
IEEE TRANSACTIONS ON BIG DATA 1

Trident: Distributed Storage, Analysis, and
Exploration of Multidimensional Phenomena

Matthew Malensek, Walid Budgaga, Ryan Stern,
Shrideep Pallickara, and Sangmi Lee Pallickara, Members, IEEE

Abstract—Rising storage and computational capacities have led to the accumulation of voluminous datasets. These datasets contain
insights that describe natural phenomena, usage patterns, trends, and other aspects of complex, real-world systems. Statistical and
machine learning models are often employed to identify these patterns or attributes of interest. However, a wide array of potentially
relevant models and parameterizations exist, and may provide the best performance only after preprocessing steps have been carried
out. Our distributed analytics platform, TRIDENT, facilitates the modeling process by providing high-level data exploration functionality
as well as guidance for creation of effective models. TRIDENT handles (1) data partitioning and storage, (2) metadata extraction and
indexing, and (3) selective retrievals or transformations to prepare and generate training data. In this study, we evaluate TRIDENT in the
context of a 1.1 petabyte epidemiology dataset generated by a disease spread simulation; such datasets are often used in planning for
national-scale outbreaks in animal populations.

Index Terms—Distributed analytics; voluminous data management; machine learning

F

1 INTRODUCTION

R ECENT advancements in distributed storage and com-
putation engines have enabled analytics at an unprece-

dented scale, with systems such as Spark [1] and Hadoop [2]
allowing users to build distributed applications to gain
insight from voluminous, multidimensional datasets. While
these systems are highly effective from a computational
standpoint, both exploration and feature engineering for ma-
chine learning models require several rounds of compu-
tation and incur I/O costs as data is migrated into main
memory.

To address these use cases we propose TRIDENT, which
supports three key aspects of handling data in the context of
analytic modeling: (1) distribution and storage, (2) feature
space management, and (3) support for ad hoc retrieval
and exploration of model training data. Incoming feature
vectors are partitioned to facilitate targeted analysis over
specific subsets of the feature space. Transformations sup-
ported by TRIDENT include normalization, binning, and
support for dimensionality reduction based on correlation
analysis. Exploration and retrieval of model training data
is enabled by expressive queries that can prune the feature
space, sample across feature vectors, or combine portions
of the data. Exposing this functionality at the storage level
(rather than in a computation engine) allows many steps
in the feature engineering process to be performed before
analysis begins. By leveraging this functionality, researchers
and practitioners can explore and inspect their datasets in
an interactive fashion to help guide the creation of machine
learning models or visualizations without needing to write
ad-hoc applications or wait for heavyweight distributed
computations to execute.

1.1 Scenario

Consider a TRIDENT user, or analyst, that wishes to explore a
voluminous, high-dimensional epidemiology dataset stored

in the system. The dataset is likely to contain valuable
insight into a phenomenon that occurs when a particular
series of events unfold, and the analyst wishes to under-
stand what factors are most influential by creating analytical
models of the data. For example, such analysis could involve
locating feature vectors that occurred when the disease
outbreak duration was negatively correlated with vaccine
stockpiles. The analyst begins by issuing a set of SQL-like
queries in an interactive console to pinpoint occurrences of
the phenomenon, and then requests a statistical summary
of the matching feature vectors to understand their distri-
butions. At this point, additional constraints may be placed
on the scope of the inquiry: perhaps the analyst finds that
winter months have a stronger impact on vaccine stockpiles
due to reduced shipping capacity, and decides to focus on a
particular temporal scope in order to be more selective.

During the exploration process, the analyst can adjust
query parameters interactively and receive real-time feed-
back; feature information is retrieved and processed on the
server side to avoid transmitting large quantities of data to
the analyst’s workstation. On the client side, metadata in
the form of analytic base trees (ABTs) compactly represent
the dataset, its relationships, and statistical information.
Once the analyst is finished selecting a subset of the feature
space, he/she locates atypical scenarios by retrieving data
points where the disease duration was more than a standard
deviation away from the mean, and prunes features that do
not correlate with the disease duration. Satisfied with the
dataset, the analyst normalizes the feature values by scaling
them into a range of [0, 1], trains exploratory machine
learning models in parallel, and subsequently retrieves a
bias-variance decomposition report. This report helps the an-
alyst understand any forecasting errors and guides further
modeling efforts; as new data is streamed into TRIDENT, the
analyst may also revisit previous analyses or reconfigure
query parameters.

IEEE TRANSACTIONS ON BIG DATA 2

1.2 Research Questions

Supporting storage and analytics activities in this domain
introduces unique challenges due to high dimensionality,
dataset sizes, and the latency requirements during interac-
tive queries. We developed the following research questions
to guide our implementation of TRIDENT:

RQ1 How can we control the placement of incoming feature
vectors to improve retrieval times and construction of
specialized models? [§3]

RQ2 How can we efficiently support analytic operations on
specific portions of the feature space while avoiding
disk I/O? [§4]

RQ3 How can we provide a rich set of queries that facil-
itate analytics and minimize duplicate processing (or
preprocessing)? [§4, §5]

RQ4 How can we facilitate creation and evaluation of mod-
els for particular portions of the feature space? [§5]

1.3 Approach Summary

TRIDENT is a holistic, integrated framework that targets
both how and where training data is stored in the system.
Data partitioning can be configured using multiple strate-
gies, including hash-based and spatially-aware partition-
ers. The default partitioner performs correlation analysis
between independent and dependent variables to achieve
dimensionality reduction. Reduced-dimensionality feature
vectors are then clustered and dispersed to storage nodes
that hold similar data. Clustering data points with high
similarity enables the creation of specialized models that
outperform models generated with randomly-placed data.

The system extracts metadata from incoming feature vec-
tors to populate our novel analytic base tree (ABT) indexing
structure. ABTs track relationships between features and are
used to evaluate distributed queries. To handle dimensional-
ity, ABTs support autonomous quantization to control mem-
ory consumption and ensure low-latency retrievals. During
the feature space management process, we also support
preprocessing operations such as additional dimensionality
reduction steps, feature ranking, and normalization.

Our distributed query support allows the analyst to
explore the feature space and identify training data points
of interest with an SQL-like interface. Standard relational
operations are supported, as well as analytic operators such
as event frequencies, sampling, and fuzzy queries that allow
constraints to be relaxed. After selecting relevant feature
vectors, analysts can perform an automated bias-variance de-
composition of pilot models and export in-memory datasets
for further manipulation and training by outside frame-
works. We demonstrate this capability by generating models
with Spark [1], TensorFlow [3], and a custom machine
learning application based on scikit-learn [4].

1.4 Contributions

TRIDENT is focused on storage-level innovations to improve
the overall responsiveness of modern analytics pipelines.
The system actively inspects and analyzes multidimensional
data points as they are being stored; in contrast, distributed
file systems like HDFS [5] are more general but do not
provide query functionality or produce metadata based on

incoming dimensions and their relationships. Such meta-
data is vital when providing a near-instantaneous, real-time
feedback loop for analysts. When it is efficient to do so, we
also provide built-in preprocessing and modeling facilities.
Specific contributions of TRIDENT include:
• A fast, query-driven approach to feature space explo-

ration and model construction, with a rich set of queries
that support retrieval of training data.

• Modeling guidance provided by automated dimension-
ality reduction, bias-variance decomposition, and ad
hoc creation of pilot models.

• Training data management for fast, targeted retrievals
that can be exported to formats including Spark
RDDs [6], LIBSVM [7], and TensorFlow [3] records.

TRIDENT does not replace existing computational frame-
works such as Spark or Hadoop; rather, it integrates into the
existing ecosystems and provides augmented exploration
and transformation capabilities that do not require latency-
prone disk I/O to occur across the entire dataset during each
operation.

2 TRIDENT: METHODOLOGY

The crux of our effort is to help analysts construct relevant
analytical models. A key theme underpinning these core
capabilities is the preservation of timeliness, allowing the
analyst to quickly identify interesting data, gather insights,
fit models, and assess their quality.

To contrast with other approaches, consider a basic com-
putational operation — retrieving the average (mean) of a
particular feature. While straightforward in an algorithmic
sense, this requires heavy disk and memory I/O in systems
such as Hadoop or Spark, whereas in TRIDENT the operation
can be completed in less than 1 ms by querying our indexing
structure. Since the metadata collected by the system is
general and can be fused, filtering such a query based on
time or additional feature values does not incur additional
latency.

TRIDENT is designed to assimilate data incrementally as
it arrives, allowing both streaming and in-place datasets to
be managed. The system employs a network design based
on distributed hash tables (DHTs) to ensure scalability as
new nodes are added to its resource pool, and uses a gossip
protocol to keep nodes informed of the collective system
state. This allows flexible preprocessing and creation of
training data for statistical and machine learning models.
Our methodology encompasses three core capabilities:

1) Data Dispersion (§3): Effective dispersion of the dataset
over a collection of nodes underpins data locality, repre-
sentativeness of in-memory data structures, and the ef-
ficiency of query evaluations. The resulting data locality
promotes timeliness during construction of specialized
models for different portions of the feature space.

2) Feature Space Management (§4): TRIDENT maintains
memory-resident metadata to help locate portions of
the dataset, summarize its attributes, and preprocess
feature vectors. Online sketches ensure the data can be
represented compactly and with high accuracy, while
preprocessing activities enable operations such as di-
mensionality reduction or normalization.

IEEE TRANSACTIONS ON BIG DATA 3

 • Clustering
 • Partitioning
 • Storage

 • Indexing
 • Sketch Generation
 • Reservoir Sampling

 • Query Evaluation
 • Preprocessing
 • In-Memory Export
 to RDDs, CSV, etc.

Data Selection
and Model

Construction

Feature Space
Management

Data
Dispersion

Multidimensional
Observations
Sensor
Readings
Simulation
Outputs

Spark,
Hadoop

LIBSVM,
TensorFlow

D3,
Matplotlib

Fig. 1. TRIDENT architecture: multidimensional records are partitioned and indexed for subsequent analysis through expressive queries. Once
records of interest are located and transformed, they are exported in memory to a variety of computation engines’ native data structures.

3) Data Selection and Model Construction (§5): TRIDENT
supports interactive exploration via steering and cali-
bration queries to probe the feature space. These real-
time queries help analysts sift and identify training data
of interest. Training data can be exported to a variety
of formats, including DataFrame implementations sup-
ported by R [8], Pandas [9], and Spark [1]. TRIDENT
also manages training and assessment of analytical
models via generation of cross-validation folds and
bias-variance decomposition of model errors.

An overview of this functionality is shown in Figure 1.
While we evaluate TRIDENT in the context of two repre-
sentative datasets, our methodology does not preclude the
use of data from other domains with similar dimensionality
(hundreds to thousands of dimensions) where there is a
need to understand phenomena or forecast outcomes.

2.1 Datasets: Epidemiological and Atmospheric
Epidemiological Dataset: Most examples throughout the
text are based on our subject dataset, which was produced
by a discrete event simulation, the Animal Disease Spread
Model (ADSM) [10]. ADSM simulates disease outbreaks in
livestock populations and has been used in several stud-
ies including foot-and-mouth disease, avian influenza, and
pseudorabies. ADSM and its predecessor, the North Amer-
ican Animal Disease Spread Model (NAADSM) are Monte
Carlo models, which means that each set of parameters,
called a scenario, is run several times to gain confidence
in the outputs. Running multiple iterations of ADSM is
computationally expensive and can consume hours of CPU
time. This makes exhaustively exploring the simulation
parameter space untenable, and is a driving factor behind
leveraging analytic models to gain high-level insights from
the data.

In this study, we used an ADSM scenario set in Texas,
USA, that simulated an outbreak of foot-and-mouth disease
across 364,000 farms with direct contact, indirect contact,
and airborne disease spread. The outbreak was based on
real-world farm and disease biology data, with each sce-
nario variant executed 30 times to account for uncertainty
in the results. The overall dataset size was 1.1 petabytes,
and included over 2000 unique features.

Atmospheric Dataset: To help demonstrate the flexibility
of TRIDENT, we also used an atmospheric dataset collected
from the NOAA NAM Forecast System [11]. The NAM
contains atmospheric observations with a variety of features

such as the date, time, location, surface temperature, humid-
ity, wind speed, and precipitation. This dataset has fewer
features (around 100), but more observations (20 billion files,
500 TB of data).

2.2 Test Environment
Benchmarks described in the following sections were con-
ducted on a cluster of 75 nodes: 45 HP DL160 servers (Xeon
E5620, 12 GB RAM), and 30 HP DL320e servers (Xeon E3-
1220 V2, 8 GB RAM) running Fedora Linux version 26
(kernel 4.14). For data structure benchmarks carried out on
a single node, the DL320e configuration was used. Each host
was equipped with four hard disk drives, and TRIDENT was
executed on the OpenJDK Java runtime, version 1.8.0 151.

3 DATA DISPERSION

TRIDENT is based on a distributed hash table (DHT) net-
work design [12], [13], [14]. A DHT is a type of decentralized
overlay network that is created by dividing a hash space
across participating nodes, which ensures that incoming or
outgoing hosts have a minimal impact on the system as a
whole. This facilitates scalability in production settings. The
DHT used by TRIDENT is constructed in a manner similar
to Cassandra [15] or Amazon Dynamo [16], where requests
are routed directly to their final destination rather taking in-
termediate hops through the network. This approach helps
ensure predictable latencies and is beneficial during outages
or failures, as the loss of a single node does not impact
routing for the rest of the system. Storage and retrieval op-
erations can be handled by any of the participating storage
nodes, which will route the requests to their appropriate
destination.

In the traditional key-value storage model employed by
distributed hash tables, load is balanced in a roughly uni-
form fashion across participating nodes. This helps avoid
hotspots in the network that receive a larger share of storage
requests. When desired record keys (such as a filename
or identifier) are known ahead of time, locating data is
straightforward. However, searching for a particular value
in a DHT instead of a predetermined key generally requires
an exhaustive search to be broadcast across all partici-
pating nodes. Furthermore, the randomized placement of
data across the cluster makes reducing the search space
of a lookup operation impractical, hindering query capa-
bilities. To address these concerns, TRIDENT supports mul-
tiple partitioning strategies that work in tandem with its

IEEE TRANSACTIONS ON BIG DATA 4

indexing functionality. These include the uniform, geospatial,
and cluster-based partitioners, which can be extended or
replaced with custom partitioner implementations. While
the cluster-based partitioner is the default, users may select
a different partitioner at run time based on their dataset or
computations.

3.1 Uniform Partitioning
Most DHT-based storage systems, including TRIDENT, im-
plement uniform partitioning via hash functions such as
MD5, SHA-1, etc. With this strategy, each file has an as-
sociated key (often a file name or unique identifier) that
is mapped to the overall hash space. Each computing re-
source is assigned a portion of the hash space, leading
to a relatively uniform distribution of load; in our test
environment, the uniform partitioner assigns each of the 75
nodes about 1.33% of the load with a standard deviation
of 0.08% for both of our test datasets. The hash key can
also be used to retrieve files directly, providing efficient
lookup functionality. In situations where nodes in the cluster
are heterogeneous or have different capabilities, machines
may represent additional virtual nodes to take on additional
load. While the uniform partitioner provides a reasonable
baseline for all file types with uniform load balancing,
selecting a data-specific partitioner in TRIDENT such as the
geospatial or cluster-based partitioner can improve query
latencies and the organization of records in the system.

3.2 Geospatial Partitioning
For lookup operations that prominently feature geospatial
characteristics, balancing load across the TRIDENT cluster in
a spatially-aware fashion can dramatically improve query
resolution times due to collocation of spatially proximate
records. We employ the Geohash [17] algorithm to generate
a spatially-constrained hash space that identifies locations
on the Earth as Base 32 strings. Geohash generates a hi-
erarchy of bounding boxes where similar hash prefixes
represent similar spatial locations; Geohashes 9XJ63 and
9XJ66 are both located in Denver, Colorado, USA, while
9QCE7 represents a region in Sacramento, California, USA.
To handle varying spatial densities, the granularity of the
hash space allocated by our Geospatial partitioner can be
configured by specifying a Geohash string length; short
strings allocate larger spatial regions to single nodes, while
longer strings will distribute records based on finer-grained
bounding boxes. While partitioning load based on spatial
characteristics can greatly improve collocation for particular
use cases, TRIDENT also allows multiple features to be
considered for collocation via its cluster-based partitioner.

3.3 Cluster-Based Partitioning
To automate data placement, retain the beneficial load bal-
ancing characteristics of DHTs, and also facilitate search
operations, we developed a locality-sensitive hash (LSH) func-
tion based on data clustering — one of the key contributions
of the TRIDENT framework. By clustering incoming data
points, we can place similar feature vectors on the same
nodes while ensuring the number of clusters created is
reflected by the number of storage nodes participating in

the system. While cryptographic hash functions attempt
to avoid collisions where multiple entities are mapped to
the same hash, locality-sensitive hashing encourages such
collisions. This results in feature vectors with high similarity
being placed on the same storage node or neighboring nodes
within the hash space.

In the initialization phase of our cluster-based parti-
tioning algorithm, data points are buffered at each storage
node and funneled to a cluster manager that is elected and
gossiped through the system. As data arrives, the clus-
ter manager begins populating a StreamKM++ clustering
model [18] provided by the Massive Online Analysis (MOA)
framework [19]. StreamKM++ is a streaming variant of k-
means that uses the k-means++ algorithm to determine ini-
tial cluster centroids based on data distributions rather than
using random locations. This improves cluster quality and
the convergence speed of the algorithm. The initialization
process ends when either (1) the algorithm converges on a
set of clusters, or (2) the percentage of memory consumed by
buffered data at any node reaches 25%. Once initialization
is complete, the storage nodes are assigned a set of cluster
centroids to manage.

During normal operation of the TRIDENT cluster,
changes to the centroids are published by individual storage
nodes on a periodic basis. This ensures routing decisions
will respect the evolution of the feature space as new data is
added to the system. Our gossip scheme is eventually consis-
tent, meaning some feature vectors may be stored based on
outdated information. However, our aim is not to produce
an exact clustering but rather collocate data with reasonable
precision, which in turn improves the performance of model
creation and analytics activities.

The initial number of clusters (k) is set to the twice
the number of storage nodes present in the system. As
new nodes are added to the storage pool, they assume re-
sponsibility for these extra clusters. Cluster assignments are
determined by retrieval and storage loads; nodes managing
the highest amount of load are selected for migration first.
This allows the cluster to scale out rapidly, but limits the
maximum number of nodes that can be added to the system
at a given time. To ensure further elasticity and handle
situations where clusters become imbalanced, the system
can split or merge clusters as well. These operations require
additional coordination by the cluster manager to reassess
centroids and potentially migrate data, which makes them
best suited for manual initialization by a system administra-
tor during periods of low traffic. Split and merge operations
are generally localized to a small subset of the storage nodes,
which can be computed before committing the changes.

3.4 Improving Cluster Quality
In situations involving high dimensionality, algorithms that
represent data in Euclidean space (such as k-means) often
suffer from high dispersion and sparsity [20]. As a result,
clusters produced in such cases may be valid but not exhibit
meaningful feature similarities. This is particularly prob-
lematic in the context of our partitioning scheme; without
similar groups of data, value-based queries still require
an exhaustive search across all the data in the cluster. To
measure the quality of the clusters produced by our par-
titioning algorithm, we use the Davies-Bouldin (DB) index

IEEE TRANSACTIONS ON BIG DATA 5

[21]. The Davies-Bouldin index evaluates clusters based on
their intra- and inter-cluster similarity; if the clusters feature
low dispersion and do not overlap, they are more likely
to represent distinct concepts, and therefore have a lower
DB index. In general, minimizing the Davies-Bouldin index
results in higher-quality clusters. The DB index is calculated
as follows:

DB =
1

n

n∑
i=1

max
j 6=i

(
σi + σj
d(ci, cj)

)
Where n is the number of clusters, σ represents the average
distance of data points from their cluster centroid, and
d(ci, cj) is the distance between centroids. Ideally, each
storage node in TRIDENT will be assigned a well-defined
portion of the feature space to manage, but there is a
trade-off between the number of clusters generated by our
algorithm, data dimensionality, and cluster quality. Since the
number of clusters depends on the system configuration, we
target dimensionality reductions to increase cluster quality.
Our test dataset includes over 2000 unique features, but
we found that many are used infrequently or are directly
influenced by other features; for instance, if airborne disease
spread does not occur, several other features will be less
prominent. To discover these interactions between features,
we perform online correlation analysis using the Pearson
product-moment correlation coefficient (PCC) on incoming
scenario data (inputs and outputs) to rank feature impor-
tance. PCC measures linear dependence between variables,
where a correlation coefficient of -1 represents a strong
negative relationship, +1 is a strong positive relationship,
and 0 indicates no correlation between the variables.

Input variables that exhibit strong correlations with out-
put variables often improve model accuracy. On the other
hand, correlations between inputs can lead to collinearity,
which occurs when two or more input features can be
predicted accurately from one another. Our dimensionality
reduction process executes on the cluster manager, which
begins by calculating the cross-feature correlation coeffi-
cients of the normalized input and output features. Collinear
inputs are removed first, with the remaining features ranked
by the absolute value of their correlation coefficients. The
bottom 25% of these features are removed, clusters are
generated, and the Davies-Bouldin index is calculated for
the configuration. This process continues until the resulting
change in cluster quality is less than 1.0. We also allow
analysts to tune these thresholds or provide an ordered list
of features to prioritize/de-prioritize during dimensionality
reduction if greater control is necessary.

3.5 Cluster-Based Partitioning Evaluation

After dimensionality reduction is complete, TRIDENT begins
using the clusters to partition data. Storing our epidemio-
logical dataset on our configuration of 75 machines resulted
in the distribution of load shown in Figure 2. While there
are small variations in the percentage of overall data stored
at each node, our algorithm does not introduce extreme
load imbalances. Furthermore, the dimensionality reduction
process reduced the Davies-Bouldin index of the clusters
from 32.3 to 4.1.

0 10 20 30 40 50 60 70
Storage Node

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

P
er

ce
nt

 O
ve

ra
ll

D
at

a

Cluster Data Distribution

Fig. 2. Distribution of data with our cluster-based locality-sensitive hash-
ing scheme across 75 storage nodes.

To further evaluate the efficacy of our partitioning strat-
egy, we generated models using gradient-boosted decision
trees [22], [23], [24] on each node in the system and then
repeated the process with both HDFS as well as randomized
placement used in a standard DHT. In this test, individual
models were trained with the entire local dataset present
at each storage node and were configured to predict the
disease_duration output variable from our test dataset.
Figure 3 demonstrates the difference in prediction accuracy
between the clustered and randomized models, with an
improvement of 5–9%. Note that the results are sorted in
descending order by root-mean-square error (RMSE) of the
models, and that in the case of HDFS there is a slight in-
crease in error due to reduced uniformity in load balancing.
By ensuring similar data points are placed on the same
storage node we can help local models specialize for their
particular portion of the dataset, resulting in better perfor-
mance. This also improves models that sample across the
TRIDENT cluster to build training data, as each node holds
a distinct portion of the overall feature space. However, it
is worth noting that the hash function in a standard DHT is
used for both partitioning and retrieval capabilities, whereas
our partitioning scheme does not provide key-based lookup
functionality. To support queries, we build indexes that are
used to locate and retrieve specific portions of the feature
space during feature space management.

0 10 20 30 40 50 60 70
Cluster Number (Sorted by RMSE)

1.85

1.90

1.95

2.00

2.05

2.10

2.15

2.20

R
M

S
E

 (D
is

ea
se

 D
ur

at
io

n)

Clustered (Trident)
HDFS
Random (Standard DHT)

Cluster Comparison: Localized Model Performance

Fig. 3. Gradient-boosted decision tree models built in parallel with TRI-
DENT compared to models generated over randomly-placed data on a
traditional DHT. Controlling the placement of data results in a 5–9%
improvement in prediction accuracy.

IEEE TRANSACTIONS ON BIG DATA 6

4 FEATURE SPACE MANAGEMENT

With the dimensionality involved in our subject simulation
and the problem domain in general, storing all feature
vectors in memory or indexing every data point observed by
the system is not feasible. To allow expressive query func-
tionality, we employ streaming sketches to gather aggregate
information about the data as well as tree-based, quantized
indexes to provide lookup functionality. This approach gives
analysts low-latency, iterative search capabilities while still
enabling full-resolution retrievals from data stored on disk.

4.1 Online Sketches
TRIDENT supports compact, memory-resident sketches that
provide a variety of metadata, including:
• Summary statistics (min, max, mean, etc.) for each

feature
• Kernel density estimation (KDE) to provide probability

densities for each feature
• Reservoir samples, which create online, representative

sample sets of unbounded data streams
As multidimensional feature vectors stream into the system,
summary statistics are a concise way to provide overviews of
the data. Summaries include information such as minimum
and maximum values, means, standard deviations, and
variances. To provide this functionality without needing to
inspect the entire dataset, we use Welford’s Method [25].
Welford’s Method allows TRIDENT to maintain summaries
that are updated incrementally as data is stored, where
each summary consumes about 40 bytes of memory. To
expand the scope of these summaries, we also observe cross-
feature relationships, which enable calculation of the Pear-
son product-moment correlation coefficient, coefficient of
determination (r2), and creation of two-dimensional linear
regression models. This facilitates cross-variable analysis;
for example, TRIDENT supports queries such as “what is the
likely scenario infection rate when the radius of vaccination
is three kilometers?” As discussed in the previous section,
correlation coefficients provided by this functionality are
also used by the system to help reduce dimensionality
during data partitioning and storage.

Summary statistics maintained using Welford’s method
can also be merged to create aggregate statistics. We leverage
this functionality to allow statistics to be gathered across
different nodes in the TRIDENT cluster and then merged to
form a single, coherent summary. This is particularly useful
when a query involves several storage nodes; merges are a
lightweight, streaming operation that can also be performed
on the client side.

Another sketch supported by TRIDENT is online kernel
density estimation (KDE). KDE provides an approximation
of the probability density function (PDF) of a given variable
based on sample data. We use the oKDE library [26] to main-
tain an online model of the estimated probability densities of
each input and output variable in the system. This provides
information on how each variable is distributed, what the
most common values are, and how likely particular ranges
of values will be. To account for evolution in the feature
space, oKDE allows an optional forgetting factor to phase out
old data over time, as well as a configurable compression to
influence how much data is retained in memory. This allows

dynamic management of the memory-accuracy trade-off
space associated with each feature PDF. For our subject
dataset, we found that evolution in the feature space did not
occur rapidly enough to require old data to be phased out,
but we do adjust the compression level based on memory
constraints at the storage nodes.

To maintain full-resolution data points in memory, TRI-
DENT employs reservoir sampling, which enables a repre-
sentative sample to be constructed and updated as new
data points arrive [27]. Reservoir sizes are configured based
on the available memory at each storage node. As new
feature vectors stream into the system, they are randomly
selected to be inserted into the reservoir with a decreasing
probability. As a result, updates to the data structure become
less frequent as more data is inserted, ensuring that the
sample adequately represents the breadth of the dataset.
Much like the other sketches implemented in TRIDENT,
reservoir samples can be merged to form a single aggregate
sample. Additionally, analysts that wish to build machine
learning models across the entire dataset can quickly access
the in-memory reservoirs to populate and train a model
without requiring expensive disk I/O operations.

Compared to the other online sketches maintained by
TRIDENT, reservoir samples consume a more significant
portion of main memory — up to 25% of the total RAM by
default. If distributed model generation (launched directly
by TRIDENT or through a computation framework such as
Hadoop [2] or Spark [1]) requires additional memory at the
storage nodes, reservoir samples can be dropped by request
and then subsequently restored after the tasks complete.
This is facilitated by the system reservoir journal, which
contains pointers to the full-resolution feature vectors stored
on disk. The reservoir journal is updated as changes are
made to the samples and logged to stable storage, ensuring
the reservoirs can be removed from memory immediately if
required.

While sampling is often an effective means to represent
a dataset without inspecting every feature vector, we also
use our online summary statistics to give analysts and
client applications a sense of how accurate the reservoirs
are. Table 1 demonstrates a reservoir statistics report gener-
ated by TRIDENT for the disease_control_zone input
variable. Error percentages are included with the report
to help analysts gauge the relative difference between the
sample and actual values from the dataset. It is worth noting
that random sampling captures high-level insights from the
dataset, but may underrepresent outliers. To locate such
data, evaluate queries, and analyze the feature space, we
provide analytic base trees.

4.2 Analytic Base Trees
To provide query capabilities over the multidimensional
data stored in TRIDENT, we developed a tree-based, hierar-
chical index for input and output features called analytic base
trees (ABTs). Analytic base trees are sparse data structures
that allow query operations to drill down through the feature
hierarchy in a fashion similar to traditional file system
interfaces. Each additional feature value or range specified
by a query reduces the search space until a final set of
matching feature vectors has been constructed. Besides en-
abling query evaluations over the files at a TRIDENT storage

IEEE TRANSACTIONS ON BIG DATA 7

TABLE 1
Reservoir statistics provided for a 1% sample of the

disease_control_zone input variable.

Statistic Actual Value Sample Value Error
Mean 22.06 22.15 0.41%
Variance 73.10 73.76 0.90%
Std. Dev. 8.55 8.59 0.47%
Min 4.61 4.73 2.60%
Max 35.40 35.37 -0.08%

node, ABTs also maintain online summary statistics for each
path through the tree using our implementation of Welford’s
method. Unlike the general statistics maintained by the
storage nodes for each feature type, the statistics stored in
ABTs are merged dynamically to generate summaries for
certain conditions or combinations of events.

Each storage node maintains an ABT instance for the
input and output datasets under its purview, which are
linked by feature vector instance identifiers. As information
streams into the system, multidimensional feature vectors
are converted into hierarchical paths that represent a traver-
sal through the tree. Each feature value becomes a tree ver-
tex, with edges used to connect related data points. Multiple
layers in the hierarchy are used for interval data or types
of features that include additional sub-dimensions. Leaf
nodes contain file pointers to the locations of feature vectors
on stable storage, as well as summary statistics for their
corresponding paths. This approach not only maintains the
multidimensional relationships between features, but also
conserves memory by enabling vertex reuse for duplicate
feature values. Figure 4 provides a simplified demonstration
of the ABT; while the example contains six feature vertices
and five leaves, production environments would involve
millions of vertices, edges, and leaves.

ABT queries support a SQL-like fluent syntax that allows
analysts to search by range, exact match, inequality, or
substrings. During query evaluation, TRIDENT performs a
traversal and creates a set of pruned vertices based on paths

Query Context

Summary Statistics
File Pointers

Natural Immunity (days)

Vaccination Radius (km)

Infection Probability

Fig. 4. An example analytic base tree with three feature layers. A query
context, shown with highlighted edges, prunes the feature space to
select particular sets of files or summary statistics.

15 20 25 30 35 40 45 50
Disease Duration (Days)

0.00

0.02

0.04

0.06

0.08

0.10

P
ro

ba
bi

lit
y

D
en

si
ty

ABT Quantization

Fig. 5. A demonstration of the autonomous binning supported by analytic
base trees. Feature values with higher probabilities are placed in smaller
(and therefore more accurate) bins.

that do not match the query. This allows irrelevant por-
tions of the tree to be eliminated without being traversed.
Constructing the set of pruned vertices creates a limited
query context, which can be queried further, serialized and
streamed to clients, or used to inspect statistics that were
stored under the matching paths. In many cases, the tree
itself provides enough information about the feature space
without requiring disk accesses. Figure 4 demonstrates a
sample query context generated by a request that matches
the infection probability and vaccination radius exactly, and
implicitly includes two natural immunity vertices.

While vertex reuse helps limit the memory consumption
of the ABTs, high dimensionality can produce long, sparse
paths that rarely result in duplicate values being collapsed
into a single vertex. TRIDENT leverages the dimensionality
reduction performed during data partitioning to determine
which features to index, ensuring any user-specified key
features are included. To further increase vertex reuse,
we employ autonomous binning to quantize incoming data
points. Autonomous binning places feature values into
small, range-based bins; for instance, a single vertex would
be responsible for all infection probabilities in the range 0.10
to 0.15 instead of only a single value.

We dynamically generate bins by leveraging the online
kernel density estimation functionality in TRIDENT. For
each feature, corresponding probability densities are used
to create range boundaries that distribute data points uni-
formly across the bins. Bins are generated during the cluster
initialization phase, and updated periodically at run time
if substantial changes in the distributions occur. Updates
are performed on an incremental, targeted basis, where bins
are either split in two or merged with a neighboring bin.
Figure 5 illustrates this process for the disease duration output
variable; note how ranges with the highest concentration
of values are smaller, increasing precision, while outliers
are placed in larger, more general bins. To further improve
accuracy, binning is performed on a case-by-case basis at
each storage node, reflecting the unique properties of each
clustered portion of the data. Table 2 reports memory con-
sumption and statistics for the analytic base tree before
and after our autonomous binning process. Overall, the
process reduced memory consumption by about 64% with
our test dataset. This enables the storage nodes to manage
more features with higher dimensionality, and also helps
improve caching performance for frequently-used feature

IEEE TRANSACTIONS ON BIG DATA 8

0 5 10 15 20 25
Quantization Bin

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
oo

t-M
ea

n-
S

qu
ar

e
E

rr
or

 (d
ay

s)

ABT Binning Error

Fig. 6. Root-mean-square error for each range of values created by our
autonomous binning algorithm. Frequently-observed values are placed
in the smallest ranges, resulting in higher accuracy.

vectors during the iterative modeling process.

TABLE 2
Analytic base tree metrics before and after autonomous binning.

Metric Original Binned Change
Vertices 11,363,106 3,827,937 -66.3%
Edges 12,414,085 4,321,440 -65.2%
Leaves 1,050,980 493,504 -53.0%
Memory 3,539.4 MB 1,268.5 MB -64.2%

Autonomous binning can substantially reduce memory
consumption. However, these improvements come at the
cost of decreased accuracy in queries. To evaluate the dif-
ference in accuracy incurred by autonomous binning, we
compared results returned by the ABT with the correspond-
ing files stored on disk. Since the vertices represent a range
of values, we used the mean provided by our statistics
instances as the value reported by the tree. Figure 6 mea-
sures the root-mean-square error of the values produced by
the ABT; for the majority of the bins, the reported values’
RMSE was less than 0.25 simulation days. However, for rare
events — in this case, a disease outbreak lasting over 45
days — the RMSE was about 2.5 days. We report these error
bounds alongside query results; also note that when full-
resolution files are retrieved they are evaluated against the
query parameters to ensure accurate results.

Due to the constant evolution of the feature space, our
cluster-based partitioning scheme cannot be used to locate
relevant storage nodes for query routing. Cluster centroids
are allowed to drift over time to account for changes in
the underlying data stream, which introduces the potential
for false negatives (nodes that are incorrectly flagged as not
having relevant data). Additionally, use of the uniform or
geospatial partitioners limit retrievals to a single dimension
(hash keys and locations, respectively). To avoid broadcast-
ing queries to all nodes in the system, which would incur
needless latency and processing overheads, we provide a
global ABT. The global ABT is structured similarly to its
local counterpart, but leaf nodes contain matching storage
node identifiers instead of file locations. Additionally, our
autonomous binning procedure is configured to produce
much coarser-grained bins in the global version of the tree to
ensure its memory consumption will be low. The global ABT
is updated periodically as changes occur in local storage

nodes’ indexes, with updates gossiped in an eventually-
consistent fashion. On average, updates to the global ABT
are less than 1 MB, and can be merged directly with existing
instances. An important consideration for the global variant
of the tree is that due to its hierarchical nature false positives
are possible, but false negatives are not. In the case of a false
positive during distributed query evaluation, nodes will use
their local ABTs to quickly resolve these null queries.

4.3 Preprocessing Operations

The sketches and indexing structures leveraged by TRIDENT
also enable a variety of preprocessing operations, including
correlation analysis and normalization. These activities are
often carried out before training machine learning mod-
els, and can lead to better model performance. Correla-
tion analysis is provided by the Pearson product-moment
correlation coefficient (PCC) available in our cross-feature
summary statistics. TRIDENT also allows correlations to be
sorted based on the strength of the inter-feature relationship,
and can retrieve the top-k items to reduce dimensionality.
Normalization support implements feature scaling, which
uses summary statistics to retrieve the range of values for
a particular feature and then scales each value (F ′) to fall
within a range [a, b]:

F ′ = a+
(X −Xmin) (b− a)
Xmax −Xmin

This helps avoid issues where features with large values
or extreme variation outweigh others in the dataset, which
some machine learning and statistical models are less re-
silient to.

5 DATA SELECTION AND MODEL CONSTRUCTION

TRIDENT provides several types of queries to support iter-
ative, ad hoc exploration of the input and output feature
space. This includes relational queries on feature values,
retrieval of inter-feature relationships, and higher-level anal-
ysis functionality. Queries fall broadly into two categories:
steering and calibration. Steering queries identify interesting
portions of the input space that correspond to observed
phenomena, which helps orient analysts to particular por-
tions of the dataset. Calibration queries refine and adjust the
results of steering queries, enabling constraints to be relaxed
or preprocessing such as normalization to be performed.
During these retrievals, we attempt to minimize I/O costs
by reducing the size of results and ensuring frequently-used
records are cached by the system.

Example queries in the following sections are direct,
textual representations of our Python-based TRIDENT shell
(including syntax highlighting). The shell enables analysts
to issue and fine-tune queries incrementally, plot and ma-
nipulate results, and transfer training data directly to other
environments, such as Spark [1].

5.1 Steering Queries

Steering queries help orient the analyst and locate particular
portions of the feature space. For instance, an analyst may be
interested in identifying portions of the feature space where

IEEE TRANSACTIONS ON BIG DATA 9

a particular entity’s states may be considered below aver-
age, average, or extremely high. In the case of our disease
spread simulation, this may require identifying portions of
the feature space that correspond with prolonged disease
durations. The following steering queries are supported by
TRIDENT:
Relational Queries aim to discover how features inter-

act based on their relationships. These queries may be
expressed as specific values or ranges, and can include
wildcards to retrieve data points that match the query
constraints.
inputs("vaccination_priority", "latent_period")

.where(outputs["outbreak_duration"] > 40
and outputs["num_air_infections"] < 5)

Event Frequency Queries steer analysis towards data
points that may be either anomalous or very common. As
discussed previously, analytic base trees employ a dynamic
quantization scheme to optimize for memory constraints.
The dynamic bins generated by TRIDENT allow rare events
to be discovered, which are placed in the coarsest-grained
bins. The inverse is also true for common events, which are
placed in fine-grained bins. Event frequencies are accessed
with the feature.freq() function.
Correlation Queries can be used to discover features that

exhibit correlations. Such features may indicate avenues for
pruning the feature space to reduce overall dimensionality,
or could reveal unintuitive relationships between variables.
As an example, consider retrieving summaries for input
variables when the disease outbreak duration is negatively
correlated with vaccine stockpiles (provided by the pcc
function):
inputs().where(

outputs["outbreak_duration"]
.pcc(inputs["vaccine_stockpiles"]) < -0.25)

.summarize()

Joint Probability Queries retrieve the probabilities of par-
ticular values or events occurring at the same time, and are
returned as multidimensional probability density functions.
For example, the probability of rain is likely to increase as
the amount of cloud cover increases. Joint probabilities are
requested using the feature.pdf(...) function.

5.2 Calibration Queries
Steering queries lay the groundwork for calibration queries
that enable incremental adjustment across features for fur-
ther analysis. Calibration queries include:
Fuzzy Queries allow analysts to specify the approximate

number of training data samples that must be retrieved.
TRIDENT incrementally relaxes constraints specified along-
side different features (based on their correlations with the
output space) to retrieve data of interest. This is achieved
by traversing neighboring vertices within the analytic base
tree; the following query locates inputs that occur when the
output duration is more than a standard deviation away
from the mean, and ensures at least 10,000 records are
retrieved by relaxing the constraint if necessary:

duration = outputs["outbreak_duration"]
inputs().where(

duration > duration.mean() + duration.std()
or duration < duration.mean() - duration.std())

.fuzzy(10000)

Sampling Queries facilitate sampling data from portions
of the feature space. The sampling can either be uniform,
where all data is considered, or stratified where the rep-
resentation of rare values is increased. When sampling
uniformly, in-memory reservoir samples are used if enough
information is available. Sampling is generally driven by a
requested percentage of the overall data, but TRIDENT can
also sample based on query time constraints, in which case
the sample size is also returned with the query results.

sample(0.3, method=’stratified’, timeBound=None)

Pruning Queries allow query results to be sorted or ranked.
Specifically, consider the case where the input feature space
has 2000 dimensions and the output space has 10 variables;
an analyst may be interested in analyzing the top 25 cor-
related features for a particular output. In such situations,
pruning the feature space reduces the number of dimensions
by about 90%.
Normalization Queries leverage our normalization prepro-

cessing functionality to ensure data is normalized for mod-
eling purposes. Models are often more consistent when fea-
tures are normalized because variations in the data are ac-
counted for; the feature.normalize(range=[-1, 1])
method produces normalized values without inspecting the
entire dataset by leveraging summary statistics stored in the
ABT.

5.3 Query Performance Evaluation
During retrieval, vertices in the ABT are evaluated and
removed if they do not match the query. This process
incrementally reduces the search space until only match-
ing vertices are left. Once scope reduction is complete,
the subtree itself can be serialized and transferred to the
client, or metadata such as the summary statistics or file
pointers can be merged into an aggregate query response.
To demonstrate resolution times, we submitted randomized
queries across valid feature ranges that retrieved online
sketch data, subtrees, and files from the system. Table 3
contains average query resolution times for each of these
query classes evaluated over our epidemiological dataset;
in this benchmark, query resolution is considered complete
when the data is serialized and ready to be transferred
across the network. For the disk and reservoir retrievals,
each file was approximately 1 MB.

TABLE 3
Query evaluation microbenchmark for each query class (averaged over

100 iterations).

Query Time (ms) Std. Dev.
Online Sketch 0.002 0.001
Tree-Based 61.699 2.015
Disk (100 files) 1,168.199 64.695
Reservoir (100 files) 0.131 0.100

To evaluate the end-to-end performance of TRIDENT,
we issued steering and calibration queries (correlation and
normalization, respectively) across both of our test datasets.
Both operations were applied across the entire datasets, in-
cluding all features. For a point of reference, we also imple-
mented identical transformation algorithms in Hadoop and

IEEE TRANSACTIONS ON BIG DATA 10

Spark, using built-in functionality and optimizations where
possible (in the case of Hadoop, we also leveraged our
online summary statistics implementation). Table 4 contains
the results of this benchmark. One contrast between the
approaches is generating a correlation matrix across all the
features in the dataset; our in-memory ABT already contains
this information for any specified combination of features,
so results take around 1 ms to produce. Normalization also
benefits from the ABT because the minimum and maximum
values are already available, whereas both Hadoop and
Spark require an initial pass over the selected data before
they can begin the normalization process. The difference in
computation times between the two datasets (epidemiolog-
ical and atmospheric) was largely a function of their size
and feature counts. Compared to Spark, TRIDENT provides
a 93% reduction in execution time when normalizing a
dataset. Finally, if only a sample of the entire dataset is
required, query times are decreased by drawing from in-
memory reservoirs.

TABLE 4
End-to-end query tests, with similar computations executed in both

Hadoop and Spark for reference. TRIDENT results include the
Epidemiological and Atmospheric datasets, as well as results from an
in-memory Reservoir sample. Computation times reported in seconds.

Implementation Correlation Matrix (s) Normalize (s)
Hadoop (Epi) 461.3 1573.3
Spark (Epi) 718.6 1129.7
Trident (Epi) 0.002 79.1
Trident (Epi-Res) 0.002 4.2

Hadoop (Atm) 228.4 750.1
Spark (Atm) 318.9 481.7
Trident (Atm) 0.002 32.4
Trident (Atm-Res) 0.002 1.1

5.4 Bias-Variance Decomposition
The bias-variance trade-off refers to assumptions made by
models that influence relationships between inputs and
outputs [28]. An optimal machine learning or statistical
model should accurately capture patterns or behaviors in
its training data while also generalizing to new, unseen data
points. In practice, models tend to optimize for one case
or the other, leading to high bias or variance. When bias is
high, the model does not fully capture the patterns in the
data, which leads to underfitting. Conversely, a model with
high variance is more susceptible to noise in the data, which
can result in overfitting. Figure 7 illustrates this trade-off.
Bias and variance are derived from the mean squared error
(MSE) of the model. The relationship between mean squared
error, bias, and variance is demonstrated by the following
equation, where the model function f̂ approximates an
unknown function f :

MSE(f̂) = Bias(f̂)2 + V ar(f̂) + ε

A final term, ε, represents the inherent noise or irreducible
error involved when modeling the function f . Estimating the
bias and variance of a particular model requires multiple
predictors to be generated and evaluated based on their

High VarianceLow Variance

Lo
w

 B
ia

s
H

ig
h

Bi
as

Fig. 7. Illustration of the bias-variance trade-off. An ideal predictor mini-
mizes both bias and variance (shown in the lower left corner).

average forecasts. However, the entire training set is gener-
ally used to create a single model. To generate several new,
representative training sets, we use bootstrap aggregation,
which samples uniformly from the original dataset with
replacement [28].

TRIDENT automates bias-variance decomposition to help
guide analysts during model selection and parameteriza-
tion. To begin the process, the analyst selects records of
interest (both inputs and outputs) via queries. After the
model space has been defined, reservoir samples are used
during bootstrap aggregation to help avoid disk I/O. This
produces a configurable number of training sets for eval-
uation, which can then be transferred to a computation
engine or machine learning library. TRIDENT also offers
three built-in models to allow the entire bias-variance de-
composition process to occur within the system: multiple
linear regression [29], random forests [30], and gradient boosting
[23], [24]. Linear regression provides a baseline measure of
model performance that can be trained quickly, providing
initial guidance towards further modeling efforts. Random
forests are often useful in restricting variance, while gradi-
ent boosting can be used to limit bias. By default, model
parameters are tuned for training speed, although analysts
can also customize the models that are generated. Figure 8
contains the bias-variance decomposition of each model
for our particular dataset; gradient boosting provides the
best predictive performance with a root-mean-square error
(RMSE) of 1.78 (3.17 MSE, 3.02 bias, 0.15 variance).

5.5 Exporting Training Data
After preprocessing and selecting input and output vari-
ables, TRIDENT passes the resulting datasets to client ap-
plications. Internally, collections of data points are repre-
sented as matrices that are designed to be compatible with
DataFrame implementations provided by R [8], the Python
Pandas library [9], and Spark SQL [31]. A set of adapters
allow TRIDENT datasets to be transformed to several other
formats. Besides DataFrames, the current set of adapters
supported by TRIDENT include (1) Spark RDDs [6], Labeled-
Points, and Matrices; (2) LIBSVM [7]; (3) TensorFlow [3]

IEEE TRANSACTIONS ON BIG DATA 11

records; and (4) file-based formats such as JSON, CSV, and
whitespace-delimited values. We also provide an adapter
interface to allow other formats to be added to the system.

Table 5 contains the conversion speeds for each format;
as one may expect, in-memory transfers to formats such as
resilient distributed datasets (RDDs) tend to be faster than
file-based formats such as LIBSVM [7], JSON, or CSV. How-
ever, many existing machine learning libraries are designed
around file-based access. To facilitate in-memory transfers,
TRIDENT supports bulletins, which are memory-resident
datasets that can be accessed directly using a virtual FUSE
[32] file system. This allows analysts to select and preprocess
data, store it in a compatible file format in memory, and
then train on the files with a variety of existing machine
learning frameworks. If the amount of data is too large to fit
into memory, feature vectors are evicted on a most recently
used (MRU) basis to reflect the iterative nature of machine
learning algorithms [33].

TABLE 5
Conversion speeds (in records/s) for the various export formats

supported by TRIDENT.

Format Records/s Std. Dev.
RDD (LabeledPoint) 8,462,170 1,394
Spark Dataframe 4,519,774 1,451
CSV 1,165,883 641
LIBSVM 760,253 2,169
JSON 479,738 1,900
TensorFlow Record 97,560 140

During the export phase, TRIDENT supports creation
of cross validation folds. K-fold cross validation is often
used to assess the generality of a model by dividing the
training data into k discrete folds, where one of the folds
is used for testing and the remaining k − 1 folds are used
for training. The process repeats k times, ensuring that each
fold is used once as the test set. After cross validation is
complete, the average error across all k folds is computed
and used to evaluate model performance. Cross validation
folds are exported either as (1) separate files, or (2) a single

Linear
Regression

Random
Forests

Gradient
Boosting

0

2

4

6

8

10

12

14

16

18

B
ia

s

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

V
ar

ia
nc

e

Bias
Variance

Bias-Variance Decomposition

Fig. 8. Bias-variance decomposition for three of the built-in models
supported by TRIDENT.

dataset with metadata tags indicating fold membership.

5.6 Analytics Evaluation
To assess the TRIDENT analytics pipeline, we designed three
experiments to forecast the outbreak duration of foot-and-
mouth disease in Texas, USA under a variety of scenarios.
The length of an outbreak is generally one of the most
requested output features, as it has planning implications
and could measure potential economic consequences.

5.6.1 Spark
Our first benchmark leveraged Spark [1] and its implemen-
tation of random forests provided by MLlib [34]. We used
TRIDENT to select outbreak data stored across our 75-node
cluster that exhibited disease durations longer than 15 days
and occurred via airborne spread. The data points were
normalized and drawn from in-memory reservoirs for a
total dataset size of 25,000 records, which was then split into
10 folds for cross validation. Using MLlib, we created a ran-
dom forest model parameterized to generate 100 decision
trees with a maximum depth of 10. Figure 9 demonstrates
the performance of the predictor, with a root-mean-square
error of 1.83 days. The TRIDENT shell commands that were
used to produce the model are shown in the following code
listing:

training_folds = inputs()
.where(inputs["spread_type"] == "airborne"
and outputs["disease_duration"] > 15)

.prune(outputs, 600)

.join(outputs)

.normalize()

.toRDD(cvFolds=10, parallelize=True)

for fold in training_folds:
model = RandomForest.trainRegressor(fold, ...)

Table 6 provides a breakdown of the steps taken to
generate the model and their respective latencies, averaged
over 100 iterations. Note that training jobs were dispatched
by Spark across 24 nodes in the cluster, and the model
training time reported was averaged across all 10 cross
validation folds within the test iteration.

10 20 30 40 50 60
Actual Disease Duration (days)

10

20

30

40

50

60

P
re

di
ct

ed
 D

is
ea

se
 D

ur
at

io
n

(d
ay

s)

RMSE: 1.83 days
Ideal Predictor

Spark: Random Forest Regressor

Fig. 9. Prediction performance of a random forest model generated in
Spark with our RDD export functionality.

IEEE TRANSACTIONS ON BIG DATA 12

TABLE 6
Timing information for each step in producing random forest models

with Spark, averaged over 100 runs.

Step Completion (s) Std. Dev
Query 1.21 0.11
Normalization 0.01 0.01
Format Conversion 0.18 0.01
Model Training 41.16 1.50

5.6.2 TensorFlow
To further test our export functionality, we converted the
same dataset used in our Spark experiment to TensorFlow
[3] records and applied the TensorFlow linear regression
implementation with a gradient descent optimizer. Figure 10
demonstrates the performance of the predictor over 10
cross-validation folds, with a root-mean-square error of
3.80 days. In this case, the linear model limits prediction
accuracy (especially for longer-lasting disease outbreaks).
However, linear models often train faster and can be used
during the exploration process to evaluate feature selection.

5.6.3 Distributed Ensembles: scikit-learn
Another modeling possibility supported by TRIDENT is the
generation of local model instances in parallel using the
datasets available at each storage node, creating a distributed
ensemble that trains quickly and specializes for each unique
portion of the feature space. We developed a machine
learning application based on the scikit-learn library [4] and
configured TRIDENT to launch it once training data was
available and stored in memory-resident bulletins. To assess
the trade-off space associated with the distributed ensemble,
we also built monolithic models by sampling across the
entire dataset. Table 7 reports the root-mean-square error
(RMSE) and coefficient of determination (R2) for each of
these tests on multiple linear regression (LR), random forest
(RF), and gradient boosting (GB) models.

As demonstrated by this evaluation, the gradient
boosted decision tree models outperform multivariate linear

10 20 30 40 50 60
Actual Disease Duration (days)

10

20

30

40

50

60

P
re

di
ct

ed
 D

is
ea

se
 D

ur
at

io
n

(d
ay

s)

RMSE: 3.80 days
Ideal Predictor

TensorFlow: Linear Regressor

Fig. 10. Prediction performance of a linear regression model generated
in TensorFlow with our TFRecord export functionality.

regression. This is likely due to the linear model not fitting
the data. Another insight gained from this experiment was
that building many localized models in parallel can be
highly effective; using the same number of feature vectors,
most of our local models achieved higher predictive per-
formance than a global sample of the same size. On the
other hand, the model with 75,000 samples demonstrates
the effectiveness of a general model built with a much larger
training corpus. Each of these models represents a different
portion of the analytics trade-off space; linear regression is
simple and fast to train but can have limited accuracy, while
building specialized models can be advantageous for ad hoc
modeling.

TABLE 7
Statistics for analytic models produced by TRIDENT, which were

computed with 10-fold cross-validation.

Model Scope Data Points RMSE R2

LR Local 12,000 4.08 0.63
RF Local 12,000 2.34 0.87
GB Local 12,000 1.78 0.93

LR Global 12,000 3.86 0.66
RF Global 12,000 2.42 0.85
GB Global 12,000 1.90 0.92
GB Global 75,000 1.57 0.95

6 RELATED WORK

Spark [1] is a cluster computing framework that supports
memory resident datasets and computations described by
directed, acyclic graphs (DAGs). This allows expensive disk
accesses to be avoided while also facilitating graph-based
workflows and iterative applications such as machine learn-
ing algorithms. One of the key features of Spark is its
Resilient Distributed Datasets (RDDs), which provide in-
memory parallel data manipulation functionality [6]. Spark
can process data from a variety of underlying storage
services, but lacks the integrated storage and exploration
facilities implemented in TRIDENT. MLBase [35] extends
the Spark stack to support machine learning tasks with
RDDs. MLlib [34] contains a number of machine learning
algorithms, and an integrated ML Optimizer assists users in
finding the best parameters for their models.

Hadoop [2] and HDFS [5] provide a scalable solution for
managing and processing large datasets. While HDFS does
not partition records based on their content, the software is
widely available and compatible with several distributed
computation engines. Hadoop provides distributed batch
processing capabilities, but native support for real time
exploration is limited unless extensions such as HaLoop [36]
are used. Additionally, while the computational facilities in
Hadoop could be leveraged to perform data preprocessing,
intermediate records would need to be written to the disk
and stored as full-resolution blocks.

Cassandra [15] is a DHT-based storage and data pro-
cessing system that also supports custom partitioning al-
gorithms. While implementing a cluster-based partitioning
scheme would be possible in Cassandra, the system employs
a wide-column storage format similar to BigTable [37],

IEEE TRANSACTIONS ON BIG DATA 13

which limits indexing efficiency over datasets with high
dimensionality. Cassandra supports CQL (Cassandra Query
Language) for retrieval operations and MapReduce compu-
tations for data manipulation and analysis, but does not of-
fer approximate, ad hoc query capabilities or preprocessing
focused on machine learning algorithms.

Synopsis [38] builds compact sketches over multidimen-
sional data streams to provide approximate representations
of large datasets. While this approach could be adapted
for machine learning and analysis in a similar fashion to
TRIDENT, the system is designed for in-memory storage
rather than incorporating large-scale persistent storage.

Galileo [39], [40], [41] employs a network design and
indexing scheme similar to TRIDENT. However, Galileo
generally handles tens of features rather than the thou-
sands of features produced by the inputs and outputs of
discrete event simulations. This changes the trade-off space
associated with efficiently indexing and managing the data,
especially with in-memory records; while Galileo uses an
iterative approach for reconfiguring its index incrementally,
our KDE-based quantization requires less frequent recon-
figuration, and therefore does not require as much state
synchronization between nodes. Galileo also inspects and
partitions its datasets based on geospatial properties, which
is not advantageous for model building in our use case.

BlinkDB [42] provides approximate query processing
functionality based on Hive [43]. This allows analysts
to query large datasets while specifying time and error
bounds. BlinkDB supports high-level summaries created by
sampling randomly across the entire dataset, along with
finer-grained stratified samples over frequently-accessed
records. This approach facilitates exploratory search over
precomputed dimensions of interest, but does not offer the
ad hoc queries or preprocessing provided by TRIDENT.

7 CONCLUSIONS AND FUTURE WORK

This study describes TRIDENT, which supports analytics
over voluminous data by: (1) distributing data and query
evaluations, (2) supporting a rich set of preprocessing op-
erations that simplify identification of important features,
(3) incorporating support for a set of compact, memory-
resident data structures that are amenable to fast querying,
and (4) supporting an expressive set of queries to explore
the feature space and retrieve/convert data.

TRIDENT controls the placement of incoming feature
vectors by reducing their dimensionality and clustering
similar data points. Cluster quality is evaluated with the
Davies-Bouldin index, and we demonstrate improvements
in building specialized local models across the nodes in the
system (RQ1). After partitioning, feature vectors are passed
to online sketch instances and our memory-resident, hierar-
chical analytic base tree (ABT) data structures. This allows
information to be retrieved about the underlying dataset
and transformations (such as normalization or correlation
analysis) to be applied without requiring disk I/O (RQ2).
Additionally, our analytic base trees support flexible queries
to locate and refine portions of the feature space in memory.
Online summary statistics also provide detailed information
about the features under study without accessing files on
disk, and preprocessing operations are cached to reduce
duplicate transformations (RQ3). Finally, our query-driven

approach allows subsets of the feature space to be selected,
creating training data sets that can be passed on to machine
learning frameworks. To support such activities, we provide
a base set of analytical models that can serve as pilot studies.
Bias-variance decomposition of these models is also made
available to allow the analyst to judge performance (RQ4).

As part of our future work we plan to incorporate
support for visualizations. Specifically, our goal is to support
rapid explorations and both creation and assessments of
multiple model instances. We envisage creation of multi-
ple model instances (different algorithms, hyperparameters,
and regular constraints) with the same training data. The
key goal of the visualization process is to assist in under-
standing why a model instance outperforms others.

The latest version of TRIDENT can be downloaded at:
http://galileo.cs.colostate.edu/trident

ACKNOWLEDGMENTS

This work was supported by funding from the US De-
partment of Homeland Security [D15PC00279]; the US Na-
tional Science Foundation [ACI-1553685, CNS-1253908]; and
a Monfort Professorship.

REFERENCES

[1] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Sto-
ica, “Spark: Cluster computing with working sets,” in Proceedings
of the 2nd USENIX Conference on Hot Topics in Cloud Computing, ser.
HotCloud’10. Berkeley, CA, USA: USENIX Association, 2010, pp.
10–10.

[2] C. Lam, Hadoop in Action, 1st ed. Greenwich, CT, USA: Manning
Publications Co., 2010.

[3] M. Abadi, P. Barham, J. Chen et al., “Tensorflow: A
system for large-scale machine learning,” in Proceedings of
the 12th USENIX Conference on Operating Systems Design and
Implementation, ser. OSDI’16. Berkeley, CA, USA: USENIX
Association, 2016, pp. 265–283. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=3026877.3026899

[4] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay, “Scikit-learn: Machine learning in python,” J.
Mach. Learn. Res., vol. 12, pp. 2825–2830, Nov. 2011.

[5] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
distributed file system,” in Proceedings of the 2010 IEEE 26th
Symposium on Mass Storage Systems and Technologies (MSST), ser.
MSST ’10. Washington, DC, USA: IEEE Computer Society, 2010,
pp. 1–10. [Online]. Available: http://dx.doi.org/10.1109/MSST.
2010.5496972

[6] M. Zaharia et al., “Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster computing,” in
Proceedings of the 9th USENIX Conference on Networked Systems
Design and Implementation, ser. NSDI’12. Berkeley, CA, USA:
USENIX Association, 2012, pp. 2–2. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2228298.2228301

[7] C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector
machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 27:1–
27:27, May 2011.

[8] R Core Team et al., “R: A language and environment for statistical
computing,” https://www.r-project.org/ .

[9] Pandas Developers, “Pandas python data analysis library,” http:
//pandas.pydata.org.

[10] N. Harvey, A. Reeves, M. Schoenbaum et al., “The North American
Animal Disease Spread Model: A simulation model to assist deci-
sion making in evaluating animal disease incursions,” Preventive
Veterinary Medicine, vol. 82, no. 3, pp. 176–197, 2007.

[11] National Oceanic and Atmospheric Administration. (2016) The
north american mesoscale forecast system. [Online]. Available:
http://www.emc.ncep.noaa.gov/index.php?branch=NAM

[12] I. Stoica et al., “Chord: A scalable peer-to-peer lookup service for
internet applications,” ACM SIGCOMM Computer Communication
Review, vol. 31, no. 4, pp. 149–160, 2001.

IEEE TRANSACTIONS ON BIG DATA 14

[13] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems,”
in Middleware 2001. Springer, 2001, pp. 329–350.

[14] G. Manku, M. Bawa, P. Raghavan et al., “Symphony: Distributed
hashing in a small world,” in Proceedings of the 4th USENIX
Symposium on Internet Technologies and Systems, vol. 4, 2003, pp.
10–10.

[15] A. Lakshman and P. Malik, “Cassandra: A decentralized struc-
tured storage system,” SIGOPS Oper. Syst. Rev., vol. 44, no. 2, pp.
35–40, Apr. 2010.

[16] G. DeCandia et al., “Dynamo: Amazon’s highly available key-
value store,” in Proceedings of Twenty-first ACM SIGOPS Symposium
on Operating Systems Principles, ser. SOSP ’07. New York, NY, USA:
ACM, 2007, pp. 205–220.

[17] G. Niemeyer. (2008) Geohash. [Online]. Available: http://en.
wikipedia.org/wiki/Geohash

[18] M. R. Ackermann, M. Märtens, C. Raupach, K. Swierkot, C. Lam-
mersen, and C. Sohler, “StreamKM++: A clustering algorithm for
data streams,” J. Exp. Algorithmics, vol. 17, pp. 2.4:2.1–2.4:2.30, May
2012.

[19] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, “MOA: massive
online analysis,” Journal of Machine Learning Research, vol. 11, pp.
1601–1604, 2010.

[20] A. Zimek, E. Schubert, and H.-P. Kriegel, “A survey on unsu-
pervised outlier detection in high-dimensional numerical data,”
Statistical Analysis and Data Mining, vol. 5, no. 5, pp. 363–387, 2012.

[21] D. L. Davies and D. W. Bouldin, “A cluster separation measure,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
PAMI-1, no. 2, pp. 224–227, April 1979.

[22] L. Breiman, “Arcing the edge,” Technical Report 486, Statistics
Department, University of California at Berkeley, Tech. Rep., 1997.

[23] J. H. Friedman, “Stochastic gradient boosting,” Computational
Statistics & Data Analysis, vol. 38, no. 4, pp. 367–378, 2002.

[24] L. Mason, J. Baxter, P. Bartlett, and M. Frean, “Boosting algorithms
as gradient descent in function space.” NIPS, 1999.

[25] B. Welford, “Note on a method for calculating corrected sums of
squares and products,” Technometrics, vol. 4, no. 3, pp. 419–420,
1962.

[26] M. Kristan, A. Leonardis, and D. Skocaj, “Multivariate online ker-
nel density estimation with gaussian kernels,” Pattern Recognition,
vol. 44, no. 10-11, pp. 2630–2642, 2011.

[27] J. S. Vitter, “Random sampling with a reservoir,” ACM Trans. Math.
Softw., vol. 11, no. 1, pp. 37–57, Mar. 1985.

[28] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical
learning. Springer series in statistics Springer, Berlin, 2001, vol. 1.

[29] D. A. Freedman, Statistical models: theory and practice. cambridge
university press, 2009.

[30] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1,
pp. 5–32, 2001. [Online]. Available: http://dx.doi.org/10.1023/A:
1010933404324

[31] M. Armbrust, R. S. Xin, Lian et al., “Spark SQL: Relational data
processing in spark,” in Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’15.
New York, NY, USA: ACM, 2015, pp. 1383–1394.

[32] M. Szeredi et al., “File system in user space (FUSE),” https://github.
com/libfuse/ libfuse, 2016.

[33] H.-T. Chou and D. J. DeWitt, “An evaluation of buffer
management strategies for relational database systems,” in
Proceedings of the 11th International Conference on Very Large Data
Bases - Volume 11, ser. VLDB ’85. VLDB Endowment, 1985, pp.
127–141. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1286760.1286772

[34] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D. Tsai, M. Amde, S. Owen et al., “MLlib: Machine
learning in apache spark,” Journal of Machine Learning Research,
vol. 17, no. 34, Apr. 2016.

[35] T. Kraska, A. Talwalkar, J. C. Duchi, R. Griffith, M. J. Franklin, and
M. I. Jordan, “Mlbase: A distributed machine-learning system.” in
CIDR, vol. 1, 2013, pp. 2–1.

[36] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “Haloop:
Efficient iterative data processing on large clusters,” Proc. VLDB
Endow., vol. 3, no. 1-2, pp. 285–296, Sep. 2010. [Online]. Available:
http://dx.doi.org/10.14778/1920841.1920881

[37] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable:
A distributed storage system for structured data,” ACM Trans.
Comput. Syst., vol. 26, no. 2, pp. 4:1–4:26, Jun. 2008.

[38] T. Buddhika, M. Malensek, S. L. Pallickara, and S. Pallickara,
“Synopsis: A distributed sketch over voluminous spatiotemporal
observational streams,” IEEE Transactions on Knowledge and Data
Engineering, vol. 29, no. 11, pp. 2552–2566, Nov 2017.

[39] M. Malensek, S. L. Pallickara, and S. Pallickara, “Analytic queries
over geospatial time-series data using distributed hash tables,”
IEEE Transactions on Knowledge and Data Engineering, vol. PP, no. 99,
pp. 1–1, 2016.

[40] ——, “Autonomously improving query evaluations over multidi-
mensional data in distributed hash tables,” in Proceedings of the
2013 ACM Cloud and Autonomic Computing Conference (CAC), Sep
2013, pp. 15:1–15:10.

[41] ——, “Evaluating geospatial geometry and proximity queries us-
ing distributed hash tables,” IEEE Computing in Science Engineering
(CiSE), vol. 16, no. 4, pp. 53–61, Jul 2014.

[42] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and
I. Stoica, “Blinkdb: Queries with bounded errors and bounded
response times on very large data,” in Proceedings of the 8th ACM
European Conference on Computer Systems, ser. EuroSys ’13. New
York, NY, USA: ACM, 2013, pp. 29–42.

[43] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony,
H. Liu, P. Wyckoff, and R. Murthy, “Hive: A warehousing
solution over a map-reduce framework,” Proc. VLDB Endow.,
vol. 2, no. 2, pp. 1626–1629, Aug. 2009. [Online]. Available:
http://dx.doi.org/10.14778/1687553.1687609

Matthew Malensek is an Assistant Professor in
the Department of Computer Science at the Uni-
versity of San Francisco. His research involves
big data, distributed systems, and cloud comput-
ing, including systems approaches for process-
ing and managing data at scale in a variety of
domains, including fog computing and Internet
of Things (IoT) devices.
Email: mmalensek@usfca.edu

Walid Budgaga is a Ph.D. candidate in the
Department of Computer Science at Colorado
State University. His research involves dis-
tributed analytics, anomaly detection, and scal-
able computation.
Email: wbudgaga@cs.colostate.edu

Ryan Stern is a Ph.D. candidate in the Depart-
ment of Computer Science at Colorado State
University. His research interests are in the area
of visual analytics with an emphasis on gen-
erating real-time views of voluminous datasets.
This involves coping with issues such as rep-
resentativeness, memory residency, and page-
fault avoidance.
Email: rstern@cs.colostate.edu

Shrideep Pallickara is an Associate Professor
in the Department of Computer Science and a
Monfort Professor at Colorado State University.
His research interests are in the area of large-
scale distributed systems. He received his Mas-
ters and Ph.D. degrees from Syracuse Univer-
sity. He is a recipient of an NSF CAREER award.
Email: shrideep@cs.colostate.edu

Sangmi Lee Pallickara is an Associate Pro-
fessor in the Department of Computer Science
at Colorado State University. She received her
Masters and Ph.D. degrees in Computer Sci-
ence from Syracuse University and Florida State
University, respectively. Her research interests
are in the area of large-scale scientific data man-
agement. She is a recipient of the NSF CAREER
award.
Email: sangmi@cs.colostate.edu

