
1

Analytic Queries over Geospatial Time-Series Data using
Distributed Hash Tables

Matthew Malensek, Sangmi Pallickara, and Shrideep Pallickara, Members, IEEE

Abstract—As remote sensing equipment and networked observational devices continue to proliferate, their corresponding data
volumes have surpassed the storage and processing capabilities of commodity computing hardware. This trend has led to the
development of distributed storage frameworks that incrementally scale out by assimilating resources as necessary. While challenging
in its own right, storing and managing voluminous datasets is only the precursor to a broader field of research: extracting insights,
relationships, and models from the underlying datasets.
The focus of this study is twofold: exploratory and predictive analytics over voluminous, multidimensional datasets in a distributed
environment. Both of these types of analysis represent a higher-level abstraction over standard query semantics; rather than indexing
every discrete value for subsequent retrieval, our framework autonomously learns the relationships and interactions between
dimensions in the dataset and makes the information readily available to users. This functionality includes statistical synopses,
correlation analysis, hypothesis testing, probabilistic structures, and predictive models that not only enable the discovery of nuanced
relationships between dimensions, but also allow future events and trends to be predicted. The algorithms presented in this work were
evaluated empirically on a real-world geospatial time-series dataset in a production environment, and are broadly applicable across
other storage frameworks.
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1 INTRODUCTION

Data volumes are growing rapidly in several domains. Many
factors have contributed to this growth, including inter alia pro-
liferation of observational devices, miniaturization of sensors,
improved logging and tracking systems, and improvements in
the quality and capacity of both networks and disk storage.
Analyzing such data provides insights that can be used to
guide decision making. To be effective, analysis must be timely
and cope with data scales. The scale of the data and the rates
at which they arrive make manual inspection infeasible. The
primary objective of this paper is to simplify the process of
gleaning insights and allow analysts to arrive at decisions faster
through continuous, interactive exploration.

In this study, we consider geospatial, time-series datasets.
Data with spatio-temporal properties are commonly found in
epidemiology, atmospheric and climate modeling, environmen-
tal and ecological systems, traffic and congestion analysis, and
commercial sales tracking systems. Observations or features
of interest are measured across geographical locations over
long periods. Data points include both coordinates (expressed
as latitude-longitude tuples) and also the time at which the
observation was recorded. Each data point (or observation)
is multidimensional, encompassing several features of interest
such as humidity, wind speed, temperature, pressure, etc.

Gleaning insights involves exploring characteristics of the
data. Besides identifying properties associated with individ-
ual features, this also includes identifying relationships: how
features correlate with each other and also how their values
change with respect to each other. Also of interest are the prob-
abilities associated with these features, for example pairwise
conditional probabilities between features that allow use of
Bayesian statistics to predict one feature when measurements
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are unavailable for the other feature. A broader insight users
might be interested in is how the feature space is impacted by
time and geography. Our objective is to provide a set of queries
that allow:

• Speeding up the discovery process
• Fast, near real-time exploration of the feature space
• A base to facilitate more complicated processing

(using MapReduce [1])

We are interested in supporting two types of analytic
queries: exploratory and predictive. Exploratory queries help with
understanding the feature space: how features evolve, and
how they relate to each other. The objective in exploratory
analytic queries is to get a deeper understanding of the data. An
example of an exploratory query is: “Retrieve locations where
temperature is negatively correlated with humidity”. In some
cases, an exploratory query might return a probability density
function (PDF) instead of a concrete answer. These queries may
also involve summary statistics associated with features at both
global scales and for a particular geographical scope.

Predictive analytic queries assist in forecasting what is likely
to happen in the future. An example of a predictive analytics
query is: “What will the temperature be in Seattle at 4:00 pm
tomorrow?” Another example of predictive analytics involves
confirmation or rejection of the statistical null hypothesis. Con-
sider the case where a store has run an advertising campaign
and would like to determine whether or not it resulted in
more sales. We can contrast the mean and standard deviation
of sales after the point where the campaign started, and use
specified p-value thresholds to either reject or validate the null
hypothesis that the campaign resulted in no change to sales.
Another example would entail confirming the failure rate of
new instrumentation; unlike the previous example, the manu-
facturers of the instrument wish to validate the null hypothesis
that the instruments are reliable and the failure rate has not
been impacted by the changes that were made.
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1.1 Challenges
Supporting exploratory and predictive analytics over volu-
minous, time-series, and geospatial datasets involves several
challenges, including:

1) Data Volumes: The quantity and overall size of the
data is high, precluding visualization of every point or
sifting through the data sequentially.

2) Continuous Arrivals: Data is streamed into the system
on a regular basis, requiring the knowledge base to be
constantly updated.

3) Data Dimensionality: Each observation has several fea-
tures (dimensions) of interest. Furthermore, evolution
of the feature space has spatio-temporal characteristics
that must be accounted for.

4) Managing the Memory Hierarchy: While main memory
accesses complete in nanoseconds, disk access times are
much slower. Due to dataset sizes, queries often target
large quantities of information, which makes careful
management of in-memory data structures critical.

5) Circumvention of I/O Hotspots: When some of the
distributed nodes take a disproportionate amount of
the storage load, hotspots will occur. This means that
data partitioning must be done in a balanced manner.

Given the data volumes being dealt with, it is possible that
some queries will be compute-intensive and hence have longer
turnaround times. We must balance these processing overheads
to ensure high throughput is maintained.

1.2 Research Questions
The goals and challenges associated with this study led us to
formulate the following research questions:

1) How can we discover and account for relationships
between features at a particular geographic scope?
How can this be used to inform predictions and ex-
plorations?

2) Can we account for the spatio-temporal characteristics
of different features at various geographical extents?

3) How can we ensure near real-time query evaluation
given the data volumes and the speed differential be-
tween the memory and disk access times?

4) How can we facilitate exploration at scale while main-
taining fast response times and high overall query
evaluation throughput?

5) Given the continuously arriving data streams, how can
we maintain an up-to-date knowledge base?

1.3 Summary of Approach
Our approach to supporting analytic queries over voluminous,
time-series, geospatial datasets takes a holistic view that targets:
(1) alleviation of I/O hotspots, (2) coping with the differential
between memory and disk speed, (3) construction of multiple
models to ensure specificity, and (4) online updates to summary
statistics that capture feature space evolution.

Information is managed by our distributed storage frame-
work, Galileo [2], [3], [4]. Galileo is based on Distributed Hash
Tables (DHTs), which have well-known scaling properties [5],
[6], [7]. In the system, datasets comprise a set of observa-
tions with spatio-temporal attributes. The observations may
be measurements reported by instruments, annotations from
subject matter experts on observed phenomena, or the result of
analytics operations. Data is dispersed based on Geohashes [8]
that are computed from the latitude-longitude tuples associated

with each data point. A subset of nodes is responsible for each
particular Geohash, with dispersion over the subsets based on
data density and chronological ordering.

To cope with I/O latencies, DiscoveryGraphs maintain
feature synopses in memory. These include statistics at each
vertex, with leaf nodes pointing to physical data blocks on
disk. DiscoveryGraphs improve upon traditional indexing tech-
niques by providing direct access to higher-level information
about the underlying data points, including their distributions,
trends, and cross-feature correlations. This enables real-time
knowledge extraction to derive both coarse- and fine-grained
insights across voluminous datasets. The graphs can also be
reoriented to reduce their memory footprints (via reduction
of vertices) or query evaluation times (via reduction of edges
that must be traversed). The breadth and depth of information
represented by the DiscoveryGraph directly impacts our ability
to avoid costly disk accesses.

DiscoveryGraph queries are evaluated as MapReduce com-
putations. Galileo storage nodes that do not contain relevant
data points are eliminated from the search space during prepro-
cessing, and then the queries are resolved in parallel across the
remaining nodes. During the reduce phase, DiscoveryGraph
instances are merged to produce a final result set that can be
traversed and used directly for analysis. Galileo supports both
singular and continuous queries [9].

Both exploratory and predictive queries depend on the con-
struction of data models that capture feature relationships. We
rely on a multiplicity of distributed models rather than a single
all-encompassing model. This approach allows for specificity,
where each model is responsible for a particular geographical
scope. Since the models are dispersed over multiple machines
and localized, this approach scales with increases in data
volumes as well as reductions to finer-grained geographical
scopes. Models include multiple linear regression and artificial
neural networks to capture both linear and non-linear relation-
ships, respectively. To avoid the effects of collinearity, we detect
and account for features that are highly correlated.

1.4 Contributions
This paper describes a distributed framework for evaluation
of analytic queries over multidimensional time-series datasets.
The work described makes the following contributions:

1) We model feature characteristics at various scales, in-
cluding how the features evolve spatio-temporally and
with respect to each other.

2) Support for validation or rejection of null hypotheses
based on specified p-value thresholds.

3) Dynamic construction of linear and nonlinear models,
including ARIMA for time-series projection.

4) Probabilistic estimates for features, as well as queries
that return results in the form of PDFs or joint PDFs.

5) The algorithms described are broadly applicable to
other storage systems, such as Cassandra [5], Dy-
namo [6], and Chord [7], among others.

A key innovation in this work is achieving these contribu-
tions at scale and in a timely fashion. Our empirical evaluations
are performed over a real-world 1 Petabyte dataset encompass-
ing over 20 billion files.

1.5 Experimental Setup
The dataset used in this study was sourced from the National
Oceanic and Atmospheric Administration (NOAA) North
American Mesoscale Forecast System (NAM) [10]. The NAM
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conducts frequent collection of atmospheric data in GRIB for-
mat, and contains several features across a timespan of over
ten years. Some of the features highlighted in this study were
the surface temperature, visibility, cloud cover, precipitation,
humidity, snow fall, vegetation, and albedo.

Our data ingest process involves reading data from the
NAM and streaming it into the system as samples from discrete
spatial locations. Each sample consisted of about 10 KB of
raw feature data, along with another 40 KB of graphical tiles
designed to be overlaid on a map for visualization. The total
dataset encompassed 20 billion files at approximately 50 KB
each for a total dataset size of 1 Petabyte.

The benchmarks included in this paper were carried out
on a heterogeneous 78-node cluster consisting of 48 HP DL160
servers (Xeon E5620, 12 GB RAM) and 30 HP DL320e servers
(Xeon E3-1220 V2, 8 GB RAM). Each machine was equipped
with four hard disk drives. The hardware was divided into 13
groups of 6 nodes each. Galileo was run under the OpenJDK
Java runtime, version 1.7.0 65.

1.6 Paper Organization
Section 2 outlines the system architecture used in the paper,
while Section 3 describes the DiscoveryGraph indexes and
their query resolution process. Sections 4 and 5 describe our
exploratory and predictive analytics functionality, respectively,
followed by a performance evaluation in Section 6. Section 7
provides a survey of related work, and Section 8 outlines our
conclusions and future research direction.

2 SYSTEM OVERVIEW

Galileo is a high-throughput distributed storage framework
that supports range-based, exact-match, geospatial, and ap-
proximate queries over multidimensional time series data. The
system is implemented as a Distributed Hash Table (DHT),
allowing incremental scalability and flexible data partitioning.
Contrasting with the traditional DHT model used in Chord [7]
or Pastry [11], Galileo is a zero hop (or one-hop) DHT. This
means that enough state information is maintained at each
node in the DHT to route requests directly to their destination
without intermediate hops through the network. Examples
of other zero-hop DHTs include Amazon’s Dynamo [6] and
Apache Cassandra [5].

To support the management of voluminous scientific
datasets, Galileo places storage nodes in several groups (or
subgroups), creating a hierarchical network layout. Combined
with a multi-tiered hashing scheme, this functionality enables
a balance to be struck between uniform load balancing and or-
dered data placement. Galileo includes several domain-specific
features to ease working with scientific datasets such as built-
in spatial and temporal data structures, along with support for
scientific formats such as NetCDF [12], BUFR, or HDF5 [13].

While most DHTs support only key-based retrieval seman-
tics, Galileo provides expressive query support through a multi-
tier indexing scheme. Each storage node in the system main-
tains a unique metadata graph that indexes local files, while the
globally-distributed feature graph [3] contains a coarse-grained
representation of all the information in the system. Both graphs
rely on an eventually-consistent gossip scheme to disseminate
state information. The metadata graph is primarily used for
locating and retrieving records, whereas the feature graph helps
reduce the search space of distributed queries by eliminating
storage nodes that do not contain relevant data.

Users do not need to be aware of the structure or contents
of the graphs, and queries are formulated in an intuitive,

declarative syntax. Any of the nodes comprising the DHT can
accept and evaluate queries. The receiving node computes the
subset of nodes likely to hold data of interest; we use the feature
graph and Bloom Filters [14] to ensure that there are no false
negatives generated by this process. The receiving node then
forwards the query on to applicable nodes for evaluation.

2.1 Data Partitioning
We use the Geohash [8] algorithm to partition data across the
storage groups in Galileo. Geohash divides the Earth into a
hierarchy of bounding boxes that are referenced by Base 32
strings. The longer the string, the smaller (and therefore more
precise) the spatial bounding box. For example, the coordinates
of N 30.3321 W 81.6556 would translate to the Geohash string
DJMUTCU1Q. Figure 1 demonstrates two successive iterations
of the algorithm, where our example location would fall within
the DJ and DJM bounding boxes. Each subsequent iteration
of the algorithm adds another character to the string and
introduces 32 new spatial subdivisions.

Geohash strings are used by Galileo to succinctly represent
spatial points or regions, as well as assign data to groups in
a flexible manner that enables both scaling up or down as
necessary. In this study, the first two characters of the Geohash
for a data point are used to determine group membership. This
results in groups being responsible for regions of approximately
1030 × 620 km, which also helps reduce the search space of
distributed spatial queries.

2.2 Indexing and Retrieval Operations
Galileo extracts metadata from incoming records and organizes
it in hierarchical, graph-based indexes to enable fast query
resolution and retrievals. Each level in the hierarchy manages
a unique feature type, with vertices representing configurable
ranges of values known as tick marks. Tick marks allow varying
degrees of index granularity to be achieved; given the data
volumes Galileo is designed for, simply storing every discrete
value in memory is not feasible. This results in similar values
being condensed to a single index entry — values of 0.091 and
0.092 might be stored on a vertex managing values from 0.0 to
0.1, for instance. These tick marks can be chosen explicitly by
the user or generated autonomously by the system [15]. One
key contribution proposed in this work involves maintaining
synopses to improve the expressiveness of a vertex without
storing individual values in memory.

As data is streamed into the system, its metadata is extracted
and indexed before being stored to disk. The indexing process
begins by transforming values into graph paths that represent
an ordered traversal through the index hierarchy. As the graph
is traversed, neighboring vertices are created or updated as
necessary to reflect the data points in the new path. The
final step in an insertion depends on the type of graph being
updated: in the case of a metadata graph, the last vertex in the
path contains a list of relevant file locations on disk. On the
other hand, final vertices in the global feature graph contain a
list of storage nodes with matching data points to aid in search
space reduction. Figure 2 provides an illustrative example of
a sample graph layout and its feature hierarchy. The graphs
can also be reoriented at run time to improve query response
times or conserve memory by modifying feature ranks, which
impacts the positioning and quantity of vertices as well as the
number of edges in the graph.

Retrieving information from the graphs proceeds in a man-
ner similar to data insertion, with each clause specified in the
query used to incrementally narrow down the search to a subset
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Fig. 1. A visual overview of successive spatial subdivisions generated by the Geohash algorithm. In this example, the area represented by Geohash
DJ is divided into 32 smaller subregions, each about 133× 155 km in size.

of relevant vertices. These vertices are streamed back to clients
as orientation-neutral paths that can be organized as a tabular
display or used to create traversable result graphs. If further
analysis is warranted, the graphs allow the system to guide
the execution of MapReduce [1] computations on the cluster
that exploit data locality. This abstraction also helps reduce the
amount of data that client hardware has to handle, allowing
files on physical media to be accessed selectively.

2.3 Spatiotemporal Queries

Geohashes are augmented by bitmap-based Geoavailability Grids
[4], [16] to provide higher-precision spatial lookup function-
ality. This includes queries that are constrained by arbitrary
polygons, and also enables proximity queries such as, “retrieve
readings closest to Toronto, Ontario with a temperature lower
than 12◦ C”. Similar to the feature graph, Geoavailability Grids
also support search space reduction as a preprocessing step.
Queries that include both spatial and feature constraints can
be combined, essentially resolving all data points that intersect
both parameters.

Temporal information can be stored directly in the feature
and metadata graphs as either timestamps or intervals. Besides
the usual query operators, interval-based records can be se-
lected using Allen’s Interval Algebra [17], [18], an expressive
calculus for temporal reasoning. This enables queries that make
inexact comparisons across temporal events; for instance, when
finding points that overlap, lie outside a specific range, or
happen during a common time period.

DJ

June July Aug

25-28 29-30 26-28

Spatial Location

Month

Temperature (°C)

File Location

Fig. 2. An example graph index; traversals lead to the location(s) of files
in the network (in the feature graph) or on disk (in the metadata graph).

3 THE DISCOVERYGRAPH: METHODOLOGY

By quantizing indexed values and reducing the overall search
space, the feature graph enables low-latency distributed queries
across voluminous datasets. However, quantization with adap-
tive tick mark boundaries still results in a small reduction of
index fidelity. Furthermore, simply locating relevant records is
only the first step in most analytics activities; given a subset
of the data, distributed computations or batch processing must
occur to glean insights from the dataset. To address these use
cases, we developed the DiscoveryGraph, an index that enables
efficient resolution of both exploratory and predictive analytic
queries.

The DiscoveryGraph improves upon (and supersedes) the
feature and metadata graphs by making knowledge extraction
part of the indexing process. As records are streamed into the
system, the DiscoveryGraph maintains a variety of statistics at
each vertex that describe the underlying data distributions and
their interactions. Maintaining this information boosts index
fidelity, greatly improves the speed of queries meant to gen-
erate synopses, and serves as a platform for development of
additional functionality. The DiscoveryGraph operates in two
modes: a coarse-grained, globally distributed, and eventually
consistent instance that replaces the feature graph, along with
finer-grained local instances maintained on each storage node
to replace the metadata graphs.

3.1 Vertex Statistics
By placing incoming data points into discrete bins or “tick
marks,” Galileo can index voluminous datasets quickly and
evaluate queries without excessive memory consumption.
While our autonomous tick mark reconfiguration functionality
does provide some degree of insight into the data distributions,
the DiscoveryGraph further improves expressiveness by calcu-
lating statistical synopses of the information that was placed
under each vertex. The synopses include:

• Number of data points placed at the vertex
• Smallest and largest values observed
• Mean, variance, and standard deviations

Given that the range of values placed at a vertex is gener-
ally small, these statistics provide finer-grained insight into
the behavior of the underlying data. Since new information
is continually streaming into the system, we use the online
method proposed by Welford [19] to avoid re-calculating these
values each time a new data point is added. This involves
maintaining the count of samples observed thus far, n, along
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with the current mean of the values, x̄, and the sum of squares
of differences from the current mean, Sn. When a new data
point xn is added at a particular vertex, the components are
updated as follows:

x̄0 = 0, S0 = 0

x̄n = x̄n−1 +
xn − x̄n−1

n
Sn = Sn−1 + (xn − x̄n−1)(xn − x̄n)

With this information, the sample variance can be calculated as
σ2 = Sn/(n − 1). These calculations are lightweight, enabling
us to update statistics for each vertex affected by the insertion
of a new multidimensional data point efficiently. In situations
that require updates or removals, the running statistics can be
adjusted by effectively reversing the procedure outlined above.
When a query or system operation involves multiple vertices,
the statistics from each vertex can be merged to provide an
aggregate summary. A sample merge operation of vertices A
and B follows:

n′ = nA + nB

x̄′ =
nAx̄A + nB x̄B

n′

S′ =
SA + SB + nAnB(x̄A − x̄B)2

n′

Table 1 evaluates the performance of this algorithm by
testing each operation over 1000 iterations and averaging their
computational overhead in microseconds. Updating the statis-
tics consumes the most CPU time because it triggers several
calculations, but all five operations (update statistics, remove
data point, calculate mean and standard deviation, merge two
instances) complete in less than a microsecond on average; even
while accounting for additional traversal overhead, updating a
DiscoveryGraph with 100 unique features takes less than 1 ms.

TABLE 1
A performance evaluation of vertex statistics maintenance operations,

averaged over 1000 iterations.

Operation Mean Time (µs) σ (µs)
Add Data Point 0.942 0.137
Remove Data Point 0.913 0.126
Calculate Standard Deviation 0.416 0.023
Calculate Mean 0.339 0.025
Merge Instances 0.279 0.018

3.2 Data Insertion

Data is added to the DiscoveryGraph in a fashion similar to the
feature and metadata graphs; incoming multidimensional data
points are first converted to paths that represent a hierarchical
graph traversal. Once a path is constructed, summary statistics
are updated (or created, if necessary) as the vertices are placed
in their appropriate tick mark ranges. The final vertex in the
path includes a list of pointers to files on physical storage media
that match the traversal hierarchy. For globally-distributed Dis-
coveryGraphs that augment the functionality provided by the
feature graph, the final vertices contain a list of Galileo storage
nodes that hold relevant data.

Figure 3 contains a demonstration DiscoveryGraph popu-
lated with five records from our dataset that were extracted
from Florida, USA, in July of 2013. Each record contains three

Range: 290-300 K
Count: 5
Min: 293.9, Max: 296.6
μ: 294.9, σ: 0.9

Temperature

Range: 50-100%
Count: 4
Min: 64.0, Max: 100.0
μ: 75.5, σ: 14.4

Cloud CoverΔ
Range: 0-49%
Count: 1
Min: 20.0, Max: 20.0
μ: 20.0, σ: 0.0

Cloud Cover

Range: 70-79%
Count: 1
Min: 79.0, Max: 79.0
μ: 79.0, σ: 0.0

Humidity

Range: 80-100%
Count: 3
Min: 85.0, Max: 100.0
μ: 91.0, σ: 6.4

Humidity
Range: 70-79%
Count: 1
Min: 71.0, Max: 71.0
μ: 71.0, σ: 0.0

Humidity

Fig. 3. A DiscoveryGraph populated with multidimensional data points
from Table 2. File/node pointers are omitted for brevity.

dimensions: temperature, cloud cover, and humidity. The fea-
ture values of the paths are shown in Table 2, identified by the
letters A through E. Note that each level in the graph hierarchy
contains a particular feature type, and that the summary count
at each level sums to the total number of data points seen at the
parent vertex. Vertices are split or merged based on their coeffi-
cient of variation, which is the relationship between the standard
deviation σ and the mean µ of the values: C = σ/µ. This allows
vertices with high feature dispersion values (such as the cloud
cover vertex handling values from 50-100%, marked ∆) to be
broken up into smaller ranges that exhibit less dispersion, thus
improving the specificity of the summary statistics [15].

Table 3 provides an intuition for how summaries in the
DiscoveryGraph change over time by updating each statistic
at the 50-100% cloud cover vertex (marked ∆ in Figure 3) as
the paths in Table 2 were inserted. Column A contains the
vertex state with only one data point (66%). Note that the count
increases up until column D, where the path insertion did not
involve the particular vertex being used for demonstration.
Once path E has been inserted, the summary statistics match
those shown in Figure 3.

TABLE 2
Sample multidimensional data points used to create the

DiscoveryGraph shown in Figure 3.

Path Temperature Cloud Cover Humidity
A 295.4 K 66.0% 88.0%
B 296.6 K 64.0% 100.0%
C 294.5 K 72.0% 71.0%
D 293.9 K 20.0% 79.0%
E 294.1 K 100.0% 85.0%
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TABLE 3
A step-by-step view of DiscoveryGraph statistics at the cloud cover

node handling values from 50-100% (∆ in Figure 3) as each
successive path from Table 2 is inserted into the graph.

Statistic A B C D E
Count 1 2 3 3 4
Min 66.0 64.0 64.0 64.0 64.0
Max 66.0 66.0 72.0 72.0 100.0
Mean (µ) 66.0 65.0 67.3 67.3 75.5
St. Dev. (σ) 0.0 1.0 3.3 3.3 14.4

3.3 Managing Vertex Specificity

Merging summary statistics across vertices enables Galileo to
provide both a coarse- and fine-grained vantage point over the
entire dataset: when a linear correlation or event of interest only
occurs under specific conditions, statistics at the appropriate
leaf vertices capture relationships without being influenced
by the rest of the data. On the other hand, vertices near the
root of the graph tend to capture highly general information
about the subgraphs beneath them. By managing the inherent
trade-offs of this specificity gradient, we can ensure accuracy is
maintained while improving query response times and overall
system performance. Figure 4 illustrates this concept, where
two sample graphs have been constructed using the same data
but different orientations. Vertices in the figure are highlighted
with four different colors to represent four unique feature
types; as vertex positions change their respective counts change
accordingly.

DiscoveryGraph orientations are configured manually by
the user or dynamically based on usage trends observed by
the system. This requires reorienting the graph to place the de-
sired fine-grained synopses at the leaf nodes, while the coarse-
grained synopses are placed near the top of the hierarchy. For
example, if a large quantity of queries involve the average
temperature of a region, placing temperature vertices at the top
of the hierarchy would avoid traversing further through the
graph. On the other hand, if a feature is always accessed along
with many other features (such as a request for subgraphs con-
taining a snow depth greater than 1 cm, temperatures less than
0◦ C, and a time span of November through February) then
it should be placed towards the bottom. Galileo maintains a
table of query feature sets to monitor these trends. Additionally,
ensuring the graph can be reoriented requires each leaf node to
maintain path synopses that track each incoming path so vertex
statistics can be redistributed during a reorientation.

Specificity

Fig. 4. Two graphs modeling the same data with different orientations.
Vertices near the top of the hierarchy contain generalized information,
whereas vertices closer to the bottom are highly specific.

3.4 Integrated Analytic Models
While the DiscoveryGraph provides a wealth of information
about the underlying dataset, its interfaces and functionality
also form the basis for more advanced models that facilitate
analytic queries. Both exploratory and predictive queries (dis-
cussed extensively in the following sections) build on this tech-
nology, with online models ranging from correlation analysis
and two-dimensional linear regression to neural networks and
ARIMA forecasting. Exploratory queries generally involve the
discovery of unknown patterns or attributes in the dataset, so
we ensure that their models are lightweight (about 8 bytes
per feature) and available at every vertex. On the other hand,
predictive queries are intended for situations that require guid-
ance from the user to define the problem domain; while a
multiple linear regression or ARIMA model could incorporate
every reading received at a storage node, targeted insights are
usually much more valuable. Predictive models involve two
major phases: creation and maintenance.

During the creation of predictive models, ModelGraphs are
used to constrain the scope of model inputs to particular
subsets of the DiscoveryGraph. User-defined queries filter and
select the vertices that compose a ModelGraph, resulting in a
bounded “view” of the overall dataset. In cases where historical
data is required for training, creation of a ModelGraph may
involve disk accesses. Once the ModelGraph is created, nodes
under its purview will trigger the maintenance process as they
receive new observations. Maintenance intervals determine
how often the models are updated, which can be continuous,
periodical, or performed based on the availability of a specific
number of observations. By default, models are constrained
to the same size geographical regions as storage node groups
(1030 × 620 km in this study) and 12-month time spans,
but any geographical, chronological, or feature scope can be
incorporated.

Limits on both the scope of model inputs and their life-
times can be specified by the system administrator to manage
resource usage. By default, predictive models that have been
unused for more than 24 hours are automatically garbage
collected and removed from main memory. However, state
variables and model calculations generally require consistent
and predictable amounts of memory and CPU time, so re-
source limits can be configured to allow certain models to be
maintained for longer time spans (or even indefinitely, with
removal performed manually). If storage space is available,
these models can also be serialized to disk for future use. In
situations where models incorporate future observations, their
lifetimes are specified upfront during creation.

To distribute workloads and exploit data parallelism, mod-
els with inputs that span multiple storage nodes are maintained
separately and can also be queried independently to analyze
how different geographic regions or distributions of the data
impact the models. However, the most common query pattern
involves merging model instances prior to their use to generate
an aggregate model. This process is carried out in parallel by
our MapReduce framework.

3.5 Query Evaluation: MapReduce Framework
While the summary statistics and models in the Discovery-
Graph are lightweight and incur minimal processing costs,
they provide nuanced insights about the underlying dataset.
Galileo includes rich retrieval functionality to allow this in-
formation to be queried and used individually by end users,
aggregated across dimensions, or used to locate phenomena
and features of interest autonomously. DiscoveryGraph queries
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are implemented as dynamic MapReduce [1] computations that
are pushed out to relevant storage nodes for parallel evaluation.
A query may involve subsets of graph nodes or outputs from
analytic models; Figure 5 provides an example of both.

As noted previously, the first step of a distributed query
in Galileo is to eliminate nodes that do not contain relevant
data from the search. This involves performing a lookup on
the global DiscoveryGraph, which receives state updates that
are gossiped through the network in an eventually consistent
manner. While the search space reduction process does not
guarantee that the remaining nodes will have relevant infor-
mation, it does not produce false negatives. An additional
benefit afforded by the summary statistics maintained at each
vertex is that irrelevant storage nodes can be detected with
greater accuracy. For example, consider a query requesting
records with humidity values greater than 32%. In this case,
a vertex that is responsible for data points ranging from 25-35%
produces a positive match. However, if the vertex in question
has a minimum value of 30%, the false positive can be avoided.

After the initial pruning process, queries are pushed to
candidate storage nodes for evaluation in the Map phase. Query
results are represented by traversable subgraphs or serialized
model state information, which is then merged by a subset
of the nodes in the Reduce phase before being streamed back
to the client. DiscoveryGraph synopses facilitate the reduction
phase by providing additional information about the data
distributions of the query; if a single storage node contains a
large percentage of the records being queried, it is selected as a
reducer to decrease serialization overhead and network I/O.

The reduce phase operates in one of three modes depending
on the end user’s goals, requirements, or hardware constraints.
These modes include the tabular layout, traversable graph, or
summary graph. Modes are selected during query submission,
and each has its own set of trade-offs and use cases:

• A Tabular Layout, which provides raw outputs with
minimal post-processing occurring in the reduce phase.
Results are streamed as table rows directly to clients.

• Traversable Graphs that retain relationships between
records. Graph paths that appear more than once are
represented as a single path, reducing output sizes.

• Summary Graphs that merge DiscoveryGraph vertices
at the same level in the feature hierarchy to summarize
the data with fewer records.

The differences between each of these output types are
shown in Figure 6. Tabular records are best suited for model
outputs or streaming applications that prioritize fast responses,
while the traversable graphs offer additional data inspection
and exploration features at smaller output sizes. Summary
graphs are ideal for fast, ad-hoc exploration and analysis of
the feature space, allowing large quantities of data to be sifted
and represented in a compact fashion.

QUERY Humidity, Temperature WHERE
Date IN [Feb 2014 TO Jun 2014]
AS SUMMARY_GRAPH

PREDICT USING ‘Temp-DJ_ARIMA’
WHERE Date =
    [Jun 15 2013 TO Jun 30 2013]
AS TABULAR

Fig. 5. Example queries and requested output types. The first query re-
trieves temperature and humidity statistics, whereas the second issues
a model query to predict temperature values at Geohash DJ.

(A) Tabular Layout

. . .
(B) Traversable Result Graph

(C) Summary Graph

Fig. 6. Output dataset types supported by Galileo. Intermediate results
(left) are transformed by the multi-stage MapReduce process into the
final output data structures (right).

4 EXPLORATORY ANALYTICS: METHODOLOGY

Often, voluminous datasets contain a multitude of relationships
and insights that may not be obvious or intuitive. For this rea-
son, we provide support for exploratory analytics functionality to
pinpoint information, trends, and properties of interest in the
underlying data. These components include online algorithms
for generating both broad and specific statistical synopses,
discovering correlations between dimensions, evaluating the
significance of feature variations, and analyzing the probabil-
ities associated with events.

4.1 Detecting and Quantifying Feature Relationships

Most real-world systems involve several interrelated features.
These relationships may represent dependencies or correlations
between events or variables; for instance, absolute humidity is
impacted by temperature and pressure, and precipitation may
be classified as rain, hail, or snow depending on the current
temperature (along with other atmospheric conditions). While
it is important to note that correlation does not imply causation,
the relationships between variables may prove to be valuable
from a research perspective and warrant further study.

To autonomously track correlations between features, we
augmented the DiscoveryGraph by adding the capability to
calculate the Pearson product-moment correlation coefficient
(PCC) across two-dimensional feature combinations. PCC mea-
sures the degree of a linear relationship between two variables,
ranging from [+1,−1]. A correlation coefficient of +1 or −1
between variables represents a perfect positive or negative
linear relationship, respectively, whereas a value of 0 would
imply the absence of a linear correlation. Both sides of this
spectrum can provide useful insights into how features interact
and influence one another.
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A correlation query is issued by specifying feature tuples of
interest along with any additional constraints (such as limiting
results to a specific region or time), and will return a set of
correlation coefficients and their two-tailed p-values. p-values
represent the probability of producing the same test results if
there was no relationship between the features. In other words,
a very low p-value (often less than 0.01 or 0.05, depending on
user requirements) represents a significant relationship that is
unlikely to occur by chance. Client applications have the option
to request that these statistics be merged into a single set of
correlation coefficients or returned as subgraphs for further
exploration.

Table 4 contains correlations found between several differ-
ent features during the month of July in Wyoming, USA, along
with their corresponding p-values to test the significance of
the relationships. These results indicate a negative correlation
between sky visibility and total precipitation, a positive cor-
relation between humidity and precipitation, and a negligible
relationship between temperature and ground vegetation. As
one might expect, snow depth did not exhibit correlations
with any of the other features during this summer month,
highlighting the fact that both temporal and spatial aspects
must be considered when drawing conclusions from the data.

TABLE 4
Correlations and p-values between several features recorded during

July in Wyoming, USA.

Feature A Feature B Correlation p-value
Precipitation Visibility -0.49 3.39E-39
Humidity Precipitation 0.37 3.08E-22
Pressure Visibility 0.36 1.61E-20
Vegetation Temperature -0.06 0.12
Temperature Snow Depth 0.0 1.0

In addition to the correlation coefficient, we also maintain
enough information to generate linear models between feature
types. These models are provided by two-dimensional linear
regression, and include the coefficient of determination, r2,
which measures the predictive quality of the linear models.
Features that exhibit strong linear correlations can often be used
to make accurate predictions. Our implementation follows the
least-squares approach, wherein a straight line is fit to the data
such that the sum of squared residuals is minimized. The slope
and intercept of the regression line can be retrieved by clients,
or the model can be used directly to extrapolate the value of a
particular feature.

While updating vertex statistics is computationally
lightweight, several more operations are necessary to provide
the correlation coefficient, linear regression functionality, and
r2 values. Table 5 describes the performance characteristics of
the two-dimensional vertex statistics management capabilities
added to the DiscoveryGraph. Once again, adding new data
points incurs an upfront cost, but subsequent calculations are
fast: all operations were completed in less than 2 µs.

4.2 Significance Evaluation
Regions in close spatial proximity often exhibit similar climac-
tic trends, but variations in the surrounding geography may
result in significantly different weather patterns. Similarly, the
average temperature for a particular region will vary from year
to year, but a researcher would be most interested in situations
where the difference was statistically significant. While Galileo

TABLE 5
Performance evaluation of the augmented two-dimensional vertex

statistics mechanism, averaged over 1000 iterations.

Operation Time (µs) σ (µs)
Add Data Point 1.489 0.044
Calculate Correlation 0.723 0.023
Calculate r2 0.101 0.003
Predict y 0.381 0.016
Merge 2D Instances 0.919 0.103

supports calculating the significance of the variations between
two samples using p-values, we have also added functionality
to enable the evaluation of queries that invert this problem:
given a feature or set of features, a significance query locates
relevant locations, time spans, or data points across the overall
dataset where variations are statistically significant. The fea-
tures in question are often chosen based information gained
from previous exploratory analysis.

We implement significance queries as multi-stage MapRe-
duce computations; each relevant storage node begins by eval-
uating a standard query with the given parameters, and then
retrieves the statistical synopses of the feature in question
from the resulting subgraph. To reduce network I/O costs, the
synopses are combined and transmitted to the node that was
projected to contain the largest number of matching records by
the initial DiscoveryGraph pruning step, which then performs
Welch’s t-test between synopses. A t-test uses the t-distribution
to determine whether there is a relationship between observa-
tions, and Welch’s version of this test is used in situations where
the variances between two samples are possibly unequal. This
produces a set of p-values that measure inter-group variance.
In the final step, both the individual and group results are
streamed back to the client based on a p-value threshold that
is specified at query time based on the client’s desired signifi-
cance level. This reduces the amount of information that must
be processed on the client side and enables users to quickly
evaluate perceived relationships across the dataset. To test
this functionality, we submitted queries involving randomized
feature sets with significance levels of either 5% or 1% to our
cluster. The results were produced in 41.0 ms, on average (over
1000 iterations) with a standard deviation of 0.13 ms.

4.3 Probability Density Queries
Feature analysis not only involves the values a particular
feature has taken, but also the probabilities associated with
them. For instance, high temperatures are more likely to occur
during summer months and less likely during winter months.
The probability densities associated with these events provide
insight as to how features behave under specific conditions, as
well as how they evolve over time. Figure 7 contains the results
of a probability density query, illustrating the likelihood of mea-
surable precipitation occurring as the amount of atmospheric
cloud cover changed in Wyoming, USA during the month of
July in 2013. While the presence of clouds being associated with
a heightened probability of rain is a fairly intuitive relationship,
this query yields the probability of precipitation as a function
of cloud cover; with this information, we know that rain is
highly unlikely when when cloud cover is under 50% in this
region. The next step in our analysis might involve inspecting
the relationship between cloud cover and precipitation across a
variety of spatial locations.
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Fig. 7. Results of a probability density query showing the probability of
precipitation occurring as the amount of atmospheric cloud cover varies.

Client applications can issue probability density queries
across ranges of feature values, geospatial regions, or time
spans. For query shown in Figure 7, Galileo uses feature
synopses in the DiscoveryGraph to determine the number of
times precipitation was greater than zero under the specified
constraints and produces a collection of vertices to be passed
on to the reduce phase. During the reduce phase, vertices are
merged to produce a final histogram that contains the counts
for each tick mark range. The resulting set of vertices can
either be returned directly to the client to produce a histogram,
or passed through a kernel density estimation to compute the
approximate probability density function. On our test dataset,
this query involved a total of six storage nodes and completed
in 18.26 ms (averaged over 1000 iterations, with a standard
deviation of 0.11 ms).

4.4 Joint Probability Queries

To model cross-feature influences, joint probability queries pro-
vide the probability densities of multiple events or feature val-
ues occurring at the same time. For example, consider the joint
influence of temperature and humidity on the human body’s
perception of heat: days with high temperatures coupled with
high humidity feel hotter than those with the same temperature
and a low relative humidity (often colloquially referred to as
“dry heat”). Figure 8 contains the probability density of each
temperature-humidity tuple in Florida, USA during the month
of July in 2013. Note the prominent peak signaling a high
probability of both high humidity and high temperatures for
the region. The query involved six storage nodes and was
evaluated in 240.10 ms (averaged over 1000 iterations, with a
standard deviation of 30.0 ms).

Similar to a probability density query, evaluating joint
probability requires creating a subgraph of intersecting feature
values and then performing a kernel density estimation during
the reduce phase. As always, the client-side request for a joint
probability query can be combined with our existing query
constructs to manage specificity. Figure 9 provides a contrasting
view of the same query evaluated across the entire continental
United States, which contacted all 78 nodes in parallel and
completed in 424.19 ms (averaged over 1000 iterations, with
a standard deviation of 45.16 ms). Note that in this scenario
a peak similar to that in Figure 8 exists due to the overall
hot and humid summer months, but the probabilities of other

temperature-humidity tuple combinations have also risen to
account for other regions; particularly, the frequency of high
heat and low humidity is much more prominent in this exam-
ple. In both cases, additional information can be retrieved from
the subgraphs generated by the query; for instance, a range
query could be evaluated against the aggregate subgraphs
to determine the locations in the continental USA with high
temperatures and low humidity.

5 PREDICTIVE ANALYTICS: METHODOLOGY

After exploring the interactions between features in the dataset,
predictive analytics enables us to capitalize on these relationships
through modeling and dynamic forecasting to discover and
exploit trends, project future events, and reason about how
the dataset is evolving over time. These types of analysis
involve making assertions about the strength of relationships
to validate statistical hypotheses, projecting future events and
conditions with linear and nonlinear models, and making
probabilistic estimations. Using this functionality, the wealth of
knowledge already stored in the system is leveraged to provide
accurate and timely insights into the evolution of the feature
space and its corresponding events.

5.1 Hypothesis Testing
The exploratory analysis process leads to the development of
hypotheses about the dataset and its interactions; an increase in
sales might be the result of a successful advertising campaign,
or simply due to fluctuations in shopping trends. To evaluate
these hypotheses in a statistically sound manner, Galileo pro-
vides built-in hypothesis testing functionality. Hypothesis testing
begins with formulating the null and alternative hypotheses. The
null hypothesis is often considered the “default position” for
statistical tests, which states that there is no relationship be-
tween particular phenomena. On the other hand, the alternative
hypothesis represents the opposite case where outcomes indi-
cate a relationship. When a relationship is present in the data,
we reject the null hypothesis — depending on the test being
carried out, this may or may not be desirable. For instance, it
may be advantageous to replace a hardware component with a
cheaper version, but only if the null hypothesis holds for failure
rates before and after the change.

Hypothesis testing is performed by comparing aggregate
summary graphs produced by two queries. Storage nodes that
are projected to contain a majority of the relevant data for a
query orchestrate the reduction process, merging vertices as
they are received to produce the final summary graphs. A t-test
is then carried out on the graphs, enabling calculation of the
p-value as described in the previous section. We support both
one- and two-tailed tests: a one-tailed test is used for relation-
ships that change in only one direction, whereas a two-tailed
test is applied when the relationship could be both negative
or positive. For example, an advertising campaign could both
increase or decrease sales; if the advertisements are negatively
received or alienate previous customers, sales may decline. The
p-value is then used to decide whether the null hypothesis
should be rejected or not, with significance levels of 5% or 1%
commonly used to denote a strong presumption against the null
hypothesis. To instrument a hypothesis test, clients provide two
queries that represent the states being compared, along with
a desired significance level. Backed by our vertex synopses,
hypothesis testing is an efficient operation: a randomized test
involving 250,000 vertices and over 2 million records executed
across 24 nodes completed in 26.66 ms on average over 1000
iterations, with a standard deviation of 1.64 ms.
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Fig. 8. Joint probability density of temperature and humidity values in
Florida, USA, during July of 2013.
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Fig. 9. Joint probability density of temperature and humidity values
across the continental USA during July of 2013.

5.2 Multiple Linear Regression

While our vertex synopses support two-dimensional regression
functionality, there are cases where several explanatory vari-
ables can predict a single outcome. To handle these situations,
we also support multiple linear regression across features to build
predictive models that are updated continuously as data is
streamed into the system. Since multiple linear regression spans
several features, instances are not required at each vertex in the
graph. Instead, we support selective placement of regression
instances; the default placement is not linked to any partic-
ular location in the graph, assimilating all new readings as
they arrive. However, we have also incorporated support for
user-defined limitations on the scope of the regression models
to particular subsets of the data to ensure expressivity. For
example, each vertex representing a month of the year might
maintain its own multiple linear regression instance. Users can
place or remove multiple linear regression models during index
creation or dynamically at runtime, and their meager memory
requirements enable a substantial number of instances to be
maintained in the index.

In situations where variables in the regression model are
highly correlated and begin to exhibit multicollinearity, coeffi-
cient estimates for individual predictors may become inaccu-
rate. For this reason, we autonomously detect multicollinearity
and warn users of its presence using the variance inflation
factor (VIF). The VIF provides a measure of multicollinearity
that helps judge whether certain variables should be excluded,
which is essential when dealing with the large number of
models our framework maintains. Client applications can also
specify custom VIF thresholds based on their particular use
cases.

Like our two-dimensional vertex synopses, multiple linear
regression instances are lightweight. Table 6 contains perfor-
mance statistics for various operations applied to the regres-
sion instances, which include adding data, calculating r2, and
making predictions. We also include the time taken to compute
the root-mean-square error (RMSE) of a regression operation,
which measures the accuracy of the predictions using the
same units as the dependent variable. Vertices that maintain
a multiple linear regression instance create a predictive model

TABLE 6
Dynamic multiple linear regression performance evaluation, averaged

over 1000 iterations.

Operation Time (µs) σ (µs)
Add Data Point 1.51 0.28
Calculate r2 0.78 0.02
Calculate RMSE 0.79 0.13
Make Prediction 2.54 0.51

for each feature type, meaning fast and efficient updates are
critical to ensure overall system performance.

To benchmark the effectiveness of our regression frame-
work, we used models built with data collected in Wyoming,
USA during July over a three-year period (2011 through 2013)
to predict rainfall. The models included each of the feature
types indexed in this study, and were tested with new feature
readings from 2014. Figure 10 contains a scatter plot of the
residuals (difference between predicted and actual precipita-
tion). The RMSE of this test was 0.31 kg/m2 of rainfall. While an
exact measure of rainfall is a useful metric, we can also answer
the common question “do I need my umbrella today?” with
a binary classifier. To create the classifier, we considered any
prediction over 0.31 kg/m2 to imply that it would indeed rain,
whereas a value lower than the threshold would indicate little
to no rainfall. In this case, we predicted rain correctly 92% of
the time when compared to the actual rainfall data from 2014.
While client applications can request multiple linear regression
model parameters directly for a particular vertex or feature set
and have them streamed back for analysis, they are also given
the option to create customized binary classifiers similar to the
example described. A classification query specifies features of
interest, spatial and temporal ranges, and classification thresh-
olds, and returns a computational model that can be used to
predict and classify future events.

5.3 Artificial Neural Networks
For some datasets or feature types, linear methods may restrict
model fidelity or reduce prediction accuracy; for instance, con-
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sider the constant fluctuations present in foreign exchange rates
and stock prices or the sinusoidal variations in temperatures
that occur over the course of a day. In these cases, nonlinear
methods provide an alternative that can produce models that
are a better fit for the underlying data. Our framework includes
an interface that enables arbitrary models and prediction meth-
ods to be placed at graph vertices in a similar fashion to the
multiple linear regression instances, and can produce output
datasets in the form of classifications, function approximations,
or forecasts. We have incorporated support for online artificial
neural networks (ANNs) provided by the Encog [20] machine
learning library to accommodate nonlinear predictive models.

Compared to the linear methods discussed in previous
sections, ANNs generally involve more complex computations
for training. Furthermore, they often do not completely con-
verge on one final set of model parameters, so training is an
inexact and iterative process. A neural network created with
the Wyoming dataset from the previous section took 682.08
ms on average to train with a single new record (1000 itera-
tions, standard deviation of 128.13 ms). For these reasons, our
framework supports a batch ingest mode to amortize training
costs by collecting a set number of observations before training
occurs. Training is also executed as a lower-priority background
thread to avoid impacting query throughput, maintaining per-
formance while still keeping predictions updated. This allows
us to ensure consistent overall system performance while still
providing the more compute-intensive functionality afforded
by ANNs.

5.4 Time-series Forecasting: ARIMA
Autoregressive integrated moving average (ARIMA) models
are specifically designed for time-series data and allow predic-
tions to be made on non-stationary data types. ARIMA models
are parameterized by three parameters, p, d, and q, which cor-
respond to the autoregressive, integrated, and moving average
components of the model, respectively. Our implementation
allows these parameters to be chosen autonomously by the
system or specified at query time by client applications. Query
parameters also control which features should be considered by
the model and the time bounds of interest (which may include
historical data).
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Fig. 10. Scatter plot of the residuals between predicted and actual pre-
cipitation in Wyoming, USA, in July of 2014. The shaded region above
and below the reference line represents the RMSE of the predictions.

Figure 11 illustrates the effectiveness of ARIMA for predict-
ing temperatures in Florida and Wyoming, USA, respectively
during July of 2013. These models were populated with data
from the first 23.5 days of the month, and then were used
to forecast subsequent temperatures for the remainder of the
month. Predictions for Florida resulted in a root-mean-square
error (RMSE) of 0.077 K, while predictions from the model
responsible for Wyoming produced an RMSE of 0.818 K; in both
cases, the forecasts were highly accurate, and responded to the
cyclical temperature shifts that occur during a typical day in
both locations. Note that each day generally exhibits the highest
temperatures during midday and lowest temperatures during
night hours. Compared to Wyoming, temperature fluctuations
are less severe in Florida, which likely accounts for some of the
difference in prediction accuracy.

5.5 Conditional Probability and Naive Bayes Classification
Conditional Probability queries answer questions such as,
“what is the probability of rain given cloud cover is greater than
80%?” Computing the answer to this type of query involves
determining the intersection of a particular set of events, which
can be performed efficiently with the DiscoveryGraph; client-
side turnaround times averaged 38.66 ms for queries over
Florida, USA (across 1000 iterations with a standard devia-
tion of 2.89 ms). Based on the frequencies stored in vertex
synopses, individual probabilities associated with each event
can be retrieved through synopsis combinations. This type of
probabilistic analysis can also uncover relationships with no
direct interaction; two features may seem unrelated until an
additional dimension is considered. Determining whether such
a relationship exists requires traversing backwards through the
graph hierarchy until a common link is found.

A Naive Bayes classifier uses the probabilities associated
with events or features in the dataset to make predictions. The
key assumption of this type of model is that all features are
independent: completely unrelated to any of the other features.
Despite the fact that this assumption may not always hold,
naive Bayes has proven to be effective in practice for a variety
of classification tasks, including text categorization and medical
diagnosis. To classify a given set of samples, naive Bayes uses
the combined probabilities of the events to choose the most
probable outcome. Given variables such as the current cloud
cover, humidity, and temperature, naive Bayes can determine
the probability of rain or other events in the dataset. Using our
test data from Wyoming in July of 2013 we were able to achieve
85% accuracy for rainfall predictions in 2014, a query that took
17.68 ms on average (across 1000 iterations with a standard
deviation of 1.66 ms, after contacting 6 storage nodes). While
the predictions were less accurate than our multiple linear
regression models, naive Bayes can also be used in situations
where multiple linear regression does not apply, such as text
classification.

6 SEVER-SIDE QUERY PERFORMANCE: THROUGHPUT

Our framework introduces exploratory and analytic queries
that require an involved evaluation process. To ensure scala-
bility and support near real-time analysis, our algorithms are
designed to be lightweight and efficient. The computational
profiles of these algorithms fall into three retrieval categories:
(1) precomputed synopses (summary statistics, correlation anal-
ysis, conditional probability, naive Bayes classifiers), (2) multi-
stage processing and analysis (PDFs, joint PDFs, significance
queries, hypothesis testing), and (3) model calculations (mul-
tiple linear regression, artificial neural networks). To test the
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Fig. 11. ARIMA forecast of temperature values in Florida (left) and Wyoming (right), USA during the month of July in 2013.

performance of these algorithms we conducted a throughput
evaluation; Table 7 provides the number of queries processed
per second on our 78-node cluster. During the tests, the major
page fault rate across all the nodes never went above 0.01/s.
Query types were represented uniformly in this test. Precom-
puted synopses and multi-stage analytic queries both involve
graph traversals and the construction of subgraphs, whereas
model calculations generally require very few traversal steps.

TABLE 7
Cumulative throughput across query categories for our 78-node cluster
(with four disks per node). Results are averaged over 1000 iterations.

Category Cumulative Queries/s St. Dev.
Precomputed Synopses 131400 191
Multi-Stage Analysis 90690 244
Model Calculations 592200 810

6.1 Concurrent Workload Evaluation

To illustrate the impact of concurrent workloads on throughput,
we executed our tests again with varying levels of storage
requests being performed in parallel. Galileo uses non-blocking
I/O, enabling processing and storage activities to be inter-
leaved. Table 8 compares the performance impact of concurrent
storage operations expressed as a percentage of query through-
put (e.g., 10000 queries per second with a 50% workload mix
would result in 15000 total operations being processed per
second).

TABLE 8
Impact of concurrent workloads on query throughput, averaged over

1000 iterations.

Workload Mix ∆ Queries/s (%) St. Dev. (%)
25% Storage -0.82% 0.21
50% Storage -8.65% 1.32
75% Storage -16.25% 2.85

6.2 Model Creation with Historical Data

Models that incorporate future observations or information that
is already available in the DiscoveryGraph can largely avoid
disk I/O. On the other hand, models that require high-fidelity
historical data will have to retrieve on-disk observations during
initialization. Table 9 provides insight into model creation times
when disk accesses are necessary. In this example, data from a
1030 × 620 km region is retrieved from disk to initialize models
that incorporate all available features across successively larger
time spans. Ultimately, model creation times are dependent on
disk speeds and how much of the underlying dataset must be
retrieved. Once model initialization is complete, new observa-
tions will be assimilated as they become available.

TABLE 9
Model creation times for a 1030 × 620 km region when disk accesses

are required, averaged over 100 iterations.

Time Span Size (GB) Creation (s) St. Dev. (s)
1 Month 36.16 9.81 1.81
6 Months 227.36 56.30 3.19
12 Months 453.36 102.37 8.27

7 RELATED WORK

The graphs used in Galileo share some common features with
k-d trees [21], but do not employ binary splitting and allow
much greater fan-out as a result. Similar to Tries [22], identical
attributes in a record can be expressed as single vertices, which
simplifies traversals and can reduce memory consumption.
However, Galileo graphs support multiple concurrent data
types, maintain an explicit feature hierarchy (that can also
be reoriented at runtime), and employ dynamic quantization
through configurable tick marks.

MongoDB [23] shares several design goals with Galileo, but
is a document-centric storage platform that does not support
analytics directly. However, MongoDB has rich geospatial in-
dexing capabilities and supports dynamic schemas through its
JSON-inspired binary storage format, BSON. MongoDB can use
the Geohash algorithm for its spatial indexing functionality,
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and is backed by a B-tree data structure for fast lookup oper-
ations. For load balancing and scalability, the system supports
sharding ranges of data across available computing and storage
resources, but imposes some limitations on the breadth of
analysis that can be performed on extremely large datasets in a
clustered setting.

Facebook’s Cassandra project [5] is a distributed hash table
that supports column-based, multidimensional storage in a
tabular format. Like Galileo, Cassandra allows user-defined
partitioning schemes, but they directly affect lookup operations
as well; for instance, using the random data partitioner backed
by a simple hash algorithm does not allow for range queries or
adaptive changes to the partitioning algorithm at runtime. This
ensures that retrieval operations are efficient, but also limits
the flexibility of partitioning schemes. Cassandra scales out
linearly as more hardware is added, and supports distributed
computation through the Hadoop runtime [24]. Predictive and
approximate data structures are not maintained by the system
itself, but could be provided through additional preprocessing
as new data points are added to the system.

Considerable research has been conducted on supporting
query types beyond the standard get and put operations of
DHTs. For instance, Gao and Steenkiste [25] maps a logical,
sorted tree containing data points to physical nodes, enabling
range queries. Chawathe et. al [26] outlines a layered architec-
ture for DHTs wherein advanced query support is provided by
a separate layer that ultimately decomposes the queries into
get and put operations, decoupling the query processing engine
from the underlying storage framework.

Apache Hive [27] is a data warehousing system that runs on
Hadoop [28] and HDFS [29]. As an analysis platform, it is ca-
pable of a wide range of functionality, including summarizing
datasets and performing queries. Unlike Galileo and a number
of other storage frameworks, the system is intended for batch
use rather than online transaction processing (OLTP). In Hive,
users can perform analysis using the HiveQL query language,
which transforms SQL-like statements into MapReduce jobs
that are executed across a number of machines in a Hadoop
cluster. The Metastore, a system catalog, provides an avenue
for storing pre-computed information about the data stored in
the system. Hive emphasizes scalability and flexibility in its
processing rather than focusing on low latency.

BlinkDB [30] provides approximate query processing (AQP)
functionality by augmenting the Hive [27] query engine. Two
methods of sampling are supported: a broad dataset-wide
sample, and a focused sample that includes frequently-accessed
items. The sampling framework in BlinkDB also supports strat-
ification to better represent outliers or underrepresented data
points. By generating indexes based on samples, queries can
be resolved quickly and avoid reading information from disk.
However, using the system in a predictive capacity is generally
limited to the insights that can be derived directly from the
available data.

Similar to the summary statistics maintained in our ap-
proach, incoming data streams can be represented as wavelets
to avoid indexing every data point while still maintaining an
approximate model. Cormode et al. [31] employs several differ-
ent types of wavelets for creating synopses or approximations
of incoming data and reviews their efficacy. This approach en-
ables very large datasets to be accurately summarized. Yousefi
et al. [32] also shows the feasibility of using wavelets for pre-
diction. However, methods that rely on wavelets are generally
very problem- or dataset-specific and can limit the feasibility
or efficiency of resolving arbitrary queries over the underlying
data.

The TPR*-tree [33] provides predictive spatio-temporal
query functionality that can retrieve the set of moving objects
likely to intersect a particular spatial window at some future
point in time. Intended use cases include meteorology, mobile
computing, and traffic control. TPR*-Tree improves upon the
Time Parameterized R-tree (TPR-tree) [34] by adding a prob-
abilistic model that accurately predicts disk accesses involved
with resolving a query, along with new insertion and deletion
algorithms to enhance performance. While TPR*-tree and its
related data structures focus on object movements, Galileo also
considers predictions across a wide array of dimensions.

FastRAQ [35] considers both the storage and retrieval as-
pects associated with range-aggregate queries. To manage the
error bounds of these approximate queries, partitioning is
based on stratified sampling: a threshold is used to control
the maximum relative error for each segment of the dataset.
Like Galileo, data is assigned hierarchically to groups and then
physical nodes. Queries are resolved using adaptive summary
statistics that are built dynamically based on the distributions
of the data.

SAUNA [36] proposes a technique for automatically relax-
ing the constraints user-defined queries. SAUNA operates on
a standard relational database management system, and uses
histograms to estimate the cardinality (number of results) of
incoming queries. In situations where a query is estimated to
return a small number of results, the input ranges of the query
are relaxed to retrieve a broader range of items that are close
to the desired parameters. This optimization helps reduce the
overall number of queries that will be submitted by users of the
system, increasing throughput.

8 CONCLUSIONS AND FUTURE WORK

Support for analytic queries over voluminous datasets entails
accounting for: (1) the speed differential between memory
accesses and disk I/O, (2) how metadata is organized and
managed, (3) the performance impact of the data structures,
(4) dispersion of query loads, and (5) the avoidance of I/O
hotspots. These factors enable us to provide a rich set of
exploratory analysis functionality as well as predictive models
that produce insights beyond just the trends present in the
dataset.

One key aspect of our approach is minimizing disk accesses.
This is achieved by carefully maintaining metadata graphs
that retain expressiveness for query evaluations but preserve
compactness to ensure memory residency while avoiding page
faults and thrashing. The graphs remain compact even in
situations where individual nodes store hundreds of millions
of files. Further, statistical synopses ensure the knowledge base
is continually updated as live streams occur. We achieve this
via the use and adaptation of online algorithms, compact data
structures, and lightweight models. This also allows us to
perform query evaluations at multiple geographic scales.

We avoid query hotspots by propagating the queries to
nodes likely to satisfy them, performing in-memory evalua-
tions and avoiding disk accesses. This reduces the likelihood
of queries building up and overflowing request queues at
individual nodes. By targeting only a specific subset of the
nodes, we minimize cases where queries are evaluated that
produce no results. Our use of Geohashes also allows us to
localize queries efficiently. Hotspot avoidance ensures faster
overall turnaround times for individual queries. Combined
with efficient pipelining, this allows multiple queries to be
evaluated concurrently at a high rate, which is validated by
our empirical results.
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Our future work will target support for Bayesian networks
and causality analysis. This work will also target pruning of
the feature space and ordering to ensure tractability, which
includes detection of v-structures, use of heuristics to support
local causality detection, and Hidden Markov Models.
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