
1

MINERVA: Proactive Disk Scheduling for QoS in
Multi-Tier, Multi-Tenant Cloud Environments

Matthew Malensek, Sangmi Lee Pallickara, and Shrideep Pallickara, Members, IEEE

Abstract—In recent years, internet-connected devices have become ubiquitous, leading to increased demand for computing and
storage resources. The cloud has emerged as a cost-effective and scalable solution to these infrastructure requirements, making it
possible to consolidate several disparate computing resources into a single physical machine. However, while the availability of
multi-core CPUs, high-capacity memory modules, and virtualization technologies has increased the density of converged
infrastructure, disk I/O has remained a substantial performance bottleneck, especially when dealing with high-capacity mechanical
disks. In this study, we investigate how proactive disk scheduling, backed by predictive models and client-side coordination, can
influence the overall throughput and responsiveness of a cluster in data-intensive computing environments. We evaluate our framework
with a representative MapReduce job on a 1,200-VM cluster, demonstrating a 21% improvement in completion time under heavy disk
contention.

Index Terms—Scheduling and task partitioning, Distributed architectures, Performance attributes

F

1 INTRODUCTION

THERE has been significant growth in stored data vol-
umes with the proliferation of networked sensing

equipment, mobile devices, web services, and social media
applications. Public and private clouds manage a consid-
erable percentage of this information, with data-intensive
applications benefiting from the elastic scalability of virtual-
ized deployments. These applications often involve frequent
use of disk I/O with both sequential and random operations
underpinning analytics tasks.

Cloud settings provide excellent service isolation and
packaging convenience. In many cases, cloud providers
over-provision physical hardware to optimize for costs
and real-world usage patterns. Modern hypervisors are
able to handle CPU and memory contention due to over-
provisioning, but I/O contention poses a particularly diffi-
cult challenge due to the electro-mechanical nature of hard
disk drives that are frequently used in big data applications.
While solid state drives (SSDs) provide better performance
than HDDs, I/O costs are still orders of magnitude higher
than memory accesses.

Disk scheduling inefficiencies have adverse impacts on
turnaround times and throughput for analysis operations,
which are often implemented as MapReduce jobs. These
inefficiencies can lead to higher contention and introduce
performance bottlenecks. The primary focus of this study
is to support proactive disk I/O scheduling across virtual
machines with the objective of increasing overall through-
put, ensuring long-term fairness, and reducing turnaround
times. Our framework, MINERVA, proactively alleviates disk
contention, amortizes I/O costs, and selectively prioritizes
VMs based on access patterns and durations.

• This research was supported by funding from the US Department of
Homeland Security (HSHQDC-13-C-B0018 and D15PC00279), the US
National Science Foundation (CNS-1253908), and the Environmental
Defense Fund (0164-000000-10410-100).

1.1 Challenges

Proactive disk scheduling in virtualized settings introduces
unique challenges, including:

• Long-term Fairness: Rather than focusing on short-
term fairness, I/O history and patterns must be
considered to determine scheduling priorities.

• Proactive Scheduling: Addressing issues in a reactive
fashion can have adverse consequences and reduce
throughput, especially if I/O durations are short.

• Managing Diversity: Throughput and fairness must
be maintained across disparate users, I/O patterns,
and resource consumption profiles.

• Transparency: While VMs may participate in the
scheduling process, knowledge of the framework
should not be required to benefit from it.

1.2 Research Questions

We explored several research questions in this study that
guided the design of Minerva:

1) What externally observable VM characteristics can
be used to inform disk scheduling?

2) How can we identify I/O patterns? This involves
predicting not just when burst patterns are likely to
occur, but also the type and duration of the patterns.

3) How can we facilitate proactive scheduling? This
may include predictive and time-series models.

4) How can we ensure that scheduling decisions im-
prove system throughput and response times for
collocated processes?

5) How can we incorporate support for VMs to in-
fluence scheduling decisions? Specifically, how can
we enable interactions with Minerva through client-
side libraries?

2

1.3 Paper Contributions

Minerva provides a means for allocating resources fairly
on a long-term basis across processing entities (VMs, con-
tainers, and processes). This helps mitigate issues such as
noisy neighbors that consume more than their fair share of
resources or employ disruptive I/O patterns. We accomplish
this by (1) allowing and incentivizing participation from
processing entities, (2) tracking and harvesting observable
characteristics of these clients, (3) constructing models to
forecast expected I/O patterns, and (4) making alternative
storage options available to amortize I/O costs and reduce
contention. These factors are used to determine I/O weights
that are passed to the underlying operating system to influ-
ence resource allocations and scheduling priorities.

1.4 Related Work

Kernel disk schedulers generally strive for short-term fairness
between processes competing for I/O resources, where each
process gets an equal share of the disk. This can be achieved
with round robin scheduling or by assigning each process
a time quantum to use the disk. Other approaches consider
physical properties of disks, such as rotational media [1]
or flash-based storage [2]. The primary difference between
Minerva and traditional disk schedulers is our goal of
achieving long-term fairness to account for processes that
use a disproportionate amount of resources. Minerva is not
a disk scheduler; rather, it employs user-space daemons
to gain insight about systems it manages to influence the
underlying OS scheduler.

Systems like VM-PSQ [3] address I/O prioritization in
the context of virtualization by acting as an agent for VM
I/O. These approaches employ backend and frontend drivers
to coordinate operations between the host system and vir-
tual machines. Queuing weights are used to determine VM
priorities, which allow QoS rules to be implemented for
different types of VMs. While Minerva also assigns I/O
weights to both processes and VMs, its primary focus is on
long-term fairness aided by monitoring and predicting disk
access patterns and differences in I/O classes.

Hardware

Kernel I/O SchedulerHypervisor

VM 1 VM 2 VM N Minerva

Minerva
Client

Minerva
Client

Minerva
Client

Fennel

Fig. 1. Minerva architecture: Minerva uses the Fennel framework to
dispatch scheduling directives and collect information about hardware
and processes running on the host machine, while Minerva client appli-
cations running in VMs or containers can optionally provide fine-grained
information about their state to improve coordination and prediction of
I/O contention.

Several approaches incorporate prediction of I/O work-
loads and access patterns to improve the effectiveness of
schedulers or prefetching algorithms. These include pro-
filing applications on reference hardware and then scaling
benchmark results to predict process completion times [4],
or using predictive models to determine the probability of
future I/O events [5]. While many approaches focus on
offline modeling, Minerva uses online modeling to adapt
to resource utilization trends at run time.

2 MINERVA: SYSTEM ARCHITECTURE

The Minerva framework consists of three core components
that work together to improve I/O performance:

• Fennel [6], a low-level disk prioritization agent.
• Minerva server, which runs at each physical machine

and monitors system metrics related to I/O
• Minerva clients inside VMs or containers

Figure 1 illustrates the flow of communication between
these components and how they interact with the under-
lying OS. Note that VMs or containers that do not include
a Minerva client are still monitored and influenced by the
server; the client library is not required to benefit from
framework, but applications that coordinate with it can
achieve better performance.

2.1 Fennel
The Fennel daemon [6] provides dynamic I/O prioritization
in distributed and data-intensive computing environments.
While most disk schedulers attempt to fairly balance access
to resources, Fennel prioritizes virtual machines and pro-
cesses that make short, concise I/O requests. In other words,
this strategy rewards processes that use disk resources
sparingly. Fennel leverages the Linux kernel Control Groups
functionality to dynamically assign disk priorities. While
Fennel does not depend on a particular disk scheduler, our
implementation uses the Linux CFQ scheduler as it is the
only scheduler that currently implements I/O weighting.

Fennel places VMs or processes into resource groups that
allow the system to assign dynamic scheduling weights,
define unique rules, and classify collections of processes
beyond their individual lifetimes. Each group is assigned
a block I/O weight that determines its share of the over-
all disk throughput. As a process uses more or less of
a resource, its priority changes dynamically. The default
Fennel configuration creates 10 priority groups and uses
the total number of bytes read or written on a moving
average to determine resource utilization. Fennel does not
require modification (or any participation) of guest VMs
or processes, and is a reactive strategy. On the other hand,
Minerva leverages the Fennel framework along with system
resource models to proactively mitigate resource contention
before it occurs. In this study, we compare new functionality
in Minerva with the Fennel framework to demonstrate how
our enhancements improve upon Fennel.

2.2 Minerva Server
The Minerva server extends Fennel to influence scheduling
decisions. It also maintains information about host ma-
chines, client processes, VMs, and containers that allow it

3

to build resource utilization models and predict future I/O
interactions. This information is gathered both internally by
the framework and externally, and includes metadata pro-
vided by clients through requests issued from the Minerva
client library. This library allows applications to explicitly
state (or estimate) their usage patterns and requirements up-
front, which helps improve the scheduling decisions made
by the system. A single Minerva server instance is run on
each host machine, and communicates with clients through
TCP over the internal network. Scheduling decisions are
made on a per-disk basis, and metadata collected by the
server is periodically persisted to disk in case of failures or
planned outages.

2.3 Minerva Client
On the client side, Minerva operates as both an application
library and user-space daemon. No changes to VMs or
containers are required to act as a Minerva client; instead,
applications that use the library automatically start the client
daemon, which is responsible for reporting disk utilization
and system metrics to the server. Most cloud providers
allow communication through the internal private network,
so we perform resource discovery and management over
a TCP interface. To further ease integration with our frame-
work, we provide a set of command-line utilities that imple-
ment Minerva functionality. These tools are lightweight, and
give administrators a simple means to communicate with
the Minerva server; for instance, executing minerva-ctl
priority low would tell the scheduling agent that the
I/O priority for the particular VM can be decreased in
relation to other clients.

2.4 Experimental Setup
Benchmarks in the following sections were run on an over-
provisioned private cloud of 1,200 virtual machines. Each
VM was allocated a CPU core, 512-1024 MB of RAM, and a
virtual disk image for storage. Host machines were config-
ured with Fedora 21 and the KVM hypervisor, with guest
VMs running a mixture of Fedora 21 and Ubuntu Server
14 LTS. Each physical host machine was equipped with
four hard disks, dual gigabit interfaces, and included 45 HP
DL160 servers (Xeon E5620, 12 GB RAM) and 30 HP DL320e
servers (Xeon E3-1220 V2, 8 GB RAM).

3 ENDOGENIC SCHEDULING

OS disk schedulers are tasked with allocating resources, and
often rely on externally observable (exogenic) traits to deter-
mine both how and when processes use the disks. Factors
may include physical properties such as the amount of disk
head movements required or the spatial locality of requests,
as well as system constraints such as process priorities.
Minerva extends this concept to include internal (endogenic)
traits as well, making processes, containers, and virtual
machines part of the scheduling process. We provide two
mechanisms that allow VMs to participate in reducing con-
tention: voluntary deprioritization and temporally-coordinated
scheduling. In both cases, processes are given incentives to
encourage participation, but are not penalized for operating
outside the framework.

3.1 Voluntary Deprioritization
For situations where an application needs to perform main-
tenance operations or execute background tasks, Minerva
encourages processes to request voluntary deprioritization.
This notifies Minerva that the process can be scheduled
at a lower priority, influenced by an optional scheduling
level: low, lowest, and idle, where the idle level signals
that the process should only be scheduled when no other
process is using the disk (however, this level does not
guarantee liveness). Voluntary deprioritization is especially
useful when processes on a given host machine are servicing
different timezones; VMs can request that they be depriori-
tized during nighttime hours (or other low-traffic periods),
giving other VMs a greater share of I/O resources.

To incentivize voluntary deprioritization, processes ac-
cumulate scheduling credits that allow them to request a
higher scheduling priority at a later point in time. For
example, a video streaming service might elect to run at
the lowest priority during the night, a low priority during
working hours, and then use the accumulated scheduling
credits to boost performance for the deluge of requests that
occurs when users arrive home in the evening. Scheduling
credits are earned and spent based on time slices (one
second by default), and are weighted based on the I/O
priority and contention level of the system.

Minerva calculates the contention level by totaling the
number of processes actively using the disk at a given time
slice, and adds a small bonus based on the process priority
level. Our default configuration assigns a weight of 1.0 to
the contention level and 0.10 to the scheduling priority. This
approach assigns more scheduling credits to processes that
are deprioritized when the disk is in high demand, while
still allocating a small reward to processes that voluntarily
lower their priority in times of low contention. To use
scheduling credits, client applications purchase time slices
where they will be scheduled at a high priority. The cost of
the credits and when they expire is configured by adminis-
trators, and our default implementation ships with the cost
of a high-priority time slice being set to 25 scheduling credits
with expiration occurring after one day. This configuration
results in a deprioritized task earning about 2.5 minutes of
high priority scheduling per hour when there is little or no
contention, and 14 minutes per hour when four processes
are accessing the same disk.

3.2 Temporally-Coordinated Scheduling
Another function Minerva provides to clients is temporally-
coordinated scheduling. In this access pattern, clients ask the
scheduler for guidance on when they should carry out their
I/O operations. If disk contention is significant, processes
may be requested to delay I/O for short periods of time in
the interest of letting other tasks complete first. By coordi-
nating with the scheduler, VMs can improve perceived disk
performance and reduce overall contention.

To initiate temporally-coordinated scheduling, client ap-
plications send a request to the Minerva server asking for
an approximate scheduling time. The request can contain
additional metadata about the nature of the I/O that will be
performed, including the size of the request and an optional
deadline that the scheduler will use to avoid starvation.

4

0 10 20 30 40 50 60
Time (s)

0

50

100

150

200
R

ea
d

S
pe

ed
 (M

B
/s

)
(a) Baseline Workload (CFQ Only)

VM 1
VM 2
VM 3
VM 4

0 10 20 30 40 50 60
Time (s)

0

50

100

150

200

R
ea

d
S

pe
ed

 (M
B

/s
)

(b) Endogenic Scheduling with Minerva
VM 1
VM 2
VM 3
VM 4

Fig. 2. Performance evaluation of endogenic scheduling with four workloads. By coordinating with Minerva, VMs 1, 2, and 3 achieve significantly
higher read speeds; endogenic scheduling reduced I/O times for each workload by 29%, 38%, 13%, and 1%, respectively (across VMs 1 – 4).

After making the request, the server responds by instructing
the client to (1) perform the operation immediately, (2) wait
for a number of time slices, or (3) wait for a ‘ready’ callback
notification. As a further benefit to the client, the scheduler
makes use of the request metadata to determine how long
the operation should take and then calculates the average
I/O priority of the process ahead of time. This improves the
consistency of the disk throughput observed by the client
application. In situations where another process or VM
begins a disk operation at the same time as a temporally-
coordinated I/O event, the coordinated client receives a
higher overall scheduling weight to offset resource con-
tention from the non-coordinated process.

3.3 Endogenic Performance Evaluation
To evaluate how endogenic scheduling can improve per-
formance under I/O contention, we launched four disk-
intensive tasks at the same time in separate VMs:

1) Verifying the checksum of 200 MB of data
2) Loading a 500 MB machine learning dataset
3) Hadoop grep job scanning 3 GB of log files
4) Hadoop word count job processing 12 GB of ebooks

Figure 2-a illustrates the read speed of these tasks using
the CFQ scheduler, which ensures fairness but results in
poor overall performance for VMs 1 and 2. Since the tasks
are started concurrently, a history-based weighting system
such as Fennel would be unable to differentiate between the
VMs. On the other hand, Figure 2-b highlights the effects
of endogenic scheduling provided by Minerva, where the
client application in VM 4 notifies the scheduler that it
does not need high-priority access to the disk (voluntary
deprioritization), and VM 2 requests a callback to do its 500
MB read within the next 20 seconds. This approach boosts
the observed read speed for VMs 1, 2, and 3, while also
rewarding VM 4 with scheduling credits that can be used at
a later point in time. Note that VM 3 does not coordinate

with Minerva in this benchmark, but still benefits from
its scheduling decisions. Additionally, VMs 3 and 4 reach
scheduling parity as VM 3 consumes more resources over
time.

4 PROACTIVE I/O SCHEDULING

Dynamically adjusting scheduling weights based on ob-
served system metrics improves performance by balancing
access to I/O resources. However, this approach is reactive;
the scheduler is only able to calculate proper request weight-
ing after observing the processes. This is sufficient in many
cases, but also results in situations where the scheduler
does not have enough information to distinguish between
processes. To improve scheduling decisions, we provide
proactive I/O modeling to predict future disk operations.
This is achieved with two models: short-term forecasting
of I/O events before they occur with gradient boosting, and
long-term time-series analysis to help discover patterns in
disk usage with ARIMA.

4.1 Forecasting I/O Events
Each instance of the Minerva server maintains resource
usage models of the VMs and processes it manages. Our first
model, implemented with gradient boosting, predicts the
magnitude of future disk events by inspecting system met-
rics that correspond with I/O requests. Gradient boosting is
an ensemble method that creates multiple base prediction
models (decision trees, in our case) and then iteratively
boosts their performance to create a composite model with
low prediction bias. We train the model with data collected
at each time slice, along with the magnitude of I/O (in
MB/s) that occurred in the following time slice (if any).
Metrics we use as training data include:

• Percent CPU usage
• Memory consumption
• Network throughput

5

0 10 20 30 40 50 60
Time (s)

0

50

100

150

200

R
ea

d
S

pe
ed

 (M
B

/s
)

(a) Without I/O Forecasting

VM 1
VM 2
VM 3
VM 4

0 10 20 30 40 50 60
Time (s)

0

50

100

150

200

R
ea

d
S

pe
ed

 (M
B

/s
)

(b) With I/O Forecasting

VM 1
VM 2
VM 3
VM 4

0 200 400 600 800 1000 1200
Virtual Machine ID

25

30

35

40

C
om

pl
et

io
n

Ti
m

e
(s

)

(c) Data-Intensive MapReduce Application
Baseline (CFQ Only) Reactive Scheduling (Fennel) With I/O Forecasting (Minerva)

10 20 30 40 50 60 70 80 90 100
Time (s)

0

50

100

150

200

R
ea

d
S

pe
ed

 (M
B

/s
)

(d) Baseline Workload (CFQ Only)
VM 1 VM 2

10 20 30 40 50 60 70 80 90 100
Time (s)

0

50

100

150

200

(e) Temporal Discontinuity Avoidance
VM 1 VM 2

 Proactive I/O Scheduling: Performance Evaluation

Fig. 3. Proactive I/O scheduling benchmarks: (a) VM workloads weighted based on historical usage (Fennel) compared with (b) proactive weighting
provided by I/O forecasts, (c) a demonstration of a MapReduce application running across 1200 VMs (denoted by VM IDs) with and without I/O
forecasting from our gradient boosted models to circumvent disk contention (total job run time indicated by horizontal lines), (d) illustration of I/O
contention and scheduling discontinuities between VMs, (discontinuities are evident when both processes are operating at a low read speed) and (e)
temporal discontinuity avoidance with our ARIMA models to interleave I/O operations from two different workloads (dashed lines indicate scheduling
priority changes in response to model outputs).

6

We also record the number of open file descriptors, size
of open files, and the number of incoming and outgoing
network connections, if available. Since virtual machines
appear to be a single, monolithic process to the host OS, we
divide training data samples into I/O sessions to distinguish
between events. These sessions are delineated by a new file
being opened, a sharp increase in memory consumption, or
additional network connections being opened.

In our test environment, I/O magnitude prediction re-
sulted in forecasts with a root-mean-square deviation of
about 15 MB/s — enough accuracy to predict the I/O class
of a new I/O session. Minerva also continuously evaluates
the quality of its predictions to adjust how much they im-
pact starting priorities. Figure 3-a demonstrates a scenario
that benefits from proactive I/O weighting (using the VM
workloads described in the previous section). Initially, the
reactive approach is unable to differentiate between VMs 2
and 3, and later favors VM 4 over 3 even though they are
both heavy users of the disk. Conversely, Minerva is able
to forecast starting I/O weights, as shown in Figure 3-b.
Figure 3-c illustrates how data-intensive MapReduce appli-
cations can benefit from I/O forecasting; in this benchmark
we launched a Hadoop word count application to analyze
and histogram approximately 2 TB of book content, while
also assimilating 10 TB of atmospheric data into a Galileo
[7] distributed storage framework instance spanning the
1,200 VMs in our test cluster. With Minerva enabled, the
heavy I/O patterns exhibited by Galileo were detected
and deprioritized within 5 seconds, yielding resources to
the MapReduce application. In this evaluation, proactive
scheduling resulted in a 21% improvement in the overall run
time of the MapReduce application, with an 18% reduction
in per-task average run times.

4.2 Temporal Discontinuity Avoidance

Another aspect of proactive disk scheduling is using time-
series models to discover I/O patterns. Many applications
follow discernible trends when it comes to I/O; for instance,
an application may read data, process it, and then flush
the results to stable storage. Such patterns provide oppor-
tunities to schedule other disk activities during processing
or dormant phases. To forecast future I/O patterns, we
use autoregressive integrated moving average (ARIMA)
models on the observed I/O rates (both read and write)
for each process. ARIMA models are particularly useful
for non-stationary data that may exhibit trends or seasonal
fluctuations. We forecast 15 seconds into the future and
use the Hyndman-Khandakar algorithm to autonomously
parameterize these models.

To evaluate the effectiveness of our long-term time-series
ARIMA models, we benchmarked two virtual machines
performing competing I/O tasks. In this test, VM 1 was
responsible for executing a data integrity check that in-
volved reading files from the disk, checksumming them
with a MD5 hash, and then verifying that their checksum
matched a known good value. On the other hand, VM 2
was tasked with running a Galileo storage node instance
that was responsible for receiving new observations over the
network, processing them, and then writing the resulting
data blocks to disk. These two tasks lead to scheduling discon-

tinuities, where the disk may be idle when both VMs are pro-
cessing information. To alleviate scheduling discontinuities,
Minerva considers the temporal patterns associated with
processes as well as their resource consumption profiles to
better interleave I/O activities. Figure 3-d illustrates how
the workload at VM 1 tends to receive a disproportionate
amount of I/O resources over time, even though it pauses
its I/O activities frequently to calculate checksums. On the
other hand, Figure 3-e demonstrates how Minerva is able to
detect the I/O patterns in both applications to equalize their
share of the disk while also avoiding scheduling discontinu-
ities.

5 MULTI-TIER STORAGE CACHE

Minerva provides several tools that enable VMs, processes,
and host machines to suppress resource contention. How-
ever, some processes, such as distributed file systems, are
unable to avoid issuing large amounts of I/O requests. To
manage these scenarios, we provide a multi-tier storage ser-
vice to help optimize for use cases that involve frequent disk
accesses. This approach gives client applications access to a
shared pool of memory and stable storage that is managed
by the Minerva server. In other words, applications gain
the ability to use resources outside their usual allocations,
and the Minerva server can route high-throughput I/O to
hardware optimized for the task, such as solid state drives
(SSDs).

The Minerva Cache is made available through our client
library as well as a FUSE file system (Filesystem in User
Space). Applications are presented with an isolated direc-
tory tree that can be mounted and manipulated with stan-
dard file system interfaces. There are two root storage direc-
tories in a Minerva file system: temporary and stable storage.
The temporary storage pool resides in main memory and
is designed for small files that may be lost in the event of
a hardware or power failure. In situations where the host
machine does not have enough free memory for caching,
temporary files will be persisted to the stable storage pool.
Stable storage is designed for files or critical data that must
be preserved in the event of a system failure. In general, files
in stable storage should be written to an SSD or high-RPM
mechanical disk that is not allocated directly to any client
processes or VMs.

To further incentivize the use of our stable storage pool,
Minerva provides delayed migration functionality. In this
storage model, files are persisted to stable storage through
a specific directory in the Minerva FUSE file system and
then symlinked to a corresponding location on the local file
system. This allows the file to be accessed from the local
file system as if it were stored there. During periods of
low disk contention, the Minerva client daemon migrates
these cached files to the local file system, updates symlinks,
and then removes the file from the cache. This approach
enables clients to amortize the cost of writing to their own
file systems and also helps Minerva reduce overall I/O
contention. On a server equipped with an SSD in our test
deployment, clients were able to write to the temporary and
stable pools at 900 MB/s and 422 MB/s, respectively, with
read speeds of 1500 MB/s and 468 MB/s with 1 GB of data
(averaged over 100 iterations).

7

6 CONCLUSIONS

Proactively scheduling VM I/O bursts by monitoring
and forecasting disk usage patterns achieves long-term
fairness across hosted VMs. Since I/O usage is host-specific
and dependent on the mix and behavior of VMs, offline
approaches tend to be unsuitable. Minerva relies on
online models trained with host-specific resource usage
data to better capture usage patterns at a particular host.
Time-series analysis of access patterns is key to identifying
scheduling discontinuities. Once identified, scheduling
discontinuities can be alleviated through prioritization
and scheduling decisions. In our 1200-VM textual analysis
MapReduce experiment, alleviating contention improved
job completion time by 21% with an 18% reduction in per-
task run times. Further, we involve VMs, containers, and
processes in the scheduling framework through voluntary
deprioritizations, temporally coordinated scheduling, and
a multi-tier storage and caching layer to help avoid and
subvert disk contention.

REFERENCES

[1] S. Iyer and P. Druschel, “Anticipatory scheduling: A disk schedul-
ing framework to overcome deceptive idleness in synchronous
I/O,” SIGOPS Oper. Syst. Rev., pp. 117–130, 2001.

[2] S. Park and K. Shen, “FIOS: A fair, efficient flash I/O scheduler,” in
Proc. of the 10th USENIX Conference on File and Storage Technologies.
USENIX Association, 2012.

[3] D.-J. Kang, C.-Y. Kim, K.-H. Kim, and S.-I. Jung, “Proportional
disk I/O bandwidth management for server virtualization envi-
ronment,” in Computer Science and Information Technology, 2008, pp.
647–653.

[4] M. Meswani, P. Cicotti, J. He, and A. Snavely, “Predicting disk
I/O time of HPC applications on flash drives,” in GLOBECOM
Workshops (GC Wkshps), 2010, pp. 1926–1929.

[5] J. Oly and D. A. Reed, “Markov model prediction of I/O requests
for scientific applications,” in Proceedings of the 16th International
Conference on Supercomputing. ACM, 2002.

[6] M. Malensek, S. L. Pallickara, and S. Pallickara, “Alleviation of disk
I/O contention in virtualized settings for data-intensive comput-
ing,” in (To Appear) Proceedings of the 2015 IEEE/ACM International
Symposium on Big Data Computing.

[7] M. Malensek, S. Pallickara, and S. Pallickara, “Exploiting geospatial
and chronological characteristics in data streams to enable efficient
storage and retrievals,” Future Generation Computer Systems, 2012.

Matthew Malensek is a Ph.D. student in
the Department of Computer Science at
Colorado State University. His research in-
volves the design and implementation of large-
scale distributed systems, data-intensive com-
puting, and cloud computing. Matthew re-
ceived his Masters degree in Computer Sci-
ence from Colorado State University. Email:
malensek@cs.colostate.edu

Sangmi Lee Pallickara is an Assistant Pro-
fessor in the Department of Computer Science
at Colorado State University. Her research in-
terests are in the area of large-scale scien-
tific data management, data mining, scientific
metadata, and data-intensive computing. She
received her Masters and Ph.D. degrees in
Computer Science from Syracuse University
and Florida State University, respectively. Email:
sangmi@cs.colostate.edu

Shrideep Pallickara is an Associate Professor
in the Department of Computer Science at Col-
orado State University. His research interests
are in the area of large-scale distributed sys-
tems, specifically cloud computing and stream-
ing. He received his Masters and Ph.D. de-
grees from Syracuse University. He is a re-
cipient of an NSF CAREER award. Email:
shrideep@cs.colostate.edu

	Introduction
	Challenges
	Research Questions
	Paper Contributions
	Related Work

	Minerva: System Architecture
	Fennel
	Minerva Server
	Minerva Client
	Experimental Setup

	Endogenic Scheduling
	Voluntary Deprioritization
	Temporally-Coordinated Scheduling
	Endogenic Performance Evaluation

	Proactive I/O Scheduling
	Forecasting I/O Events
	Temporal Discontinuity Avoidance

	Multi-Tier Storage Cache
	Conclusions
	References
	Biographies
	Matthew Malensek
	Sangmi Lee Pallickara
	Shrideep Pallickara

