiles or datasets such as TIGER for defining spatial constraints. Figure 4b provides an

9

example of a spatially-constrained proximity query in DuPage County, Illinois. While there may be matching data
points in the neighboring counties, they are excluded from the search.

7.2 Graphics Pipeline Optimizations
Our algorithm for servicing proximity queries makes extensive and frequent use of the underlying graphics frame-
work, which can be accelerated by a compatible GPU. However, capable GPUs are still only occasionally found in
most cloud deployments. Additionally, there are costs associated with transferring information in and out of graphics
memory that must be considered when enabling GPU acceleration. When starting for the first time, storage nodes
perform a hardware benchmark to determine the trade-off space for memory latency and image generation times,
and use the results to autonomously choose the fastest rendering technique. In many cases, queries that span a
small geographic region will be generated by the CPU, but operations on very large bitmaps will be offloaded to
the GPU.

One factor that has a strong influence on bitmap generation times is the size of the geoavailability grids being
used by the system. A larger geoavailability grid results in a proportionately larger “canvas” that will used for
rendering query geometry, which consumes additional memory and processing time. In many cases, a query will
span less than 1-5% of the entire geoavailability grid. To avoid the performance penalties associated with creating
large images in memory, the maximum bounds of incoming query geometry are calculated and used to create a
much smaller query canvas in memory that will be used for drawing operations. Once the canvas has been created,
the query bitmap is generated and then shifted into place using geoavailability grid coordinates. This can provide
significant performance gains; Table 3 compares the naive bitmap generation scheme with the optimized version
for processing proximity queries with varying radii. Both algorithms were run on the CPU.

TABLE 3
Query bitmap generation times for proximity searches with varying radii, averaged over 1000 runs

Modifications Creation Time (ms) SD (ms)
Naive Algorithm, 25 km 30.63 7.34
Optimized, 50 km 0.85 0.26
Optimized, 25 km 0.30 0.12
Optimized, 5 km 0.09 0.05

8 RELEVANCE RANKING

Results from proximity queries have an inherent relevance; points that are closer to the query centroid will generally
be more relevant. However, there are several exceptions to this rule when dealing with a multidimensional dataset.
For instance, a shopper searching for candles may prefer a candle store over a department store that sells a broader
range of products. In a climate study, points with a temperature range of 308-310 Kelvin and a relative humidity
of 50-60% may be more relevant for a particular investigation in a given subregion. These and other similar use
cases led to the development of integrated relevance ranking in our query processing system.

Relevance rankings are provided by applying a relevance function on the results from a query. Galileo includes
a selection of built-in relevance measures for spatial information, and also supports user-defined functions. For
range queries, a relevance gradient can be provided to select highly relevant subsets of the data first, followed
by the remaining information. This functionality, which effectively allows multi-tiered queries, has two primary
advantages: rankings can be used by clients to sift or sort though information, and the most relevant data points
are streamed back to clients first, obviating the need for manual sorting or pre-processing.

9 RELATED WORK

MongoDB [9] is a distributed document store that also provides geospatial indexing capabilities. For load balancing
and horizontal scalability, MongoDB supports sharding and dataset partitioning. Range queries, data replication,
and MapReduce computations can also be handled natively by the system. While MongoDB and Galileo share
several features, Galileo is generally intended to be used with spatiotemporal datasets containing multidimensional
arrays, whereas MongoDB handles JSON-style documents and has some limitations or hard thresholds that can
constrain extremely large collections of files.

SciDB [11] is a scalable scientific storage system that supports multidimensional data. SciDB focuses on incre-
mental scalability for datasets containing petabytes of information. The system also provides built-in computation

10

and analysis tools, whereas Galileo only deals with storage operations; analysis is performed with an external
distributed computation engine. Metadata is stored in a centralized system catalog, contrasting with the combination
of feature graph and metadata graphs used in Galileo.

P2PR-Tree [12] is a P2P-based version of the R-Tree spatial index. The system is decentralized and can also service
spatial queries while peers are leaving or joining the network. In P2PR-Tree, queries are routed to nodes that may
have pertinent information, with a traversal through the network closely resembling a traversal through an R-
Tree. This traversal pattern allows the system to cope with frequently added or removed nodes, but also involves
additional routing steps that could increase latencies. Initially, the range of possible spatial values is broken up
into blocks, with each block being statically divided into a pre-set number of groups. Nodes in the system are then
divided into multiple levels of subgroups with neighboring peers maintaining more detailed information about one
another. Each peer also maintains a local R-Tree for performing lookups on the data it holds. P2PR-Tree is well-
suited for collections of information with geospatial properties, but does not support multidimensional datasets
directly.

10 CONCLUSIONS

The geoavailability grid indexing scheme provides significant reductions in the search space of user-defined geo-
metric queries in a distributed hash table. Instead of indexing every spatial location in the system, grid coordinates
are converted to a coarse-grained compressed bitmap representation. Support for arbitrary geometric queries allows
the system to account for natural, administrative, and political boundaries, as well as provide support for preset
geographical queries and proximity-based searches. Our support for relevance ranking allows users to bias their
queries along a particular dimension (e.g., proximity) or combination of dimensions. Overall, the approach detailed
in this work provides an avenue for coping with extreme-scale data volumes across many distributed computing
resources and allows fast and flexible retrieval of the information for analysis and processing.

ACKNOWLEDGMENTS

This research has been supported by funding from the US Department of Homeland Security’s Long Range program
(HSHQDC-13-C-B0018) and the US National Science Foundation’s Computer Systems Research Program (CNS-
1253908).

REFERENCES
[1] M. Malensek, S. Pallickara, and S. Pallickara, “Expressive query support for multidimensional data in distributed hash tables,” in Utility

and Cloud Computing (UCC), 2012 Fifth IEEE International Conference on, nov. 2012.
[2] ——, “Polygon-based query evaluation over geospatial data using distributed hash tables,” in Utility and Cloud Computing (UCC), 2013

Sixth IEEE International Conference on, Dec. 2013.
[3] K. Ericson, S. Pallickara, and C. Anderson, “Analyzing electroencephalograms using cloud computing techniques,” in Cloud Computing

Technology and Science (CloudCom), 2010 IEEE Second International Conference on. IEEE, 2010, pp. 185–192.
[4] NOAA. (2013) The NAM. [Online]. Available: http://www.emc.ncep.noaa.gov/index.php?branch=NAM
[5] A. Guttman, R-trees: A dynamic index structure for spatial searching. ACM, 1984.
[6] Wikipedia Contributors. (2013) Geohash. [Online]. Available: http://en.wikipedia.org/wiki/Geohash
[7] D. Lemire et al., “Sorting improves word-aligned bitmap indexes,” Data & Knowledge Engineering, vol. 69, no. 1, pp. 3–28, 2010.
[8] K. Wu et al., “Notes on design and implementation of compressed bit vectors,” Lawrence Berkeley National Laboratory, Tech. Rep., 2001.
[9] mongoDB Developers, “Mongodb,” http://www.mongodb.org/, 2013.
[10] JSI (java spatial index). [Online]. Available: http://jsi.sourceforge.net/
[11] P. Brown, “Overview of scidb: large scale array storage, processing and analysis,” in Proceedings of the 2010 international conference on

Management of data. ACM, 2010, pp. 963–968.
[12] A. Mondal et al., “P2pr-tree: An r-tree-based spatial index for peer-to-peer environments,” in Current Trends in Database Technology-EDBT

2004 Workshops. Springer, 2005.

