
1

Hermes: Federating Fog and Cloud Domains to
Support Query Evaluations in Continuous

Sensing Environments
Matthew Malensek, Sangmi Lee Pallickara, and Shrideep Pallickara, Members, IEEE

Abstract—As networked sensing devices continue to proliferate, the storage and processing capabilities of fog or edge devices have
also increased substantially while offering low energy consumption and hardware costs. These complimentary technologies enable
unique opportunities for performing decentralized analysis on the edges of the network while also leveraging the capabilities of public
and private clouds for coordination and long-term storage. Our framework, HERMES, enables federated query evaluations that
transition between cloud and fog nodes seamlessly. The system selectively samples from observational streams to reduce
communication and memory consumption on fog nodes; our evaluation over a real-world observational dataset demonstrates an 89%
reduction in dataset size while maintaining a mean absolute error of less than 0.25%.

Index Terms—Fog storage, Raspberry Pi, federated query evaluations, sensor networks

F

1 INTRODUCTION

ADVANCEMENTS in miniaturization, improved network
connectivity, and falling costs have led to a prolifera-

tion of sensing devices that underpin the Internet of Things
(IoT). Gartner and ABI project upwards of 20-30 billion
devices on the Internet of Things by 2020. These IoT systems
are often backed by fog architectures, where fog nodes at
the edges of the network are responsible for preliminary
storage and processing of observations. Fog nodes then
coordinate with cloud-based services to synchronize state or
publish updates. The measurements reported by fog nodes
in this study are spatiotemporal and encompass multiple
features (dimensions) including temperature, humidity, visi-
bility, etc. Given the recording frequencies of the sensors we
consider, the resulting datasets are voluminous and cannot
be managed solely by fog nodes.

Herein we present HERMES, a framework that bridges
the fog and cloud support analysis through federated query
evaluations. Queries may target arbitrary spatiotemporal
scopes, statistical properties of the feature space, and tempo-
ral events. To facilitate these queries, our novel spillway data
structure extends reservoir sampling [1] to provide variable-
precision samples of incoming data streams in resource-
constrained environments. The fog nodes we consider in
this paper are Raspberry Pi single-board computers that
provide cost savings and energy efficiency, but have lower-
end processing capabilities. Though our fog nodes are im-
plemented on the Raspberry Pi, HERMES and the spillway
data structure can be used with other devices such as
desktops, Banana Pi, ODroid, etc.

• M. Malensek, S. Pallickara, and S. Pallickara are with the Computer
Science Department, Colorado State University, Fort Collins, CO 80523.

1.1 Scenario

Consider an electric utility company that specializes in wind
power generation. Before turbines can be constructed, a
geographical survey must be performed to locate regions
with consistent, non-turbulent wind. While these attributes
are largely a function of the surrounding geography and
weather patterns, national meteorological data is too coarse-
grained to guide turbine placement. To acquire accurate,
fine-grained climate data, the organization deploys wireless
sensing devices on and around the premise to monitor
weather patterns, including wind speed, temperature, hu-
midity, pressure, etc. for a year or more at the rate of
multiple readings per second [2]. These observations are
collected by fog nodes on-site and managed by HERMES,
which provides query capabilities over high-resolution sam-
ples collected recently, as well as historical data stored in
the cloud. After successful planning and construction of the
wind farm, the organization continues to use these devices
in conjunction with HERMES to optimize their power gen-
eration strategy by analyzing weather patterns, long-term
trends, and sensing data from the turbines themselves.

1.2 Research Questions and Approach

To guide the development of HERMES, we explored the
following research questions:

RQ1 How can we harness resource-constrained fog
nodes to support query evaluations in a federated
environment?

RQ2 Given the data volumes at hand, how can we min-
imize information exchanged between fog nodes at
the edges of the network and the cloud?

RQ3 Considering the distributed and decentralized na-
ture of the system, how can we ensure that query
evaluations are timely and accurate?

2

Our methodology for achieving these goals is divided
between the HERMES system architecture (§2) and our spill-
way data structure (§3). At the system level, cloud and
fog nodes must coordinate during storage and retrieval
operations, with fog nodes handling recently-collected data
and cloud nodes responsible for historical storage. This
involves controlling client access to fog nodes, restricting
communication within the system, and caching frequently-
accessed data in the cloud for analytics (§2.1). We also
employ a geospatially-aware data partitioning scheme to
divide storage and processing workloads (§2.2). Each fog
node maintains a spillway data structure to ensure efficient
memory management for incoming sensor readings. This
is achieved through a novel, hierarchical arrangement of
reservoir samples (§3.2) and a temporal aging strategy that
allows for a variable accuracy gradient. Each reservoir also
maintains online summary statistics to provide information
about the full-resolution data distributions (§3.3), and obser-
vations are placed in a red-black tree to facilitate time series
queries (§3.4).

1.3 Related Work

Bonomi et al. [3], [4] surveys several use cases associated
with fog computing, including smart traffic lights and wind
farms, and proposes architectural designs for dealing with
unique challenges such as geo-distribution and coordination
between the fog and cloud. In the fog abstraction layer,
policies define how requests are routed between partici-
pating components. However, the proposed fog analytics
use case does not consider the memory efficiency of the
data structures employed. Context awareness is also a crucial
aspect of the IoT, characterizing entities and related events
[5]. HERMES employs query-based context distribution and
performs filtering and aggregation during context acquisi-
tion.

Tang et al. [6] outlines the design of a multi-tier fog
architecture for processing and detecting events in data
streams. The system includes intermediate nodes between
the fog and cloud nodes, and demonstrates both the la-
tency benefits and reduced communication of a federated
approach. Jayaraman et al. [7] proposes cost models for
data transmission and power consumption in fog-based
analytics contexts. Performing analytics on fog nodes and
applying data reduction techniques results in substantial
energy savings over simply transmitting all observations to
the cloud.

Alternative approaches for sampling time series data
include applying bias functions to a reservoir to boost
the representativeness of recent samples [8] as well as
timestamp-based windows that update sample instances
based on priorities [9]. Weighted reservoir sampling may
also boost the accuracy of recently-observed data points by
gradually increasing insertion probabilities over time.

2 SYSTEM ARCHITECTURE

HERMES is a two-tiered storage and analysis framework
consisting of cloud nodes and fog nodes (see Figure 1-a for
an architectural overview). While cloud nodes are respon-
sible for heavyweight analytics and long-term storage, fog

nodes are tasked with processing incoming sensor data. As
a result, fog nodes provide low-latency access to recent
observations, with cloud nodes managing historical data
and coordinating activities across the system. This separa-
tion of concerns reduces network traffic because sensing
devices are able to communicate directly with fog nodes in
close geographical proximity rather than transmitting data
to a central location. Additionally, certain types of near-
term analysis can be conducted entirely on the fog nodes,
which reduces the amount of cloud resources necessary for
operation.

Both the cloud and fog components support the same
set of query operations but diverge in how they handle
storage. Fog nodes sample from the incoming data streams
and hold high-resolution data for shorter periods of time,
whereas cloud nodes coordinate long-term storage by mi-
grating observations to a distributed storage platform such
as Galileo [10], [11], HDFS, or Apache Cassandra.

2.1 Query Coordination
A key aspect of fog computing is edge devices are gen-
erally low-powered from both computational and energy
efficiency perspectives. Consequently, fog nodes become
overwhelmed by requests faster than traditional server
hardware. To provide control over request rates and limit
query activities that may impact the management of incom-
ing observations, we require client applications to submit
query requests to cloud nodes rather than directly to fog
nodes. During query resolution, the coordinating cloud
node determines the locations of relevant data points based
on the spatial scope(s) requested (see §2.2), and grants
authorization for communication with fog nodes in the form
of non-reusable access tokens. In situations where historical
data in the cloud satisfies a query, the client will be directed
to relevant cloud nodes instead.

Requiring clients to coordinate with cloud nodes as
a precursor to query resolution has the added benefit of
providing the system with usage metrics. If a particular
query is executed frequently by clients, cloud nodes will
retrieve and cache the specific observations for future use.
This approach does not result in duplicate communications
because all records will eventually be migrated to the cloud.
For types of analysis that require frequent access to recently-
recorded data, the system grants long-term access tokens for
fixed queries. By default, long-term access tokens expire
after one hour and are revoked in situations where load
on the fog node(s) is too high to maintain average response
latencies.

2.2 Spatial Partitioning
HERMES accounts for the geospatial dispersion of sensing
equipment and fog nodes by partitioning data with the
Geohash algorithm [12]. Geohash divides the Earth into a
hierarchy of spatial bounding boxes that are identified by
Base-32 strings. Longer strings describe finer-grained spatial
regions in the hierarchy, while shorter strings represent
coarser-grained areas. For instance, the Geohash 9Q spans
a region including the majority of California and Nevada
in the United States, while 9QQJ refers to a subregion
surrounding the city of Las Vegas, Nevada.

3

Given a region under study, HERMES assigns responsi-
bility for sensor readings to fog nodes based on Geohash
proximity. Each fog node represents one or more stations
that process incoming data for a particular geospatial area;
for example, all sensors within the 9Q Geohash could be
configured to report to a single node. To cope with diversity
in the underlying data streams and ensure load balancing,
the Geohash precision used for assigning stations is config-
urable. During query operations, target spatial locations are
specified by the user as Geohash strings or spatial bounding
boxes that are subdivided into Geohashes before being
distributed to relevant fog nodes. Evaluating such queries
involves computing a string prefix match against the list of
available sensor recording stations.

3 FEDERATED STORAGE AND RETRIEVAL

To enable federated storage and retrieval functionality, HER-
MES employs: (1) statistically robust sampling methods to
manage the space-accuracy trade-off at fog nodes, (2) full-
resolution monitoring of data distributions, and (3) expres-
sive query support.

3.1 Reservoir Sampling

Reservoir sampling is a probabilistic, random sampling
algorithm proposed by J. S. Vitter that facilitates sample
generation when the source dataset is of an unknown size
or too large to fit in main memory [1]. Reservoir instances
are maintained as fixed-size arrays, resulting in predictable
memory consumption. These characteristics make reservoir
sampling particularly useful in resource-constrained envi-
ronments such as embedded systems, fog nodes, or IoT
devices.

While there are several variations of the reservoir sam-
pling algorithm, the particular implementation we employ
in this work was designed to be suitable for distributed
applications. During initialization, reservoirs are created
with a backing array of size n. As data points stream into
the system, the first n entries are placed into the reservoir
immediately and the observation counter, C , is incremented.
Entries may be objects of any type, including numeric values
or multidimensional records. Once the initial array is full,
subsequent entries are assigned a randomized key k in
the range [0,1] that determines whether the entry will be
inserted into the reservoir. Entries where k < n/C are

(b) Spillway Data Structure (c) Operator Relationship

A
B

A
B

A
B

A
B

A
B

A
B

A
B

A equals B

A before B

A meets B

A overlaps B

A during B

A starts B

A finishes B

Access Token Request

Historical Data QueryAttenuated Transmissions
(historical, coarse-grained data)

Direct Query (with access token)

(a) HERMES System Architecture
Fog Nodes

• Represent geographical station(s) (logical
 groupings of sensor readings) identified
 via Geohash strings
• Maintain spillways for each station
• Resolve queries (for short-term data)

Cloud Nodes

• Manage long-term storage with distributed
 file system (Galileo, Cassandra, HDFS)
• Allocate/revoke query tokens based on
 resource utilization
• Cache frequently-requested data

Clients

• Issue SQL-like Analytic Queries:
 • Fog nodes for recent observations
 • Cloud nodes for historical data
• Select data using time intervals, or describe
 relationships with interval algebra

Migration to Secondary Storage

R
oo

t R
es

er
vo

ir

Data Age (Hours)

Migration to Cloud

Spillway Header

…

Feature: Humidity
└ Mean: 45.8%, SD: 4.1, ...
Feature: Temperature
└ Mean: 299.8 K, SD: 1.1, ...

2 3 5 71 12 17 23

Fig. 1. (a) An overview of the components and system architecture of HERMES. (b) A demonstration of our spillway data structure, which manages
a set of hierarchical reservoirs to preserve a variable accuracy gradient across observational data. Insertions are performed on the root reservoir,
and reservoirs are merged as they age to manage memory consumption. In this example, 18 hours worth of observations are shown. (c) The set
of interval algebra operators supported by HERMES for analysis.

4

selected for insertion, randomly replacing an existing entry;
as a result, the probability that a given sample will be
assimilated into the reservoir decreases over time as the
observation count C increases.

In addition to raw data points, each reservoir entry
tracks its randomly-generated insertion key. This enables
reservoirs from disparate nodes or time frames to be
merged, forming an aggregate reservoir. During a merge,
entries are sorted by their insertion keys, with the smallest
n keys retained in the aggregate reservoir.

3.2 Spillways

Reservoir sampling is an effective means for producing
random samples over unbounded streams. However, this
unbiased approach may not be desirable in all scenarios as
it tends to mask recent evolution in the stream. Consider
a reservoir sample of temperature data over a month-long
timespan; if an abnormal weather pattern causes large fluc-
tuations in temperature, the probability that the observa-
tions will be included in the sample is lower due to the
age of the reservoir. While this behavior may be desirable
for long-term climate monitoring, it limits short-term anal-
ysis of weather phenomena. To facilitate these use cases,
our spillway data structure is designed to allow short-term
analysis while preserving long-term data samples.

Spillways are implemented as hierarchical collections of
reservoirs with bounded lifetimes. Each reservoir within a
spillway contains the same number of samples but may
span varying temporal scopes; for example, a spillway could
be configured with an initial timespan of 12 hours, followed
by 24-hour reservoirs, and so on. Each successive level in the
spillway hierarchy describes a broader duration of time and
therefore represents a coarser-grained sample. Insertions are
performed on the root reservoir, which manages the current
time slice. When the root matures, a new root is created
to accommodate incoming observations for the next time
slice. This process continues until the spillway size limit is
reached, at which point two reservoirs are selected to be
merged. Figure 1-b provides an overview of a simplified
spillway instance and its components.

During a merge operation, the oldest reservoirs from the
finest temporal granularity are targeted first. Consequently,
merges tend to occur on short-term reservoirs, with long-
term data merged less frequently. This helps maintain a
gradual accuracy curve over the entire spillway rather than
producing a steep drop in granularity after a particular
amount of time. Merge functionality is parameterized in
two ways: first, the temporal curve describes the increase in
timespan size at each level in the hierarchy. The example
in Figure 1-b demonstrates a temporal curve of f(x) = 2x.
Second, the merge threshold, T , specifies how many addi-
tional reservoirs of the same timespan must exist before a
merge can take place on a per-level basis; HERMES defaults
to a minimum merge threshold of T = 2, but the threshold
can be increased to improve accuracy or elongate particular
levels of the hierarchy. For example, a study configured with
hour-long root reservoirs may require fine-grained samples
for the first 24 hours, in which case setting T = 26 for the
first level would ensure merges only occur when more than
24 hours of observations have been collected.

Over time, merges occur in a cascading fashion with
samples becoming coarser-grained. For any given set of
spillway parameters, there is a point where no sufficient
reservoirs exist to merge. When this occurs, the oldest
reservoir in memory is selected for migration to secondary
storage (generally flash memory). During migration the
reservoir is compressed and written to the storage pool
sequentially, allowing future retrieval based on temporal
ranges. After migration is complete, the reservoir entry is
removed from memory and a new root reservoir is allocated.
To ensure incoming observations are not lost during this
procedure, the spillway is allowed to temporarily surpass
its size limit. Once complete, the compressed and migrated
reservoirs will be pulled to the cloud for historical storage
on a set interval during idle periods. We call this delayed
migration to the cloud attenuated transmissions.

Spillways support configuration of both the temporal
curve and merge threshold, which in turn determines the
size of the data structure. A base unit size must also be
provided, such as ‘one hour,’ ‘seven days,’ etc. For many
problem types, simply configuring the unit size and using
the default settings will provide reasonable performance
that can be further fine-tuned at run time.

3.3 Spillway Headers

Reservoirs sample from the underlying data stream, but
tend to overlook extreme or anomalous events. Further-
more, data sources that exhibit large variations in values
will be described by their average case, which may mask
true behavior patterns. To provide information about ex-
treme events and measure how well a reservoir captures
its source data stream, we include spillway headers that
contain running summary statistics for each reservoir in-
stance. As multidimensional observations arrive, we use
Welford’s method [13] to update online statistics for the
current root reservoir. This approach does not require access
to previous data points, which may be absent from the
current root. Summary statistics include the running mean,
variance, standard deviation, minimum/maximum values,
and cross-feature relationships such as correlations and
regression coefficients. The total number of full-resolution
observations that were received during the active timespan
of the reservoir is also available, allowing the system to
report exact sample sizes for each reservoir instance —
regardless of data arrival rates.

A key feature of these reservoir summaries is that
they can be merged to form an aggregate summary with-
out inspecting the underlying data points. We exploit this
property during reservoir merge operations to ensure each
reservoir includes up-to-date summary information. This is
also the rationale behind our minimum merge threshold
of 2; if partial reservoirs were merged, spillways could no
longer maintain accurate summary information about the
full-resolution streams. An example header in the 3rd level
of the spillway hierarchy is shown in Figure 1-b.

3.4 Time Series Query Support

While the data from entire reservoirs within a spillway
can be requested by client applications, time series query

5

TABLE 1
Fog storage performance evaluation using the F2FS file system. Each disk was tested for read, write, and random seek performance, with the

storage type listed in the first column; S indicates an SD card, U indicates a USB-based flash drive, and H represents a traditional 2.5” hard disk
drive at 5400 RPM over USB. We also include results from benchmarking spillway migration operations, listed in the final column.

Disk Manufacturer Model Capacity Read (MB/s) Write (MB/s) Rand. Seek/s Migrate (MB/s)
S1 PNY P-SDU128U185EL-GE 128 GB 34.0 9.2 805 10.9
S2 Samsung MB-ME128DA/AM 128 GB 24.6 14.5 1254 15.4
S3 Samsung MB-ME32DA/AM 32 GB 33.3 12.9 1690 14.4
S4 Samsung MB-MP32DA/AM 32 GB 45.0 15.4 2371 18.3
S5 SanDisk SDSQUNC-032G-GN6MA 32 GB 45.1 14.8 2665 16.8

U1 Lexar LJDS45-128ABNL 128 GB 42.3 21.8 1746 22.1
U2 Samsung MUF-128BB/AM 128 GB 43.4 22.1 1299 21.3
U3 SanDisk SDDD2-128G-G46 128 GB 41.4 8.9 569 7.1

H1 Western Digital WD6400BPVT-75HXZT1 640 GB 40.0 31.8 172 33.5

support enables increased precision and control over re-
trieval operations. As observations are inserted into the root
reservoir, they are also placed in a red-black tree based on
timestamps. Red-black trees are self-balancing binary search
trees that enable range queries and exact-match lookups
over the dataset. One advantage of red-black trees is they
tend to have high insertion and removal performance for
moderately-sized datasets. Once indexed, observations can
be retrieved by client applications in fine-grained temporal
intervals without requiring knowledge of the underlying
reservoirs. To ensure the red-black tree stays consistent,
observations that are removed during merge operations
from the reservoirs are also deleted from the tree.

To provide more expressive temporal queries, we sup-
port a variety of operators from Allen’s interval algebra [14],
shown in Figure 1-c. These operators allow the comparison
of events by selecting data points that match particular
criteria. For instance, HERMES can evaluate queries such as
“retrieve observations where precipitation and cloud cover
were correlated during June 5th through the 12th.” Note
that these relationships operate specifically on time bounds;
for example, a study of extreme climate conditions may re-
quest: “retrieve timespans when the temperature was above
100◦ F and overlap with spans that saw humidity levels of
over 90%.” HERMES provides an SQL-like query interface
that allows range, exact match, statistical, and temporal
operators to be composed and chained.

4 EXPERIMENTAL EVALUATION

Our fog testbed was composed of 48 Raspberry Pi 3 Model
B nodes (1.2 GHz, 1 GB RAM, 160 GB flash storage) running
Arch Linux. Connectivity to the cluster, located in Colorado,
was provided by 100 Mbps Ethernet. Cloud nodes were
sourced from the Amazon Elastic Compute Cloud (EC2),
with 16 m4.large instances split evenly between the US
West (Oregon) and US East (N. Virginia) regions. Finally,
test clients consisted of t2.small EC2 instances located in
the US West (N. California) region. All EC2-based instances
were configured with HVM virtualization, CentOS 7.2, and
HERMES was executed on Oracle JDK version 1.8.0.

We used two datasets to evaluate the performance of
HERMES. The first dataset was collected from the NOAA

NAM Forecast System from 2013–2015. The NAM contains
atmospheric observations with a variety of features such
as the date, time, location, surface temperature, humidity,
wind speed, and precipitation. With the subset of features
used for this study, the total dataset size was 15 TB. The
second dataset was recorded directly by our fog nodes and
included several ambient conditions from a busy computer
lab with over 50 workstations at Colorado State Univer-
sity, including the temperature/humidity (DHT-11 sensor),
sound level (CM108 audio controller), number of logged in
users, system load averages, and overall memory usage;
given its relatively small set of features, the total dataset
size was 1.4 GB. However, while the NAM dataset reports
several times per day, the lab dataset measurements were
taken approximately every two seconds.

4.1 Fog Storage Media
While cheap, reliable storage is broadly available in com-
modity workstations and servers, fog nodes tend to be
constrained by their I/O interfaces and available storage
technologies. Our Raspberry Pi nodes have two viable stor-
age interfaces, MicroSD and USB 2.0. We surveyed several
options in this space to determine which were the most cost-
effective and performant for our usage scenario. Table 1
provides the results of our performance evaluation for a
variety of SD and USB storage technologies on our fog hard-
ware. We used the Flash-Friendly File System (F2FS) [15] for
these benchmarks with the exception of disk H1 (traditional
HDD), as performance was 5-20% better across all devices
when compared to the commonly-used ext4 or XFS file
systems. This performance boost is likely because of F2FS’s
flash-specific physical storage layout. Ultimately, we used a
combination of disks S5 and U1 in each Raspberry Pi unit
to achieve a total storage pool of 160 GB per machine, based
on cost, availability, and performance.

4.2 Spillway Accuracy
To evaluate the accuracy of our spillway data structure,
we issued a series of queries on both of our test datasets
and compared the results with full-resolution source data.
The NAM configuration divided North America among our

6

3 6 9 12 15 18 21 24 27 30

280

290

300

310

320
Te

m
pe

ra
tu

re
 (K

)
(a) Spillway Samples vs. NAM Source Data: June, 2015

Mean
Highs
Lows

3 6 9 12 15 18 21 24 27 30
Day

0.00
0.05
0.10
0.15
0.20
0.25

M
ea

n
A

bs
. E

rr
or

 (%
)

2 4 6 8 10 12 14 16 18 20 22 24
Hour

8

10

12

14

16

18

N
oi

se
 L

ev
el

 (%
)

(b) Fog-Cloud Coordination: Lab Source Data

Fog
Cloud

1 - 12 hours 12 - 24 hours 24 - 36 hours
Query Scope

0k

50k

100k

150k

200k

Q
ue

rie
s/

s

(c) Aggregate Query Throughput

Fog
Cloud

Fig. 2. HERMES performance evaluation: (a) A comparison of spillway values and source data measured by the aggregate mean absolute percentage
error. Using fine-grained reservoirs, the most recently-recorded data exhibits the lowest error, with a maximum error of less than 0.25%. (b) Noise
level query against our lab dataset, which was handled by both fog and cloud nodes. A clear pattern of heightened noise during working hours is
apparent. (c) Comparison of aggregate queries (across 48 and 16 fog and cloud nodes, respectively) resolved per second.

48 fog nodes with two-character Geohash strings. Each fog
station was also configured to maintain 32 stations (three
Geohash characters), for a total of 1536 spillways in the
system. Each spillway consumed 25-28 MB of main memory
on average, and were parameterized with a unit size of 24
hours, a temporal curve of f(x) = 2x, and merge thresholds
of T = [1, 2, 4, 5] for each of the four levels in the hierarchy
(thresholds listed starting with root reservoirs). Figure 2-a
contains the high, low, and mean temperatures for station
9XJ over 30 days in June of 2015. We retrieved these values
by issuing queries across 12-hour intervals. The figure also
contains the mean absolute percentage error of the results
compared to the source data, which demonstrates how
the spillway accuracy curve ensures the most recent data
(near the end of the month) is maintained with the highest
accuracy. At this particular accuracy level, the configuration
resulted in an 89% reduction in dataset size, allowing an
entire month of NAM data to reside in main memory across
the fog cluster.

In our second error evaluation, we artificially con-
strained the system to demonstrate coordination between
fog and cloud nodes. A single fog node was tasked with
managing our lab sensing dataset, with a spillway config-
uration of 30-minute units, a temporal curve of f(x) =
x + 1, and merge thresholds for three levels of reservoirs:
T = [3, 2, 2]. Figure 2-b reports the lab noise level measured
by our CM108 sensor; audible activity increases during
working hours, although it is evident that several students
continued using the lab into the night. The figure highlights
the components responsible for resolving the query, with the

fog and cloud each returning 12 hours of data.

4.3 Query Throughput Microbenchmark
To determine the query processing throughput of our cluster
configuration, we launched randomized queries from our
test clients across three different timespans on the NAM
dataset: 1–12 hours, 12–24 hours, and 24–36 hours. Longer
ranges of time are more computationally expensive and
tend to incur higher message serialization costs, whereas
retrieving observations from a small number of time units is
generally faster. Figure 2-c contains the query throughput
for each timespan, which includes query resolution and
serialization. Notably, the 48 fog nodes were able to achieve
higher throughput than the 16 cloud nodes for small ranges
of time, likely due to the first benchmark being I/O-bound
rather than CPU-bound.

5 CONCLUSIONS

Our methodology makes innovative use of reservoir sam-
pling to support accurate, real-time, federated query eval-
uations with our spillway data structure (RQ1). To min-
imize communication, fog nodes buffer incoming obser-
vations in memory and secondary storage before migrat-
ing data to the cloud periodically, while cloud nodes
cache frequently-requested data points (RQ2). Preserving
variable-granularity samples at the fog nodes allows queries
to achieve high accuracy while minimizing latency and
I/O (RQ3). Finally, our empirical evaluations demonstrate
the suitability of our approach in federated fog and cloud
sensing environments.

7

ACKNOWLEDGMENTS

This research was supported by the US Department of
Homeland Security [HSHQDC-13-C-B0018, D15PC00279],
the US National Science Foundation [ACI-1553685, CNS-
1253908], the Environmental Defense Fund [0164-000000-
10410-100], and a Monfort Professorship.

REFERENCES

[1] J. S. Vitter, “Random sampling with a reservoir,” ACM Trans. Math.
Softw., vol. 11, no. 1, pp. 37–57, Mar. 1985.

[2] EWEA, Wind energy - The Facts: A Guide to the Technology, Economics
and Future of Wind Power. Routledge, 2012.

[3] F. Bonomi et al., “Fog computing and its role in the internet of
things,” in Proceedings of the First Edition of the MCC Workshop on
Mobile Cloud Computing, 2012, pp. 13–16.

[4] ——, Fog Computing: A Platform for Internet of Things and Analytics.
Springer International Publishing, 2014, pp. 169–186.

[5] C. Perera et al., “Context aware computing for the internet of
things: A survey,” IEEE Communications Surveys Tutorials, vol. 16,
no. 1, pp. 414–454, 2014.

[6] B. Tang et al., “A hierarchical distributed fog computing architec-
ture for big data analysis in smart cities,” in Proceedings of the ASE
BigData & SocialInformatics 2015, 2015, pp. 28:1–28:6.

[7] P. P. Jayaraman et al., “CARDAP: A scalable energy-efficient con-
text aware distributed mobile data analytics platform for the fog,”
in Advances in Databases and Information Systems. Springer, 2014,
pp. 192–206.

[8] C. C. Aggarwal, “On biased reservoir sampling in the presence of
stream evolution,” in Proceedings of the 32nd International Conference
on Very Large Data Bases, 2006, pp. 607–618.

[9] B. Babcock, M. Datar, and R. Motwani, “Sampling from a moving
window over streaming data,” in Proceedings of the Thirteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, 2002, pp.
633–634.

[10] M. Malensek, S. L. Pallickara, and S. Pallickara, “Fast, ad hoc
query evaluations over multidimensional geospatial datasets,”
IEEE Transactions on Cloud Computing, p. (To Appear).

[11] ——, “Analytic queries over geospatial time-series data using
distributed hash tables,” IEEE TKDE, vol. 28, no. 6, pp. 1408–1422,
2016.

[12] G. Niemeyer. (2008) Geohash. [Online]. Available: http://en.
wikipedia.org/wiki/Geohash

[13] B. Welford, “Note on a method for calculating corrected sums of
squares and products,” Technometrics, vol. 4, no. 3, pp. 419–420,
1962.

[14] J. F. Allen, “Maintaining knowledge about temporal intervals,”
Commun. ACM, vol. 26, no. 11, pp. 832–843, Nov. 1983.

[15] C. Lee, D. Sim, J.-Y. Hwang, and S. Cho, “F2FS: A new file system
for flash storage,” in Proceedings of the 13th USENIX FAST, 2015,
pp. 273–286.

Matthew Malensek is a PhD student in the
Department of Computer Science at Colorado
State University. His research interests in-
clude distributed systems, data-intensive com-
puting, and cloud computing. Malensek re-
ceived his MS in Computer Science from Col-
orado State University and can be reached at
malensek@cs.colostate.edu.

Sangmi Lee Pallickara is an Assistant Profes-
sor in the Department of Computer Science at
Colorado State University. Her research inter-
ests are in the area of large-scale scientific data
management and data mining. She received
her Masters and Ph.D. degrees in Computer
Science from Syracuse University and Florida
State University, respectively. She is a recipi-
ent of the NSF CAREER award. Contact her at
sangmi@cs.colostate.edu.

Shrideep Pallickara is an Associate Professor
in the Department of Computer Science at Col-
orado State University. His research interests
are in the area of large-scale distributed sys-
tems, specifically cloud computing and stream-
ing. He received his Masters and Ph.D. de-
grees from Syracuse University. He is a recipi-
ent of the NSF CAREER award. Contact him at
shrideep@cs.colostate.edu.

