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Abstract—Networked observational devices and remote sensing equipment continue to proliferate and contribute to the accumulation
of extreme-scale datasets. Both the rate and resolution of the readings produced by these devices have grown over time, exacerbating
the issues surrounding their storage and management. In many cases, the sheer scale of the information being maintained makes
timely analysis infeasible due to the computational workloads required to process the data. While distributed solutions provide a
scalable way to cope with data volumes, the communication and latency involved when inspecting large portions of an overall dataset
limit applications that require frequent or rapid responses to incoming queries.

This study investigates the challenges associated with providing approximate or exploratory answers to distributed queries. In many
situations, this requires striking a balance between response times and error rates to produce meaningful results. To enable these
use cases, we outline several expressive query constructs and describe their implementation; rather than relying on summary tables
or pre-computed samples, our solution involves a coarse-grained global index that maintains statistics and models the relationships
across dimensions in the dataset. To illustrate the benefits of these techniques, we include performance benchmarks on a real-world

dataset in a production environment.

Index Terms—Approximate query processing, ad hoc exploration, multidimensional data, distributed hash tables

1 INTRODUCTION

The past decade has seen substantial growth in data volumes,
with a large portion of this information falling broadly into the
category of geospatial, time-series datasets. Such datasets are
useful in understanding phenomena such as weather, traffic
conditions, or disease spread. They also facilitate threat as-
sessments based on video and activity tags, or can provide
location-based services relating to commerce. The proliferation
of observational devices such as Doppler radars, satellites,
and in-situ sensors alongside falling hardware costs, better
network connectivity, and increased measurement rates have
all contributed to the growth of this data.

Generation of such datasets involves measuring features of
interest at particular geospatial locations. Examples of fea-
tures could include temperature, humidity, traffic density, or
viral infections, with each measurement having an associated
geolocation and time. These readings are taken at regular
intervals or when an environmental change has been detected.
Such measurements can help in understanding how features
(and their underlying phenomena) evolve. This can be useful
for a range of activities, including planning, forecasting, or
disaster mitigation. Features often take on values that evolve
spatiotemporally; for example, the range of temperature values
at a particular location depends on both the time of the day
and day within the year. Multiple features and the values they
take on comprise a feature hyperplane.

As datasets continue to grow in size, efficient query evalu-
ations underpin knowledge extraction, visualization, and pro-
cessing. We classify queries in such settings into two categories:
rigorous and approximate. Rigorous queries have a clear spec-
ification of attributes and are exhaustively evaluated, which
often results in disk accesses or other related I/O activity. The
objective during rigorous query evaluations is to ensure that

e M. Malensek, S. Pallickara, and S. Pallickara are with the Department
of Computer Science, Colorado State University, Fort Collins, CO 80523.
E-mail: {malensek,sangmi,shrideep}@cs.colostate.edu

results are accurate with no false positives or negatives.

On the other hand, approximate queries correspond to an
exploratory, ad hoc analysis of the feature space. Such queries
allow insights to be gained about the underlying dataset and
can drive further investigation if deemed necessary. Studies
have shown that developers and end users often rely on a
continuous query cycle to calibrate attributes and constraints,
with several preliminary inquiries leading up to the final set
of query parameters [1], [2], [3]. Unlike rigorous queries, the
most critical aspect of approximate queries is often evaluation
time, with speed playing a significantly more important role
than accuracy. By their very nature, we expect the number of
approximate queries being serviced by a system to exceed that
of rigorous queries.

Storage and analysis activities at this scale have exceeded
the capabilities of standalone commodity hardware, leading
to the development of distributed solutions that are highly
scalable and elastic. The approximate query processing engine
(AQP) described herein was implemented in the context of
our multidimensional storage system, Galileo [4], [5]. Galileo’s
design is based on distributed hash tables (DHTs), which have
well-known scalability properties that have been demonstrated
in systems such as Facebook’s Cassandra [6] and Amazon’s
Dynamo [7]. DHTs have also been used in BitTorrent, the Coral
CDN, and the YaCy peer-to-peer search engine. However, our
algorithms are not bound to any particular network design. In
fact, we have adapted several of our features to MongoDB [8],
a popular storage system that supports geospatial information.

To our knowledge, none of the current DHT-based systems
accommodate the types of queries or retrieval operations we
have developed in this work, which were performed in the con-
text of voluminous, time series datasets. Through expressive,
massively parallel queries, we enable user-friendly analysis
that can be used to supplement or completely replace custom
MapReduce [9] jobs or distributed computations. Once explo-
ration of the feature space has been completed, distributed
computations can be launched directly on relevant data points
while preserving data locality.



1.1 Research Challenges

The primary goal of this study is to enable fast evaluation
of approximate queries over geospatial, time-series datasets
distributed across resources in a cloud or clustered environ-
ment. To be practical, these evaluations must also be reasonably
accurate. The challenges involved in doing so include the
following:

o The datasets over which these query evaluations are per-
formed are voluminous. Furthermore, explorations may
involve multiple approximate queries in rapid succession.

o The datasets are multidimensional. Individual feature
types may be single- or double-precision floating-points,
integers of varying size, strings, or enumerations.

o The most common constraint within approximate queries
involves range. In addition to the specification of ranges
over features, ranges could also be specified along the
spatial and temporal dimensions.

 Query evaluations must be performed in the presence of
other concurrent rigorous and approximate queries.

« Since data is continually arriving and being added to the
datasets, the feature space is always evolving. This impacts
the distribution of feature values and the evaluation of
range constraints.

Since approximate queries must be evaluated in real time, disk
accesses should be rare. Schemes that prefetch data blocks
into memory in anticipation of incoming queries may incur
high disk I/O costs. In the presence of concurrent approximate
queries, this could also lead to high rates of page faults and
thrashing when queries target blocks that were not paged in.

1.2 Research Questions

Key research questions that we explore in this paper include
the following:

1) How can we manage the trade-off between accuracy and
timeliness of query evaluations, while enabling config-
urable coverage of the accuracy gradient?

2) How can we minimize disk accesses while ensuring a low
memory footprint for our data structures?

3) How can we establish error bounds even in cases where
ranges are specified for particular feature values?

4) How can we support explorations of the feature space for
portions of the hyperplane where the availability of data
is disproportionately sparse?

5) How can interference between queries, both rigorous and
approximate, be reduced?

All of these goals must be achieved in the presence of
continually-arriving data and feature space evolution.

1.3 Overview of Approach

Enabling efficient approximate query capabilities involved the
following components: (1) expressive query specification, (2)
algorithms and data structures for evaluating the queries, and
(3) refinements to allow for faster evaluations. The features
described in this paper were implemented in our distributed
storage framework, Galileo, but are applicable to other frame-
works as well.

The query specification constructs provided by this work
include:

o Time- and error-based constraints

o Limits or requirements on the number of results returned

» Operators for exploring temporal interactions

o Fuzzy queries that allow parameters to be incrementally
relaxed to discover additional or related information
o Promotion of approximate queries to fully-fledged rigorous
queries when particular conditions are met
Query evaluation is handled by a multi-tier framework with
each component working in tandem. The storage nodes in
Galileo maintain fine-grained metadata about their portion of
the overall dataset, along with a copy of coarse-grained meta-
data that describes the dispersion of information throughout
the entire system. Additions to the indexing subsystem include:

« Autonomous adaptation of index granularities based on
changing storage densities

« A graph-based representation of temporal intervals

» Embedded summary statistics for each feature type

o Online dataset sampling

To address interference between different types of queries, we
have incorporated mechanisms to automatically adjust dataset
coverage, the degree of fuzziness, and the depth of graph
traversals during query evaluations to control for timeliness.
This ensures sustained throughput over time and prevents
starvation of processes with complex query profiles.

We have also added two refinements that help increase
approximate query performance: the first relates to graph reori-
entations, which allow reductions in the graph size that result
in faster traversals. The second refinement involves Bloom
filters, which are used to identify queries that will not produce
matching results across feature ranges, allowing the system to
quickly resolve the query without a graph traversal. Finally, we
provide detailed performance analysis of our system design.

1.4 Paper Contributions

The work presented herein demonstrates the feasibility of eval-
uating approximate queries over multidimensional, geospatial,
time-series datasets. Contributions include:

o We have incorporated support for ad hoc, approximate
queries in the context of a distributed hash table (DHT)
based storage system. Such systems are often used to
manage semi-structured and unstructured data [6], [7].

o The research presented in this work could also be applied
to other distributed storage systems. Rather than retriev-
ing information based on keys, we provide value-based
queries that span multiple dimensions and types.

o Our empirical evaluations demonstrate the feasibility of
our approach at large scales. In our benchmarks, the test
dataset spans a billion files, each of which contain multiple
feature values for specific locations.

o We allow discovery of attribute ranges across multidi-
mensional feature values that have not been expressed.
This enables discovery of unusual feature combinations.
We also allow the exploration of the outlier space with
stratified sampling. To our knowledge, no other system
provides such functionality in the context of time-series
data.

o We not only provide a framework for the specification of
approximate queries, but also allow specification of error
bounds across ranges of feature values.

1.5 Paper Organization

The rest of the paper is organized as follows: Section 2 provides
an in-depth overview of the methodology used in this work.
Section 3 describes our distributed storage system, Galileo.



Section 4 outlines the query functionality that guided our
implementation, followed by Section 5 which describes the
components of our query evaluation framework. Section 6
describes how our framework was successfully adapted to
another storage system, while Section 7 includes performance
benchmarks in a virtualized setting. Section 8 provides a sur-
vey of related work from the literature, followed by Section 9
which concludes the paper and describes our future research
direction.

2 METHODOLOGY

Our approximate query functionality involves both query spec-
ification and efficient distributed evaluation; the user-facing
specification features described herein contributed to the de-
velopment of the algorithms and data structures outlined in
the paper. On the query specification front, we focus on the
simplification of common usage patterns that are frequently
observed in large data stores. In many cases, these flexible
queries obviate the need for user-defined distributed compu-
tations (e.g., MapReduce) that would traditionally be used for
analyzing and aggregating data. Examples of such analysis in-
clude creating climate charts that summarize weather patterns
in a region over time, determining political affiliations in social
networks, or optimizing model parameters based on a given
set of outputs. The backend implementation of these features
combines aspects of systems design, data structures, graph
theory, interval algebra, information theory, and statistics. The
interactions between these elements are also considered; for
instance, controlling the degree of data dispersion during
storage operations has an impact on the network design of
the system as well as the amount of information that can be
stored in local data structures.

2.1 Query Specification

Our approach supports both user-initiated and system-driven
instrumentation of queries. Queries can involve a complete
set of feature parameters, or can specify ranges of acceptable
values to be returned. Unlike a tabular data store, Galileo
can provide results in the form of a graph, which retains
the relationships between data points and allows for further
analysis and traversal.

To supplement these queries with approximation, we con-
sider three query dimensions: the number of results returned,
the time elapsed, and the overall accuracy (which may be
measured by a confidence interval, or percent coverage of the
underlying data). These dimensions are inter-related: allowing
a query to run for a longer period of time will often return
more results and improve accuracy, while limiting accuracy
requirements will result in a faster response.

When dealing with temporal properties, interactions often
occur between particular intervals. For instance, one event
may precede another, overlap, or occur during the same time
period. To support these types of analysis, we have integrated
Allen’s Interval Algebra [10], [11] into our query engine. These
query operators allow users to discover causal relationships or
inspect correlated events.

Since the entire feature space is often unknown, fuzzy queries
allow automated, incremental relaxation of the bounds speci-
fied on the features within a query. This effectively increases
feature and dataset coverage, and is especially useful when a
particular set of constraints is not satisfied by the underlying
dataset but the nearest-matching results would still be useful.

We allow specification of both the features or dimensions along
which these bound relaxations are made, along with the degree
to which the relaxation is performed for a particular dimension.
Fuzzy queries may have bounds on the number of matching
results or turn around times associated with their evaluations
to expand or contract exploration.

Approximate queries are often used for exploratory pur-
poses, with a rigorous query following the initial exploration
phase. With query promotion, users can transform an approx-
imate query to its rigorous equivalent automatically on the
server side when a particular set of conditions are met. Addi-
tionally, each path a query takes through the index structures
in Galileo is recorded, allowing the “paths least traveled” or
most popular data points to be discovered and analyzed. This
functionality is used to improve the accuracy of the sampling
algorithms in the system, but can also highlight potentially
unusual or anomalous data.

2.2 Distributed Query Evaluation

One key aspect of our approach is to limit the number of nodes
involved in a given query. This is achieved through several
data structures that are specifically designed for search space
reduction, which ultimately decrease latency and improve
response times. Optimizations include those that minimize
communication, the footprint of the data structures, and the
time required to evaluate queries. These involve dynamic re-
construction of our indexes, embedded statistics, and sampling
methods, and strive to reduce any required user intervention.
The space complexity associated with the data structures used
as part of the query evaluations must also be low. Increased
memory footprints associated with data structures can lead to
increased paging and thrashing that in turn leads to increased
disk I/0.

In our system, we use graphs to manage metadata. Modeling
the metadata as a graph allows us to support approximate
queries by controlling the paths, comprising vertices and edges,
that are traversed during query evaluations. There are two
graphs maintained at each storage node in Galileo: the feature
graph that maintains a coarse-grained view of all data blocks
in the system and the metadata graph that maintains a fine-
grained view of the data blocks stored at the particular node.
The feature graph helps with reduction of the search space
during distributed query evaluations and the metadata graph
helps with restricting file-block retrievals to only those blocks
with data matching the specified query.

The feature graph allows us to ensure that every query does
not target all nodes in the system but rather only a subset
of nodes that are most likely to hold the data. This helps us
avoid cases where the system throughput and response times
for queries drop significantly because every storage node is
involved in evaluation of every query. Vertices in the graph
represent range of values for a particular feature; the size of
the range represented by a vertex reflects the granularity and,
correspondingly, the expected accuracy for query evaluations
that results in traversals through that vertex. We use these
graphs to evaluate queries and also report on the error bounds
associated with our evaluations for a particular feature.

To improve accuracy and reduce the memory footprint of the
graphs, we dynamically tune the resolution of the information
they manage. The resolution is dynamically adjusted so that
there is greater resolution in places where the density of values
for a particular feature is the highest. To accomplish this,



we rely on a statistical measure, the coefficient of variation
(CV). The CV is computed for each vertex and measures
the scattering of values within the range represented by that
vertex. We split a vertex with high CV to improve accuracy
and reduce error bounds. Conversely, we combine vertices
(representing a contiguous range of value) that have a low
degree of scattering to conserve space. To estimate the error
bounds associated with the query evaluations, we rely on online
updates of summary statistics associated with various paths.

Graph hierarchies are dynamically reconfigured at runtime
to improve query evaluation times and conserve memory.
Different graph orientations result in a different set of memory
footprints for managing the same information — this is because
each orientation results in a different number of edges and
vertices. We perform these reconfigurations based on popular
or dominant queries so that the number of vertices and edges
traversed during evaluations is reduced.

Enabling support for temporal analysis also required modifi-
cations to our previously-developed graph functionality. When
dealing with intervals, the graphs include two layers of vertices
that represent start and end times. Edges are then used to
link the two points in time, enabling both range queries and
analysis through Allen’s interval algebra. This storage format
also serves to avoid storing redundant data; each timestamp
will only be stored once, with the links between vertices used
to distinguish between unique intervals.

We have also incorporated support for sampling the meta-
data graphs and using these sampled representations to service
queries. The first sampling method used in the system is
uniform sampling, which preserves the distribution of feature
values. While uniform sampling can provide insights over
large quantities of information, it tends to underrepresent
outliers or anomalous data points. To explore these corner
cases, we provide support for stratified sampling and path in-
spection. Stratified sampling deliberately overrepresents rarely-
occurring values (or outliers) to enable better representation of
their characteristics, and path inspection involves highlighting
paths through the graph that have not been traversed as often.

To support fast detection of queries that will not have match-
ing results we use Bloom filters. Bloom filters are space-efficient
with the property that there may be some false-positives but
never false-negatives. Here we convert queries into orientation
neutral paths, which we then use to query the Bloom filter.

2.3 End-to-End Query Process

Each node in the Galileo network is capable of servicing
queries. When a query is submitted to the system, the receiv-
ing node will perform a feature graph lookup to determine
which nodes may hold relevant data. If the query contains
approximation operators (see Figure 1 for example queries),
both the node proximity and estimated quantity of matching
data is taken into account during the communication process;
for queries with tight time bounds, local neighbors will be
consulted for data first, with additional nodes contacted to
increase the retrieval scope and ensure a more representative
sample is acquired. In Galileo, nodes may be grouped by their
physical location (rack, datacenter) so neighboring nodes will
often be able to respond faster. Finally, results are combined to
form a traversable result graph, which is transferred back to the
client. The result graph includes a variety of statistics about
the underlying data, such as means, variances, confidence
intervals, etc. Information about the query coverage of the
entire dataset is also provided.

2.4 Experimental Dataset and Test Environment

In this study, Galileo was populated with data provided by the
National Oceanic and Atmospheric Administration (NOAA)
North American Mesoscale Forecast System (NAM) [12]. The
NAM involves frequent collection of atmospheric information
in GRIB format, which contain several features, including the
spatial location of the samples, the time they were recorded,
percent relative humidity, surface temperature (Kelvin), wind
speed (meters per second), and snow depth (meters). We
sampled from the data provided by the NAM to create our
test dataset, which consisted of one billion (1,000,000,000) files
of approximately 8 KB each.

The benchmarks included in this paper were carried out on
a 48-node cluster of HP DL160 servers equipped with a Xeon
E5620 CPU, 12 GB of RAM, and a 15000-RPM disk. Galileo
was run under the Open]DK Java runtime version 1.7.0_60.

3 SYSTEM OVERVIEW

Galileo [4], [5] is a high-throughput distributed storage system.
A primary goal of Galileo is incremental scalability, which led
to its network design being modeled as a distributed hash
table (DHT). Much like Apache Cassandra [6] or Amazon Dy-
namo [7], Galileo is a zero-hop (or one-hop) DHT; rather than
forwarding requests through intermediary nodes in the net-
work, files are sent directly to their final destination to reduce
latency. Diverging from traditional DHTs such as Chord [13] or
Pastry [14], the network design in Galileo is hierarchical and
supports multiple levels of hash functions. Ultimately, these
design decisions allow Galileo to provide functionality outside
the scope of the standard DHT architecture.

The primary use case for Galileo is the storage and analysis
of voluminous, multidimensional datasets commonly seen in
the scientific domain. This focus enables a number of problem-
specific optimizations, such as built-in support for spatial and
temporal metadata. The dimensions (features) seen in these
datasets are managed by the system to provide insights and
enable expressive retrieval capabilities. Galileo can import or
store data from a wide range of scientific data formats, such
as NetCDF [15], HDF5 [16], or its own multidimensional array
format.

To handle retrieval operations, Galileo employs a multi-
tier indexing scheme. Individual storage nodes in the system
maintain a metadata graph instance that indexes local files. On
a global scale, the feature graph [5] is a complete, coarse-grained
representation of all the information stored in the system.
Traversal through the feature graph leads to specific storage
nodes that will likely hold data relevant to a given query.

QUERY * WHERE Date IN
[Feb 2014 TO Jun 2014]
MAX TIME 5s

FUZZY QUERY * WHERE
Humidity < 32% AND
Temperature > 295K

SAMPLE Temperature
WHERE

CloudCover > 80%
MIN_COVERAGE 5%

Fig. 1. Example queries supported by the approximate query
processing engine in Galileo.



For two- or three- dimensional spatial information, bitmap-
based geoavailability grids [17] record spatial regions that have
relevant data points, allowing the system to evaluate queries
constrained by polygon shapes. Both the feature graph and
geoavailability grid are updated through a gossip protocol to
quickly disseminate global state among nodes, and can provide
dramatic reductions in search space over large, distributed
clusters of computing resources. These indexing algorithms are
integrated directly in Galileo, but are broadly applicable across
a variety of distributed storage frameworks.

3.1 Partitioning

By supporting multiple indexing strategies, Galileo effectively
decouples its storage and retrieval components, departing from
the design of traditional DHTs. This allows hash functions to
be changed at runtime to adjust storage properties without
impacting retrieval operations, and also gives users an oppor-
tunity to develop their own hash functions that account for the
unique characteristics of their particular datasets.

Galileo allows individual storage nodes to be placed into
groups or subgroups of computing resources. In a two-level
hierarchy, a hash function can be used to determine the group
membership for a particular data point, followed by a second
hash to determine the destination storage node within the
group. In this particular study, group membership is assigned
based on the spatial region the reading was produced from,
combined with an SHA-1 hash of remaining feature values
to determine the destination storage node. This configuration
places data with spatial similarity in close proximity on the
network while distributing load uniformly across the group.

Placement of incoming spatial data is facilitated by the
Geohash algorithm [18]. Geohashes represent a hierarchy of
successively more precise spatial bounding boxes, which are
derived by interleaving bits obtained from two-dimensional
coordinate pairs (e.g., latitude and longitude). Each additional
bit in a Geohash increases precision by halving the spatial
bounding box being represented, and bits are mapped to
a Base32 character set to produce human-readable strings.
Longer Geohash strings are more precise; for example, a Geo-
hash of 9X references a bounding box in the western United
States that includes Wyoming and parts of northern Colorado,
while 9XJQ would roughly encompass Fort Collins, Colorado.

3.2 Metadata and Information Retrieval

For local query evaluation, each node in Galileo maintains
a metadata graph instance. Metadata graphs contain feature
information for all the files stored at a given node, and a
traversal through the graph hierarchy incrementally narrows
down the set of matching information stored on disk. Results
from a Metadata graph traversal are returned in the form of
a subgraph, which can be traversed, manipulated, or used to
download raw data from the storage node. Exact-match and
range-based queries are supported on string, numeric, spatial,
or interval features stored in the graph, and can be described
using a simplified dialect of SQL.

To reduce the search space of distributed queries, the feature
graph contains a coarse-grained view of all the data available
in the system. As new files are stored, the feature graph is up-
dated in an eventually consistent manner through a gossip pro-
tocol. The granularity of the index can be changed at runtime,
and places incoming samples into ranges called “tick marks.”
This form of quantization helps make a globally-distributed

Spatial Location

50-79% l 80-90% Humidity
. Temperature

Node

Descriptor

Fig. 2. A simplified feature graph showing humidity and temper-
ature ranges for the spatial region represented by Geohash 9X.
A traversal of the graph leads to storage node descriptors that
hold file locations and statistics.

index possible by reducing its memory consumption and the
size of updates that must be transferred over the network. The
feature graph helps pinpoint storage nodes that will likely hold
relevant information, reducing the amount of communication
and processing required to perform a distributed query.

Additionally, the feature graph is a critical component in our
approximate query processing engine. Several insights about
the information in the system can be obtained from the feature
graph: the availability of specific feature combinations in the
dataset and their relationships, the number of files matching a
particular set of characteristics, and how files are dispersed
over the entire cluster. The feature graph is consulted as
the first step in any distributed query, regardless of whether
approximate or complete results are required. Figure 2 contains
a simplified feature graph that illustrates its functionality;
queries across a number of feature values will traverse through
the graph based on the tick marks the values fall within, which
are ultimately represented by vertices. On each level of the
hierarchy, links are maintained between the vertices to allow
scanning across values. The final vertex in a feature graph
traversal points to a node descriptor, which collects a variety of
information about the path that was traversed. In the feature
graph shown in Figure 2, querying for:

Location=9X, Humidity=52-57%, Temperature=30C

leads to node descriptor 4, which would provide the locations
of matching files in the network. Note that the exact tick mark
range does not have to be specified in the query.

Both the Metadata and Feature graphs share some similarity
with existing graph- or tree-based structures. For instance, the
hierarchical organization of dimensions in a k-d tree [19] is
somewhat similar to the Galileo indexes, but both the Metadata
and Feature graph implementations allow for significant fan-
out to occur at each level in the hierarchy instead of employing
binary splitting. Additionally, the graphs share similarities
with Tries [20], where traversals incrementally build upon a
data point’s “prefix” by adding features as each dimension is
explored. Our indexes are designed to be highly expressive and
fast to traverse.

Different spatial locations often exhibit unique trends or pat-
terns, which led to the development of bitmap-based geoavail-
ability grids in Galileo. Geoavailability grids allow users to
reduce the search space of distributed geographical queries
by specifying polygons of interest with spatial coordinates.



To provide this functionality, Galileo divides the Earth into
a hierarchy using Geohashes. The variable granularity of the
bounding boxes provided by the Geohash algorithm allow
geoavailability grids to capture a coarse-grained representa-
tion of the spatial areas covered by a given dataset, while
still eliminating regions that do not contain relevant values.
By generalizing spatial regions into bitmaps, queries can be
evaluated quickly using bitwise operations. The evolution of
a dataset over a spatial region often provides several valuable
avenues for analysis, but can be limited by the speed of query
evaluations when the data reaches extreme quantities or sizes.
The features described herein provide a means for performing
approximate spatial analysis, which could then be followed by
rigorous analysis when phenomena of interest are discovered.

4 QUERY SPECIFICATION

Supporting exploratory or approximate queries requires a de-
parture from explicitly-defined query parameters. In this work,
we make the distinction between approximate (or exploratory)
queries and traditional rigorous queries that involve exact
results. To accommodate a wide range of use cases and pro-
mote expressivity, we designed a collection of operations to
guide the implementation of our approximate query processing
engine. These user-facing constructs influenced and guided
our implementation. They include time-, error-, quantity-based
constraints, temporal logic expressed through interval algebra,
and fuzzy queries that enable parameters to be automatically
relaxed to include more results. These operators allow fine-
grained control over the scope of each query, and are designed
to be combined with the standard constructs present in lan-
guages such as SQL or existing features in Galileo such as
range-based and exact-match queries.

4.1 Time and Error Constraints

Several problem domains require performing computations
under time constraints. For example, visualization tools may
need to render a scene within a few hundred milliseconds
to produce smooth animations, or a busy website could be
required to service requests within a particular time frame to
avoid violating service-level agreements. In these situations,
results are requested using the time-bound query operator,
which will provide a response within a specified amount of
time, along with statistics on the accuracy of the results. When
dealing with time bounds, queries are scheduled dynamically
to avoid starvation in longer-running processes. In the case of
an extremely busy storage node, the depth or breadth of time-
bound queries is scaled back to meet constraints.

Conversely, there are scenarios that require information to be
retrieved as quickly as possible, but only if the results reach a
particular level of accuracy defined by error bounds. One ex-
ample of this usage pattern is buying and selling commodities
on a short-term basis, which could require rapidly monitoring
pricing trends and taking action only when the error margin
falls below an acceptable threshold. When predicting weather
patterns, certain calculations may require timely results, but are
only useful if a reasonable accuracy is achieved. Support for
error-based constraints also implicitly includes functionality for
requesting subsets of the overall dataset, which could involve
returning a specific number of results or a percentage of the
total items that meet query directives.

Time- and error-bound operators can also be combined;
if certain conditions hold true, an application may instruct

the server to favor one approach over the other, effectively
adapting its requirements based on changing environmental
conditions. This functionality is highly relevant in cases where
an operation would introduce too much error, requiring the
use of an alternate approach. For fine-grained control, users
can also specify the priorities for each operator being used.

4.2 Temporal Reasoning

Datasets consisting of time series information often involve
several data points that span across uniform or non-uniform
time intervals. Significant insight can be gained by inspecting
the time at which a sample was taken; for instance, temper-
atures fluctuate over the course of a day and may influence
other environmental conditions. In these cases, an average
of all observed values can mask significant patterns in the
underlying dataset. This makes accounting for time in a high-
resolution fashion critical in many areas of analysis.

For reasoning about the relationships between disparate time
intervals in a dataset, we integrated support for the operators
described by Allen’s Interval Algebra [10], [11] into our query
language. Allen’s Interval Algebra is an expressive calculus
for temporal reasoning that has seen wide application in areas
from artificial intelligence [21] to temporal database manage-
ment systems [22]. Figure 3 provides an overview of the
relationships that can be represented by these operators, which
make inexact comparisons possible across temporal events.
Usage examples include querying for data points that overlap,
lie outside a specific range, or happen during a common time
period. If the exact time that an event occurred is not known,
these query operators complement the other approximation
functionality in the system; for example, a user may query for
all intervals that ended at a specific time, effectively creating
a sequential list of event start times leading up to a particular
circumstance of interest.

Efficient evaluation of queries on intervals, temporal or
otherwise, requires problem-specific indexing functionality. For
instance, an exact-match query between the start and end times
of an interval should return a result even if a physical index
record is not present at the requested time. Simply “filling” all
possible units of time between the start and end of an interval
needlessly consumes memory and disk space. Furthermore, the
resolution of a point in time should not have to be reduced
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Fig. 3. Temporal operators from Allen’s Interval Algebra. These
operators enable queries and analysis across intervals from
time series datasets.



to fit into a predefined minimum unit. Our indexing strategy
for intervals is described in depth in Section 5. Each temporal
record is represented by high-resolution start and end pairs,
which can be compared efficiently and converted directly to
user-friendly time units (such as minutes, hours, or days).

These temporal operators have been integrated into our
indexes and can be combined with any of the other query con-
structs available. They obviate the need for involved manual
definition of temporal comparisons by the end user, and also
allow the relationships between time bounds to be modeled in
the result graphs that are returned by a query.

4.3 Fuzzy Queries

In situations where the boundaries of a range query are un-
known or approximate, fuzzy queries allow selective relaxation
of constraints to produce more results. One example use case
for fuzzy queries is hotel room booking; a user may wish
to search for rooms with desired attributes across the span
of their vacation, but if no results are found then the closest
matches available can still be returned without having to sub-
mit another query. This usage pattern of continuous refinement
has been observed in several domains [1], [2]. For datasets
that include a high number of dimensions, query parameters
across a broad range of features may be too selective. In these
cases, the user can specify features to be expanded, or opt for
retrieving results that require the smallest percent change in
constraints.

The default operating mode for a fuzzy query attempts to
find the closest matching values to the query parameters pro-
vided. For example, if a fuzzy query requests all records with
humidity values of 50% but none exist, records with readings
of 48% may be returned instead. Of course, if exact matches can
be achieved, then the results returned by the fuzzy query will
be no different than that of a rigorous equivalent. However,
in cases where an exact match is not available, the nearest
neighboring nodes in the graph can be located in O(logn)
steps (similar to the performance of a binary search). Both the
higher and lower values can be returned by the fuzzy query,
along with their differences from the original value. Additional
vertices can be returned to the user as well; for example, a
specific use case may require the nearest five matches to be
included in the results. Fuzzy queries can drastically reduce
the number of repetitive exploratory searches that a user may
need to make before settling on a final set of query parameters.

4.4 Query Promotion

While approximate queries can provide useful results in a
fraction of the time a rigorous query would take, there are
situations where exploratory results may need to be confirmed
later with a rigorous query. In this case, query promotion allows
the scope of a query to be expanded to include the entire
dataset as long as particular user-defined constraints are met.
Queries can be extended based on response times, error mar-
gins, or when the set of matching information meets specific
criteria, such as the result count or presence of a particular re-
lationship between features. To keep extended queries current,
time bounds can also be updated to include new information
that was recently stored. In some cases, query promotion can
completely replace long-running exploratory computations;
several approximate result graphs can be returned during a
query to track progress, followed by a complete result graph
once the conditions for promotion are met.

5 QUERY EVALUATION FRAMEWORK

In this section, we describe our framework and algorithms
for approximate query evaluation. Given the data volumes
and concurrent requests involved, our primary objective is to
ensure that query evaluations are fast and high-throughput.
This is achieved by adapting indexes autonomously at run-
time to improve performance, optimizing the representation
of temporal intervals when stored in a graph-based structure,
embedded low-latency access to summary statistics, and online
sampling support.

5.1 Dynamic Feature Graph Dimensionality

To compensate for the inevitable imbalances in the distribution
of feature values in a dataset, tick marks in the feature graph
are dynamically adjusted at runtime rather than relying on
preconfigured ranges [23]. This optimization helps improve the
overall accuracy of traversals, thereby reducing the number
of storage nodes that must be contacted during a distributed
query. Approximate queries also benefit from this property;
regularly-accessed files and readings with frequently-observed
values are given priority by this algorithm, which improves the
precision of the information that can be gleaned by performing
a feature graph query.

Tick mark granularities are modified based on two metrics:
the distribution of feature values in new files, and observed
trends from previous queries. Both of these events are con-
sidered hits that impact the load characteristics of individual
vertices. If incoming samples are biased towards a specific
range of values grouped into a single vertex in the graph, the
range will be split into separate vertices to distribute load as
uniformly as possible. Figure 4 illustrates how tick mark ranges
are split in the feature graph.

Feature graph reconfiguration is facilitated through a dis-
persion function that calculates the imbalances in load across
vertices. In this work, we use the coefficient of variation (CV)
as our dispersion function, which is defined as the ratio of
the standard deviation to the mean, CV = o/u. Relatively
high values of CV indicate high dispersion. When the CV

10% 10% 50% 30%
0° 10° 20° 30° 40°
10% 10%
0° 10° 20° 30° 40°
0° 10° 20° 30° 40°

Fig. 4. Dynamic index reconfiguration on vertices holding tem-
perature values (in °C). In a graph with four vertices, two receive
50% and 30% of the overall storage and retrieval requests. After
reconfiguration, load is balanced evenly across 10 vertices.
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Fig. 5. Error bounds on approximate results returned by the
feature graph, with the probability density of hits on temperature
values (Kelvin) in the dataset.

across a level in the graph hierarchy cannot be substantially
decreased by our splitting algorithm, the process stops until
more data is collected. In general, this process completes in less
than a millisecond and can be managed with a configurable
upper bound on iterations. The algorithm executed in reverse,
called vertex reclamation, merges lesser-used vertices with their
neighbors, decreasing the overall size of the graph and keeping
growth in check.

While modifying the ranges of tick marks in the feature
graph improves performance, it also ensures that the ranges
receiving a larger share of storage and retrieval requests will
provide more accurate results for approximate queries. Figure 5
demonstrates the error bounds for queries against temperature
values along with the observed probability density of hits
across the values. For the majority of queries, the feature graph
can provide results within 1 Kelvin.

Feature graph queries are fast because they require clients
to only contact a single node in the system and report syn-
opses rather than complete results. In our test configuration, a
feature graph query can take as little as 3.2 ms on average to
report a negative result (zero matching files). Table 1 provides
latency statistics across a broad range of randomized queries
evaluated by the feature graph, and also shows the amount of
time rigorous queries would take (which were extended from
approximate queries). Note that while a rigorous query must
include a graph vertex for every result, approximate queries
describe a range of values and their respective densities in a
single vertex, resulting in much faster response times.

Although approximate queries are considerably faster on
average, there are situations where a fuzzy query could con-
tinually expand its scope due to the sparsity of the feature
space. In such a scenario where no time bounds are provided,
the query evaluation could continue to incrementally expand
its scope, resulting in longer response times. To cope with this
scenario, especially in the face of heavy load from other clients,
the system limits fuzzy queries to a maximum time span that
can be configured based on the particular deployment. For
example, a high-traffic website may impose a tighter limit than
a deployment being used primarily for internal analysis.

TABLE 1
Approximate and rigorous query timing results, averaged over
1000 iterations.

Results Approximate Query (ms) | Rigorous Query (ms)
o o o o

0 3.20 0.50 7.65 241

25,000 4.59 1.22 139.31 3.84

50,000 6.92 1.36 264.62 2.92

100,000 13.12 3.90 521.01 4.80

200,000 18.77 2.39 922.20 10.36

5.2 Modeling Temporal Intervals

While singular points in time can be expressed easily through
a graph hierarchy that accounts for various time units (years,
months, days, and so on), a timespan represented by a start
time and end time requires a data structure that can handle
two-dimensional boundaries. Additionally, a graph hierarchy
based on time units requires the insertion of a large amount
of vertices and edges for individual units of time, resulting in
increased memory usage and slower traversals. Rather than ad-
dressing the hierarchical nature of time representations directly,
we chose to effectively flatten these intervals into two entries
in the graph hierarchy: one level containing start times, and a
second level containing end times. For data points that consist
of a single time value, called timestamps, the start and end times
of the interval are equal and only occupy a single vertex in the
graph. Figure 6 illustrates how time series data is incorporated
into the feature graph and metadata graphs in Galileo. While
many time series datasets generated by observational devices
commonly deal with uniform intervals, this approach supports
non-uniform time spans as well.

By integrating time series information directly into the graph
hierarchy, queries can be simplified to basic numeric relation-
ships. For example, a query to retrieve samples that fall within
a timespan represented by (Tsiart, Tena) would eliminate all
vertices in the graph with time intervals that start after Tcna
and end before Tsiqrt. As with any other features stored in
the graph, vertices maintain links to neighboring values in the

00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00
— —
Jun 28 Jun 29 Jun 30

Jun 28 ' Jun 28 ' Jun 28 . Jun 29
00:00 ' 06:00 12:00 00:00

Jun 28
12:00

Fig. 6. Time intervals from samples in a spatial region (repre-
sented by the Geohash 9X) across a time frame of two days,
along with its graph-based equivalent for indexing purposes.
Further descendant feature vertices are excluded for brevity.




hierarchy to facilitate operations that scan across available time
values.

Queries across time intervals are powerful, but some ap-
plications require non-contiguous queries, such as “retrieve
all samples gathered on the fifth day of each month in the
year 2013.” To support this particular use case, time-based
queries can also be defined using a date hierarchy along with
wild cards, such as Year=2013, Month=%, Day=5. In this
scenario, the query is transformed into a set of non-contiguous
intervals before being evaluated by the index in parallel.

Unlike most feature types, time is unique because new
vertices must be continually added to the graph structures
as data is generated. To manage the creation of vertices as
they accumulate over time, we rely on our dynamic graph
reconfiguration algorithm with time-specific directives for col-
lapsing older or rarely-accessed intervals. Without specific
accommodations for time, feature graph tick marks may be
autonomously expanded into awkward increments, e.g., inter-
vals of 63 minutes. Unless otherwise configured, the system
favors commonly-used fractions of time (for example, values
evenly divisible by five) when tuning the graph to produce
divisions between vertices.

5.3 Graph-Embedded Statistics

To supplement value-based queries, node descriptors in the
feature graph contain several statistics. This information is
useful in a variety of situations, including those that deal with
data points in lower-resolution tick mark ranges. For each path
through the graph, node descriptors include:

o A count of matching items (density of values)
o Minimum and maximum values of each feature type
e Mean, variance, and standard deviation of the values

We use the method given by Welford [24] to avoid recalcu-
lating the mean, variance, and standard deviations of feature
values as new files are continuously added to the system. This
is made possible by maintaining a count of samples, n, along
with the previous mean of the values and the sum of squares
of differences from the current mean, S,:

Sn = Sn—l + (xn - i’n—l)(xn - i’)

Given these items, the population variance is calculated with
0® = S,/n. This optimization eases the burden placed on
individual storage nodes in providing up-to-date information
in a timely manner, and helps reduce the amount of updates
that must be gossiped through the system to reach a consistent
state. If a user has requested specific feature values in their
query, these statistics can generate confidence intervals for the
approximate results returned by the feature graph, or could

estimate the insights a complete query would provide.

5.4 Hierarchical Reorientation

In a consistent system, information stored in the feature graph
at each node will be identical. However, it is often advanta-
geous to represent the data in different ways by reorienting
the levels in the graph hierarchy to better suit the unique
workload trends at each node. Reorientation impacts both the
traversal times of incoming queries and the overall memory
consumption of the graph.

A reorientation involves expanding the current graph state to
orientation-neutral paths and then determining where vertices
belong in the new hierarchy. Given a collection of paths, the

HTWS WSHT

D Humidity D Temperature ‘ Wind Speed . Snow Depth

Fig. 7. Two example graph orientations of the same underlying
data, with four feature types. Graph orientations are named
based on the first initial of the features in hierarchical order.

maximum number of vertices and edges at hierarchy level n
can be calculated in advance using the overall set of feature
values for the level, F},, with the following recurrence relations:

Vn = Vn—-1 +FnFn71
En == n71+2FnFn71 7Fn71
Fo=1,Vo=1,Ey=0

Figure 7 illustrates two different graph orientations, along
with the naming conventions for graph configurations used
in this study. The graph on the left includes Humidity,
Temperature, Wind speed, and Snow depth, which is short-
ened to HTWS for brevity. Note that while the same dataset
was used to generate both example orientations, the vertex and
edge counts are different for both representations.

Table 2 highlights the differences in creation time, vertex
count, and edge count between three different graph orienta-
tions. The graph can be reoriented quickly to react to changing
trends and usage patterns, which is crucial in providing low-
latency results for approximate queries. In this test, creation
time includes generating orientation-neutral paths and moving
vertices into place within the specified hierarchy.

TABLE 2
Feature graph sizes and creation times with different
orientations.

Orientation Creation Time (ms) Vertices | Edges
I o

HTWS 58.80 3.41 54,582 84,423

WTSH 49.99 2.81 31,706 61,547

SWHT 50.97 3.43 33,283 63,124

Figure 8 illustrates how traversal times vary across different
orientations; while the SWHT configuration provides the best
overall performance, it may not be suitable in situations where
humidity values are frequently accessed (in which case, the
HTWS configuration should be selected instead). Each graph
orientation has its own set of trade-offs that must be managed
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to achieve ideal performance, and these trade-offs continually
change over time.

5.5 Path Prediction Using Bloom Filters

For situations where a query would not return any results, we
developed an optimization to enable short-circuit evaluation
of requests without traversing the graph called path prediction.
This functionality is made possible by generalizing incoming
queries across vertex ranges into orientation-neutral paths, and
then testing to determine if the path is present in the graph
using a Bloom filter [25]. Bloom filters are a space-efficient way
to determine whether an element is present in a set. The filter
may produce false positives, but never false negatives, making
it an excellent way to resolve queries that do not match any
vertices.

Path prediction involves complete graph paths rather than
individual elements and is also applied on vertex ranges rather
than discrete values. This allows the filter to be relatively
small while maintaining accuracy. The size of the filter and
number of hash functions used is influenced by the amount
of vertices in the feature graph, and is resized or reconfigured
during dynamic dimensionality updates to ensure acceptable
performance. Path metadata is sorted and structured such that
two paths containing the same feature values in a different
order will be processed identically by the bloom filter.

To enable fast evaluation using path prediction, we devised
a serialization format that allows the raw path data to be fed
to the bloom filter directly. Since the number of hash functions
stays fixed, as well as the raw path data being of similar sizes,
the time consumed checking for a non-matching path stays
very consistent as long as the number of dimensions being
indexed does not change rapidly. In our test environment, a
path prediction could be performed in as little as 0.01ms, with
a standard deviation of 0.0001.
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5.6 Non-Blocking I/0 and Concurrent Workloads

Galileo was designed around a non-blocking event-based
architecture, a popular approach for handling substantial
amounts of concurrent requests. Many of the servers address-
ing the c10k problem [26] use non-blocking I/O to support a
large number of simultaneous clients. In this class of problem,
the network interface becomes the bottleneck rather than the
CPU: when each client requests a 4 KB file every second, a
Galileo storage node can manage around 32,000 concurrent
clients with a single gigabit interface, and upwards of 64,000
clients on dual gigabit interfaces using link aggregation. While
web-centric server benchmarks like c10k are useful in measur-
ing the scalability of a server, they do not fully capture the
usage profile Galileo is intended for. In many cases, thousands
of files will be requested in a single query, and approximation
features generally trade higher CPU utilization for fewer disk
accesses and reduced latency.

To evaluate the scalability of our approximate query pro-
cessing engine, we designed a set of benchmarks that were in-
spired by the c10k problem. In these tests, a steadily-increasing
number of clients connected to the node and began submit-
ting randomized queries every second. The requests contained
combinations of approximate query types, which consisted of:

o 55% Range queries

e 20% Fuzzy queries

o 20% Exact-match queries
o 5% Inequality queries

Each of the aforementioned queries stress the system differ-
ently. Inequality queries exclude only a single record from a
given feature type, so their use was limited to avoid scenarios
where almost all the data on the storage node was retrieved.
On the other hand, range queries are the second most compu-
tationally intensive query type, and were selected frequently
in our tests to help illustrate real-world performance under
high load situations. Finally, the entire dataset was inspected to
ensure the randomized ranges being used were reasonable for
each feature type; relative humidities were limited to the range
of 0-100%, temperatures did not exceed 60° C, etc. Results were
streamed back to the client as metadata graphs.

To stress the system under varying usage conditions, we
also conducted tests that interleaved a configurable amount
of storage and query operations. Figure 9 shows the results
for the baseline query-only workload, along with benchmarks
that were composed of 50% and 75% storage operations. The
number of queries per second submitted by each client was
held constant across the three tests; i.e., the 50% query, 50%
storage benchmark saw each node processing about 4,000 client
requests per second at its maximum throughput due to the
additional storage operations. A high level of concurrency was
achieved in the storage tests as threads blocked on I/O could
be interleaved with those doing query processing operations:
for instance, the 25% query, 75% storage workload increased
total requests from the baseline by about 70% while query
throughput decreased by only 15%. For the three test cases dis-
cussed, the system reached its peak query throughput at 2,170,
1,980, and 1,820 concurrent clients per server, respectively.

Table 3 reports the minimum, maximum, and average re-
sponse times observed by client applications while our 48-node
cluster was managing 50,000 concurrent connections. Although
the random nature of the queries being evaluated caused
response times to fluctuate, an average of the results indicated
a slight upward trend in latency as more storage requests were
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Fig. 9. Query evaluation performance at a single storage node
as additional clients connect. Each client sends one query
per second, with a configurable amount of storage requests
interleaved.

made. This outcome matched our observations on the server
side, and also underscores our emphasis on throughput. While
certain queries can consume a significant amount of processing
time, the amount of overall requests evaluated per second on
each storage node remains fairly predictable over time.

TABLE 3
Response times observed during concurrent workload tests
(averaged over results observed by the first 50,000 clients).

Response Time (ms)
Workload Min Max Mean
100% Query Evaluation 0.42 35.11 4.82
50% Q. Eval., 50% Storage | 0.47 91.63 6.21
25% Q. Eval., 75% Storage | 0.52 | 184.22 9.87

5.7 Dataset Sampling

When a subset of available information will provide a repre-
sentative model of the complete dataset, a sample query on the
metadata graph can be evaluated to provide results in a frac-
tion of the time a rigorous query would take. Each storage node
can produce sample graphs on demand, or can pre-populate
(and update) several sample sizes that cover varying portions
of the dataset. The amount of pre-populated sample graphs
maintained is generally problem- and hardware-specific, where
the trade-off space involves both the memory consumed and
query evaluation times. Galileo can optionally monitor sam-
pling trends and automatically create pre-populated sample
graphs for commonly-requested sample sizes if memory and
processing resources are available.

The results generated by a sample query can be represented
as raw data points, a traversable metadata graph, or as a
probability density function (PDF) generated through kernel
density estimation. Sample queries can be combined with the
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Fig. 10. Comparison between the density of values in 1%, 5%,
and rigorous queries, along with the error associated with both
sample sizes.

other query constructs supported by Galileo. For instance, all
features could be sampled across a particular time interval, or
the probability density of a specific feature could be requested
when a set of environmental conditions are met.

Figure 10 compares 1% and 5% uniform samples (repre-
sented by their probability density estimation) with a rigorous
query across a particular range of temperature values. In
general, sampling produces a fairly representative model of our
particular dataset. Note how the sharp peaks in the curve for
the rigorous query correspond with higher observed sampling
error; in these cases, the system can use both stratified sampling
and path inspection to help reduce the margin of error.

When using stratified sampling, homogeneous subpopula-
tions in the dataset are selected and sampled from indepen-
dently using either random sampling or systematic sampling.
Contrasting with a uniform approach, this method helps en-
sure that the resulting samples are highly representative of the
underlying subpopulations, even if some of the data points
could be considered outliers. In situations where a sampled
population is highly diverse, or the population varies in den-
sity based on region, stratified sampling will often produce a
result with less sampling error. However, this approach is only
feasible when it is possible to generate subpopulations of the
overall dataset.

Path inspection locates paths through the metadata and
feature graphs that are accessed more or less frequently than
usual. Similar to stratified sampling, path inspection can be
used to boost the importance of outliers, but is performed
by empirically measuring the read and write operations con-
ducted on each vertex in the graphs. Data points found with
this approach help pinpoint anomalies or areas of the dataset
that could warrant further analysis, and can be discovered
through the metadata generated by both storage and query
requests. To avoid skewing the results over time, path inspec-
tion does not modify the access counters at the vertices, and
both the read and write counters can be used independently,
if desired. This functionality enables analysis of not only the
dataset itself, but users of the system as well.



6 APPLICABILITY TO OTHER STORAGE FRAMEWORKS

To test the algorithms used by our approximate query process-
ing engine in the context of another system, we adapted several
of the constructs outlined in this work to MongoDB, version
2.6.1 [8]. MongoDB is a document store that supports clustering
along with incremental scalability through horizontal partition-
ing. Similar to Galileo, MongoDB can evaluate range queries
and launch MapReduce computations on its datasets, but was
designed around BSON, a binary storage format similar to
JSON. MongoDB can utilize the Geohash algorithm for its
spatial indexing functionality, with general indexes backed by
a B-tree data structure for fast lookup operations. The system
also natively supports imposing time limits on individual
queries, and can produce summary statistics using server-side
aggregation.

While MongoDB imposes some hard limits (especially in
a clustered environment) that make managing voluminous
datasets challenging, we were able to translate most of the
functionality supported by our approximate feature graphs
to MongoDB. The cluster we designed acted as a distributed
approximate index with links to a secondary storage tier
responsible for fulfilling any rigorous, full-resolution queries.
We implemented the second tier using both Galileo storage
nodes and standalone MongoDB instances, ensuring the two
tiers were loosely coupled and our approximate index could
be adapted to other systems in the future.

Our dataset was converted from NetCDF files to JSON
documents before being streamed to the MongoDB-backed
index. This conversion increased the size of incoming records
by about 25%. MongoDB does not support pre-storage pro-
cessing hooks or trigger functionality seen in many relational
databases, so records were stored immediately in a collection
set aside for staging new data. After initial storage, the oplog
was used in combination with a tailable cursor to trigger post-
storage processing, which includes updating statistics about
the dataset and performing binning based on the dynamic tick
marks discussed in Section 5.1.

Table 4 contains latency statistics for a range of randomized
queries evaluated with our feature graph adaptation in Mon-
goDB. Compared to Galileo, MongoDB excels when handling
smaller queries, but tends to require more time to process large
requests. One factor that influences MongoDB evaluation times
is overhead from the increased duplication of information
required to produce BSON documents, which are complete,
stand-alone representations of each data point. With minor
adjustments, this document-oriented implementation of the
feature graph could be employed in tabular storage systems
as well.

TABLE 4
Timing results for approximate queries evaluated with
MongoDB, averaged over 1,000 iterations.

Results Evaluation Time (ms)
I o

0 2.16 0.20

25,000 415 0.91

50,000 8.75 1.38

100,000 17.93 221

200,000 34.56 422
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7 PERFORMANCE IN VIRTUALIZED SETTINGS

The overhead associated with virtualized 1/O has tradition-
ally made bare metal the ideal platform for high-throughput
storage systems; for instance, Amazon Dynamo [7], Facebook
Cassandra [6], and Google BigTable [27] all were designed
and tested on bare metal. However, recent advancements in
virtualization technology and the ubiquity of cloud infrastruc-
ture have challenged conventional wisdom. To evaluate the
performance of our algorithms in a virtualized environment,
we deployed VMs on the same hardware used for our bare
metal tests. We ran the VMs on KVM (Linux 3.13), allocated one
CPU core to each VM, and created a 48-node VM deployment
to perform a direct comparison between the VM and bare metal
installations. Table 5 provides latency information for random-
ized queries evaluated against the feature and metadata graphs
in a virtualized environment, repeating the tests performed in
Section 5.1.

TABLE 5
Approximate query timing results on virtual infrastructure (48
VMs), averaged over 1000 iterations.

Results Approximate Query (ms) | Rigorous Query (ms)
1 o I o

0 3.28 0.53 7.75 2.81

25,000 4.73 1.47 140.61 3.03

50,000 7.13 1.62 272.01 3.75

100,000 13.39 2.47 526.97 491

200,000 18.92 417 947.65 11.66

While the overhead in this test was about 2% on average,
we observed that variability was the main cause in the timing
differences, with the VMs frequently performing as well as the
bare metal hosts but occasionally exhibiting increased latency.
Overall, these tests confirm that VMs are an effective solu-
tion for evaluating approximate queries, while also providing
several distinct advantages, such as lower cost and greater
elasticity. We were also able to run this benchmark on a 192-
VM cluster with similar results (2.4% average overhead).

Persisting data to disk in an efficient manner is also a major
concern for our system, so we evaluated several disk formats
(with both pre-allocated and dynamically-resizing images, if
applicable) in Table 6. The formats tested include raw block
images, the gemu qcow2 format, and the VirtFS file system
passthrough described by Jujjuri et al. [28], which allows the
guest VM to mount a host file system directly using the
9P2000.L protocol. Bare metal disk performance and Amazon
EC2 results are included for reference.

While this test does illustrate some overhead in virtualized
disk performance, the results provided by the raw block images
and qcow?2 format were both reasonably competitive with bare
metal. Dynamic images carry slightly less file system read
overhead, likely due to the significantly smaller on-disk sizes
when the images are not used to capacity. For our particular
use case, raw images with dynamic resizing provide the best
blend of performance and flexibility, since host storage space
will not be occupied until it is actually used by the VM.
Although the passthrough results were somewhat surprising,
we suspect that the large number of metadata operations
performed by Galileo may impact performance.



TABLE 6
Disk format performance results for representative Galileo
workloads on a 48-VM cluster, averaged over 1000 iterations.
Amazon EC2 instances included for reference.

Benchmark Type Read (MB/s) | Write (MB/s)
Bare Metal 233.8 194.7
raw (pre-allocated) 227.0 1914
raw (dynamic size) 228.7 191.1
qcow?2 (pre-allocated) 182.4 182.1
qcow?2 (dynamic size) 185.4 179.7
File System Passthrough 33.0 22.8
EC2 m1l.xlarge 157.7 71.1
EC2 i2.xlarge (with SSD) 448.5 516.3

8 RELATED WORK

Cassandra [6] is similar to Galileo in its network layout and
storage capabilities, as both systems are designed around the
DHT paradigm. Cassandra’s primary use case is the high-
throughput management of tabular, multidimensional informa-
tion. The system allows users to create their own partitioning
schemes, but the partitioning algorithm used directly affects
information retrieval as well; for instance, using the random
data partitioner backed by a hash algorithm does not allow
range queries or future reconfiguration of the partitioning
algorithm. Cassandra scales out linearly as more hardware is
added, and supports MapReduce computations.

Apache Hive [29] is a data warehouse that runs on the
Hadoop [30] and HDFS [31] platform. As an analysis platform,
it is capable of a wide range of functionality, including sum-
marizing datasets and performing queries. Unlike Galileo and
a number of other storage frameworks, the system is intended
for batch use rather than online transaction processing (OLTP).
In Hive, users can perform analysis using the HiveQL query
language, which transforms SQL-like statements into MapRe-
duce jobs that are executed across a number of machines in a
Hadoop cluster. The Metastore, a system catalog, provides an
avenue for storing pre-computed information about the data
stored in the system. Hive emphasizes scalability and flexibility
in its processing rather than focusing on low latency.

A considerable amount of research has been conducted
on supporting query types beyond the standard get and put
operations of DHTs. For instance, Gao and Steenkiste [32]
maps a logical, sorted tree containing data points to physical
nodes, enabling range queries. Chawathe et. al [33] outlines a
layered architecture for DHTs wherein advanced query support
is provided by a separate layer that ultimately decomposes
the queries into get and put operations, decoupling the query
processing engine from the underlying storage framework.

Popivanov and Miller [34] explores the issues surround-
ing managing and performing similarity searches over large
quantities of time series information. To effectively summarize
large datasets, this approach employs several wavelets that can
outperform the commonly-used Haar wavelet and accurately
estimates values for a wide range of data types. However,
methods that rely on wavelets or synopses are generally very
problem- or dataset-specific and can limit arbitrary queries.

BlinkDB [35] is an approximate query processing (AQP)
system that extends the functionality found in the Hive query
engine to support responsive approximate queries. The system
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performs sampling at two scales: a broad, random sample
of the dataset, along with focused sampling over frequently-
accessed items. This hybrid approach requires much less infor-
mation to be read from disk to compute query responses. Like
Galileo, BlinkDB queries can specify time and error bounds.

FastRAQ [3] considers both the storage and retrieval aspects
associated with range-aggregate queries. To manage the error
bounds of these approximate queries, partitioning is based on
stratified sampling: a threshold is used to control the maximum
relative error for each segment of the dataset. Like Galileo, data
is assigned hierarchically to groups and then physical nodes.
Queries are resolved using adaptive summary statistics that
are built dynamically based on the distributions of the data.

The Approximate QUery Answering System (AQUA) [36]
intends to provide estimated responses to queries by avoiding
direct access to the data itself. The system collects synopsis
data in a number of ways: observing new information as it
arrives, periodically inspecting the underlying data warehouse,
or directly contacting the data warehouse during a query.
AQUA returns its query results alongside an accuracy measure
(such as a confidence interval), and can support continuous
reporting, wherein more results can be streamed to a client as
accuracy increases. Unlike Galileo, AQUA does not support
time bounds or target error rates in queries. It is also designed
for batch processing rather than online transaction processing,
and cannot respond to real-time changes in the dataset.

9 CONCLUSIONS AND FUTURE WORK

As data volumes continue to grow, tracking the continually-
evolving feature space can prove to be challenging. This is
especially true in the case of time-series datasets. In this work,
we considered the problem of approximate query support with
a geospatial component in addition to a number of arbitrary
features. Efficient explorations over time-series datasets can
be supported by (1) incorporating query constructs that allow
non-contiguous time intervals to be easily specified; (2) assist-
ing in the discovery of unusual feature range combinations that
have not been explored; and (3) by biasing dataset representa-
tions where feature value outliers are overrepresented.

The trade-off between accuracy and timeliness of query eval-
uations can be achieved by automatically controlling the degree
of query specificity and dataset coverage during evaluations.
Disk accesses, which can significantly delay query evaluations,
are minimized by keeping compacted versions of the metadata
graphs in memory and performing evaluations over their
contents. The use of Bloom filters allows us to quickly identify
cases where measurements are not available for a portion of
the feature space. We target interference between queries, and
the concomitant timeliness issue, by reducing the fidelity of
results under conditions of high load.

The graphs maintained in Galileo are kept up-to-date with
changing trends in values as new information arrives. To
cope with these changes, we apply vertex reclamation, which
collapses vertices into ranges that reflect the density and
distribution of values. By maintaining graph statistics in an
online fashion, we can continually update summary statistics
for feature values as data is assimilated.

Given the data volumes described in this work, schemes that
require constant user intervention quickly become untenable.
Our strategies for metadata compaction, data assimilation,
outlier biasing, discovery of unexpressed feature combinations,
updates to summary statistics, and fast detection of unavailable
data are all performed without user intervention.



Our future work will focus on support for probabilistic query
evaluations. This would allow a user to explore questions
such as, “What is the probability that relative humidity levels
are greater than 50% during the Summer in Fort Collins,
Colorado?” Supporting such queries could lay the foundation
for construction of Bayesian Models and causality analysis.
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