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1. Introduction 
Observational measurements and model output data acquired or generated by the 
various research areas within the realm of Geosciences (also known as Earth Sci-
ence) encompass a spatial scale of tens of thousands of kilometers and temporal 
scales of seconds to millions of years.  Here Geosciences refers to the sciences re-
lated to the study of atmosphere, hydrosphere, oceans, and biosphere as well as the 
earth’s core. Rapid advances in sensor deployments, computational capacity, and 
data storage density have been resulted in dramatic increase in the volume and 
complexity of data in geosciences. Geoscientists now see the data-intensive com-
puting approach as part of their knowledge discovery process alongside traditional 
theoretical, experimental, and computational archetype [1]. Data-intensive com-
puting poses unique challenges to the geoscience community that are exacerbated 
by the sheer size of the datasets involved. 
 
Data intensive computing in Geoscience has a unique set of challenges. First many 
of geo-phenomena are naturally correlated by their geospatial location and time. 
To cope with increasing volumes and data resolutions in the modeling process, 
which is spatial and chronological, a wide variety of data analysis technologies 
have been (or are being) developed. Cluster analysis has proven very useful for 
segmentation, network analysis, change detection, and feature extraction [2]. 
Block entropy can be used as a classifier for a dynamical system. Spectral methods 
are frequently employed for decomposing periodic phenomena. Artificial neural 
networks and model tree ensembles have been used to refine models and to em-
pirically up-scale and extrapolate point measurements [3].  
 
Second, providing access to geo-data for scientists in various domains is not 
straightforward. Managing high volumes of data from the remote sensors such as 
satellites or radars poses interesting data management issues such as curation, 
provenance, metadata creation, and public distribution. It is even more difficult for 
small datasets from in-situ observational instruments (e.g. measurements for the 
ecological sampling) to be collected, preserved, distributed, and accessed for fur-
ther processing [4]. The National Ecological Observatory Network (NEON), a 30-
year nationwide study of climate and ecology [5] [6], is in their initial develop-
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ment phase to provide infrastructure for distributing observational data collections 
that enables continental scale analysis and forecasting in ecology and related ar-
eas. NEON collects data from electronic sensors mounted on towers (e.g. eddy 
flux towers) and aquatic array over the continental US. These datasets are useful 
for monitoring physical and chemical climate properties such as air pollution, car-
bon concentration, and freshwater sources.   
 
Third, interoperability and data integration is needed in geosciences.  There is a 
wide range of geospatial data repositories, many of which are readily accessible 
over the Internet. A high degree of interoperability among these systems is im-
perative. The Open Geospatial Consortium (OGC) has led the effort on standards 
for geospatial content and services [7]. A key concept underlying this approach is 
providing a standard way to interoperate with diverse geospatial data management 
infrastructures and to access heterogeneous forms of geospatial data in a uniform 
and transparent fashion. Another challenge in data integration is the integration of 
real-time streaming data, which is becoming a predominant source of geospatial 
data. OGC’s Sensor Web Enablement (SWE) program [8] initiative seeks to pro-
vide interoperability between disparate sensors and sensor processing systems by 
establishing a set of standard protocols to enable a “Sensor Web”. In this scenario, 
sensors in the Web are discoverable, accessible, and usable. 
 
In this chapter, we present current trends and technologies in support of data in-
tensive computing in geosciences. We will focus on the flow of the data, which 
enables interactions between the data and the computation/analysis. The remainder 
of this chapter is organized as follows. In Section 2, we discuss major data proc-
esses involved in geoscience research projects. This section will cover collection 
and capture of data from the source, to the visualization and analysis processes. 
Section 3 will review the geospatial data models and representations. The meta-
data standards effort will be included as well. In Section 4, we discuss current 
technologies and systems to manage geospatial data and how they interact with 
computing resources in various applications.  
 

2. Data Process in Geosciences 
Data intensive computing in geosciences involves various processes including 
data collection, analysis, visualization, and computation. Researchers require a 
combination of these data processes to achieve their goal. This section describes 
data processes used for knowledge discovery in the geosciences research based on 
the characteristics of each process.  
 

2.1 Data Collection from Observational Instruments 
Measurement of the natural phenomena is one of the critical tasks in the geo-
sciences.  There are two general approaches for performing atmospheric meas-
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urements. First, in-situ measurements involve a direct sampling of the atmosphere. 
Second, remote sensing instruments allow estimation of interesting parameters by 
measuring changes of related atmospheric radiations. Observations do not have to 
sample the air directly.  
 
Measurements from in-situ or remote sensing instruments are processed through 
multiple steps before it is made available to the users. Data processing levels for 
data products generated as part of a research investigation are categorized [9] as: 
 Level 0: Reconstructed and unprocessed instrument payload data at full reso-

lution. This includes any and all communications artifacts. 
 Level 1A: Time-referenced and annotated ancillary information that includes 

radiometric and geometric calibration coefficients besides georeferencing pa-
rameters. 

 Level 1B: Level 1A data that has been processed while accounting for sensor 
units. 

 Level 2: This includes derived geophysical variables at the same resolution 
and location as the Level 1 source data. 

 Level 3: Variables that are mapped on to uniform space-time grid scales, usu-
ally with some completeness and consistency. 

 Level 4--Model output or results from analyses of lower level data. 
 
Most users access the datasets in levels 1~4. Since level-4 is the model output, us-
ers of our system will access datasets in levels 1~3. 
 
Unlike remote sensing observations, in-situ measurements require additional in-
frastructure to collect and distribute the data from each of the sites. For example, 
data collectors such as the WMO’s Global Telecommunication Systems(GTS) 
[10] collect observational data from the global participants and distributes them at 
the national level. Within the GTS network, Datasets are collected from the World 
Meteorological Centers (Melbourne, Moscow, and Washington), 15 Regional 
Telecommunication Hubs (including Beijing, Brasilia, Cairo, and Tokyo), and sat-
ellite data centers. These datasets are processed and published by  authorized or-
ganizations such as the National Centers for Environmental Prediction (NCEP) 
[11]. NCEP also hosts remote sensing data provided by the National Environ-
mental Satellite and Information Service (NESDIS) and the NEXRAD radar. 
These datasets can be in different levels of data processing. For example, wind 
data from NEXRAD radar includes level-2 and level-3 data. NCEP packages 
datasets based on data similarity (but it still maintains the original structure of re-
ports) and observational cycles. Finally, integrated and encoded datasets are pub-
lished periodically. Most of these datasets are available through the Internet. 
 

2.2 Data Capture 
In geosciences the output of high-throughput computations such as global climate 
simulations is used for various analysis or visualization steps. These simulations 
often take hours with thousands of compute nodes. A key challenge is deciding 
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how to extract the large amount of data being generated by these computations off 
the compute nodes at runtime and over to the data collecting nodes for further 
processing such as monitoring, analysis, and archival. This process is referred to 
as as data capturing and it is important that this has minimal impact on the execu-
tion while ensuring reliability.  
 
Parallel file systems improve I/O performance for HPC applications. These in-
clude Panasas[12], PVFS [13], Lustre [14], and GPFS [15]. A common goal of 
these systems is to provide general purpose, multi-user file services. HPC applica-
tions can sometimes demand instantaneous and sole access to a large fraction of 
the parallel file system; this can waste CPU cycles on compute nodes that are 
waiting for completion of I/O accesses rather than making progress on their scien-
tific simulation.  This delay in the shared file system is caused by interference be-
tween processes within a single application, or between the applications demand-
ing a higher rate of I/O access [16].  
 
MPI-IP introduced the abstract device I/O (ADIO) layer [17] as a way to install 
system-specific optimizations of the general MPI-IO implementation.  ADIO is a 
user-level parallel I/O interface that provides a portable mechanism to implement 
a parallel layer within multiple file systems. Collective IO provides a level of data-
size driven adaption by aggregating small writes into single, larger writes to obtain 
better performance. However, this does not address the issue of large writes from 
all of the processes. The Google File System [18] is focused on higher aggregate 
throughput, but does not address the interference caused by the shared file system.  
 
In geoscience community, HDF-5 [19], and NetCDF4[20] are popular and these 
have relied on the underlying IO layer, typically using MPI-IO. PnetCDF [21] 
provides subfiling to address the need to decompose the output to gain greater par-
allelism.  
 
There have been adaptive I/O methods for improving IO performance by dynami-
cally shifting work from heavily used areas of the storage system to those that are 
more lightly loaded. ADIOS [22] is one of the adaptive I/O APIs which maintains 
I/O graphs representing the relationships between nodes for the application, and 
dynamically schedules the storage based on the I/O cost calculated from the graph. 
This system has been applied to an astrophysics supernova code, chimera.  

2.3 Visualization 
The visualization process is closely related to the data model and representation. 
Visualization algorithms take vast amounts of input produced by the simulation, 
observation or experiments, and then transform that data into imagery. Modern 
parallel visualization tools use a data flow network processing design [23]. A 
dataflow network contains components such as filters, sources, or sinks. A data 
flow network is composed by relating data objects and components. For example, 
filters have set of inputs and a set of outputs, both of which are data objects. Sinks 
have only data inputs and sources have only data outputs. A data flow network is a 
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pipeline of data with an ordered collection of components. When a pipeline is exe-
cuted, data comes from the source and flows through filters until it reaches the 
sink. The majority of data processing in visualization operations are embarrass-
ingly parallel – these process can occur in parallel with no communication be-
tween the parallel processes.  
 
VisIt is an example of a visualization application implementing a data flow net-
work with parallel data processing[24].  VisIt is designed for visualization and 
graphical analysis of terascale scientific simulations such as climate modeling. In 
VisIt, each component of the data flow network can specify optimizations through 
contracts and communicate with each other to improve performance. For example, 
many filters specify limits on the amount of data being processed in their con-
tracts. VisIt uses two approaches for rendering. First, surfaces with a relatively 
small number of geometric primitives are sent to users and rendered locally. Sur-
faces with a relatively large amount of geometric primitives remain on the server 
and are rendered in parallel. In terms of the data model, VisIt processes all of the 
mesh types and field types while tracking and preserving information about data 
layout and ordering.  
 

2.4 Data Analysis  
Data analysis in geosciences involves complex processing and access to a large 
amount of data. Analysis of atmospheric phenomena involves two important as-
pects: the physical laws that govern the atmospheric circulation and the spatial and 
temporal spectra of the atmospheric phenomena [25]. Physical laws indicate how 
it might be possible to determine one variable from another; for example, analyz-
ing wind from temperature measurements. The governing equations of the atmos-
phere can be written in terms of independent variables (three dimensional vari-
ables for spatial location and time) and dependent variables (temperature, 
humidity, or chemical species). In general, these equations are nonlinear partial 
differential equations of the variables described above.  
 
Scientists in geo-sciences have encountered various challenges that increase com-
plexity [26]. First, there is the issue of scale selection . Choosing the best scale for 
an analysis is an important decision involving experience and also trial-and-error. 
To achieve this scientists adopt a multi-step approach, in which intermediate re-
sults are used to evaluate the next decision in the analysis. The second source of 
complexity is the uncertainty in the measured data. Data are restricted by trade-
offs and practical limitations. A primary objective in data analysis is to figure out 
random fluctuations from deterministic components. If the data distribution (e.g. 
Gaussian, exponential, logarithmic, etc.) is known this would is not a problem; 
however, finding the appropriate data distribution function is a challenging task. 
Finally, spatial and temporal interactions add to the complexity of the modeling 
system. For instance, in ecology research, most of the ecosystems are dependent 
on environmental conditions (e.g. elevation or humidity). Biological variables are 
altered based on the changing conditions and become space-dependent. If there is 
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no general dependency in space, a local phenomenon may exist. Space-
autocorrelation, which is the phenomena where geospatially neighboring samples 
are more similar than one would expect from a known ecological condition, is of-
ten observed. Similarly, there is the issue of temporal dependence and temporal 
autocorrelation.  

3. Data Models and Representations 
As we discussed in section 2, spatial coordinate information and temporal infor-
mation of the data are keys to organizing geospatial datasets for subsequent proc-
essing.  Based on the characteristics of the applications and datasets, there have 
been various data models and types of data representations. In this section, we will 
review fundamental concepts and techniques for managing geospatial time series 
datasets in the geosciences. 

3.1 Object-based Model and Field-based Model 
There have been active efforts in the modeling and representation of geospatial 
data in GIS (Geographic Information System) based systems. The two most popu-
lar approaches are an object-based model and a field-based model [27, 28]. In an 
object-based model, geographic objects corresponding to real-world entities are 
defined by a spatial component and a descriptive component. The spatial compo-
nent is specified by the shape and location of the object in the embedding space. 
For the object with a given spatial component, a descriptive component provides 
non-spatial properties in the form of attributes.  
 
In field-based approaches, the space is partitioned into two or multidimensional 
cells. Each cell has one or more attribute values associated with it and each attrib-
ute describes a continuous function in space. An example of a field-based data 
model is a multispectral or hyperspectral raster imagery obtained from a radar or 
satellite. In a field-based approach, there is no notion of objects but observations 
of phenomena described by attribute values (e.g. measurements).  
 
 [29] provides a summary of spatial data models used in GIS and example applica-
tions as depicted in Table 1. Conversion between models and combining models 
for more efficient expression of the dataset is common in GIS applications.  
 

Table 1 Geographic Data Models 
Data model Example application 
Computer-aided design (CAD) Automated engineering design and drafting 
Graphical (non-topological) Simple mapping 
Image Image processing and simple grid analysis 
Raster/grid Spatial analysis and modeling, especially in 

environmental and natural resource applica-
tions 

Vector/Geo-relational topol- Many operations on vector geometric fea-
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ogy tures in cartography, socio-economic and 
resource analysis, and modeling 

Network Network analysis in transportation, hydrol-
ogy, and utilities 

Triangulated irregular net-
work (TIN) 

Surface/terrain visualization 

Object Many operations on all types of entities 
(raster/vector/TIN etc.) in all types of appli-
cation 

 
 

3.2 N-dimensional Array Model 
Similar to other scientific data, geospatial data is naturally represented by a multi-
dimensional, array-based data model [30] [20] [19] Since most commercial data-
bases do not support the array data type, or allow flexible access to large array 
datasets, there have been many approaches in the geoscience area to cope with this 
challenge.  
 
First, there are data formats widely used in geosciences: netCDF, [30] and HDFS 
[19]. These formats follow the Common Data Model (CMD) [31] that represent 
data as a set of multi-dimensional arrays, with sharable dimensions, and additional 
metadata attached to individual arrays or the entire file. There are various software 
available for scientists to access data files that conform to these data formats, in-
cluding data analysis tools and visualization applications. We will discuss this is 
section 3.5. 
 
The second approach to dealing with N-dimensional array model for geosciences 
involves building a scientific storage system supporting multi-dimensional arrays 
or APIs for accessing multi-dimensional data array stored in existing storage sys-
tems. SciDB [32] which is a database management system for scientific research 
supports a multi-dimensional, nested array model with array cells containing re-
cords. SciHadoop provides multi-dimensional array access through their query in-
terface while MapReduce tasks are being executed [33].  
 

3.3 Data Formats: NetCDF, HDF5, and FITS 
The Network Common Data Format (NetCDF) [30] is a self-describing data stor-
age format for multi-dimensional data. NetCDF provides a generic and machine-
independent interface for storing and accessing scientific data. NetCDF represents 
data as files containing three properties: dimensions, variables, and attributes. Di-
mensions are named values used to describe the shape of the variables contained 
in the file, which could be application-specific attributes such as time, elevation, 
or position. Dimensions do not necessarily have to be bounded. A variable is rep-
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resented as a multi-dimensional array that is a collection of homogeneous values. 
Finally, attributes describe a variable’s metadata or other application-specific in-
formation to aid in processing and analysis. NetCDF data format is widely used in 
scientific data analysis tools (e.g. MATLAB, R) and GIS applications (e.g. Ar-
cGIS), and large-scale simulations. 
 
Hierarchical Data Format 5 (HDF5) [34] was originally developed by the National 
Center for Supercomputing Applications (NCSA) as a general-purpose, machine-
independent scientific data format. HDF5 is the latest version of the format, repre-
senting a major architectural redesign over previous versions.  An HDF5 file con-
sists of two different components: groups and datasets. Groups allow users and 
applications to create a hierarchy for data in a tree-based form similar to the 
POSIX logical file system layout. Datasets are also divided into two parts: a 
header and a data array. Headers describe the data type, dimensionality, and stor-
age method for the array. They also contain metadata and other information on 
how the data should be interpreted, which allows HDF files to be self-describing. 
Data can be stored in a contiguous manner or can be broken into separate pieces of 
data, called chunks, to improve performance.  
 
Developed in the 1970s for astronomical data, Flexible Image Transport System 
(FITS) [35] [36] has evolved to support generic scientific datasets. Since FITS is 
designed for two- or three-dimensional images, it is naturally well-suited for other 
forms of multi-dimensional scientific data.  A FITS file is composed of a number 
of Header + Data Units (HDUs). The first HDU is an n-dimensional array of pixel 
data, followed by an arbitrary number of FITS extensions. Extensions include ad-
ditional n-dimensional images, ASCII tables, or binary tables. Headers contain 80-
character key-value entries that describe a FITS file’s metadata.  
 
FITS has wide support for programming language bindings, including C, Fortran, 
Java, Python, and R. Many image-processing applications also support reading 
image data from FITS files. Since a large use case of FITS is archival storage, ad-
ditions to the format must not make files produced from a previous version of the 
format unreadable by newer software implementations.   
 
While the simplicity of the FITS format is a major strength, it may also be a limit-
ing factor for some applications. An 80-character maximum for header records 
could hinder self-description for some datasets, resulting in additional ASCII or 
binary data tables needing to accompany data.  

4. Data Access in Geosciences 
In geosciences data processing schemes are evolving to cope with the large vol-
umes of data generated by observational measurements or from large-scale simu-
lations. Here we discuss approaches taken in the geoscience domain to address 
this challenge. Our discussion will address distributed data access infrastructure, 
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GIS, sensor data networks, Grid infrastructure, database management systems, and 
computational platforms. 

4.1 OPeNDAP: Domain Specific Distributed Data Access 
The Open Source Project for Network Data Access Protocol (OPeNDAP) [37] 
provides access to the oceanographic data stored in remote sources. Datasets are 
stored in several formats at the servers. Users can access and download the data 
directly from their analysis programs. OPeNDAP provides both server software to 
make data available to remote users, and client software to access this data. Some 
of the client software provides data access API libraries for translating between 
different geospatial models such as NetCDF [30], HDF5[19], JGOFS [38], and 
others. Although it was originally designed for oceanographic data, it has been 
used for other geospatial research areas such as atmospheric science and ecology.   
 
The OPeNDAP system provides two types of metadata in the returning dataset. 
The first type is the syntactic metadata generated from the accompanying data. 
The second is the semantic metadata that is generated based on the client’s under-
standing of the dataset. OPeNDAP uses these metadata for its translational process 
and attribute-based search process. The syntactic metadata is useful during transla-
tion of the data format and provide a consistent semantic description about the 
dataset. OPeNDAP also provides an attribute-based search interface to describe 
the dataset. This includes parameter, range, location, and descriptive search over 
the metadata. 

4.2 PostGIS: GIS approach 

As an extension to the PostgreSQL relational database, PostGIS [39] adds support 
for geospatial datatypes and queries. This permits users and applications to work 
with geospatial data using standard SQL syntax. PostGIS supports the OpenGIS 
Simple Features Specification, which defines a set of geometric datatypes and 
methods for geospatial analysis. This specification provides a level of standardiza-
tion in the geospatial database field and is supported by industry players including 
Oracle and ESRI.  

To use PostGIS, a new database must be created with the extension enabled. 
Once created, data can be added to the database using SQL statements. PostGIS 
also includes a tool that converts ESRI shape files to and from SQL statements. 
Standard PostgreSQL datatypes are also available in PostGIS-enabled databases. 
The combination of geospatial datatypes and built-in geospatial methods allow 
some processing to be offloaded from the clients to the database server itself.  

For large datasets, PostgreSQL supports indexing database tables. In the case 
of multi-dimensional geospatial datatypes, PostGIS uses R-trees based on Gener-
alized Search Tree (GiST) project. R-trees are similar to the common B-tree used 
in databases and filesystems, and split a geospatial range into a hierarchial set of 
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bounding boxes [40]. This allows for quick nearest-neighbor and window lookups. 
One problem with this approach is that the PostgreSQL query planner does not 
always optimize GiST indexes well, resulting in a query that scans the entire table 
[39].  

PostGIS provides a standardized, SQL-based interface that allows for compatibil-
ity with other database systems or data formats. Despite this compatibility, if an 
application’s storage requirements do not fit the OpenGIS Simple Feature Specifi-
cation, then its data cannot be easily migrated to other systems. Depending on 
workload, scaling PostgreSQL and PostGIS may also be problematic. To distrib-
ute processing across a number of machines, data must be transfered from the da-
tabase server (or servers) to clients, incurring IO latency costs. To alleviate laten-
cies and distribute data more effectively it is possible to replicate the database or 
manually split the data across multiple databases, but this complicates queries and 
the application logic that interacts with the data. However, in cases where geospa-
tial clustering is being performed over objects that span a large geographical area 
or the entire dataset, the centralized database approach could be more efficient 
than a distributed (and therefore communication-heavy) approach. 

4.3 DataTurbine: Access to the Real-time Sensor Data 
Geoscience communities are now actively engaged in large scale sensor-based ob-
servational systems. DataTurbine is a real-time data streaming engine [41]. It is an 
open-source middleware product providing programming abstractions over het-
erogeneous devices, and integrated network services for managing streaming data. 
DataTurbine provides a common Application Programming Interface (API) for 
disparate devices. For example, data streams from accelerometers and video cam-
eras are integrated and managed through a common API, so that users can inte-
grate heterogeneous data streams.  
 
Reliable delivery of sensor data is critical requirement for the large scale sensor 
network infrastructure because network delays and partitions are common in sen-
sor networks. DataTurbine maintains q ring queue spanning both memory and disk 
to store the data. It provides a level of reliability that is between plain TCP and 
application dependent transactional systems. This is also designed to accommo-
date other functionalities such as real-time data archival and distribution over local 
and wide area networks. Client applications can use the ring buffers for their on-
demand features including data stream subscription, data capture, rewind, and re-
play.  
 
Routing and topology management in DataTurbine is configurable based on the 
characteristics of the observational system. For example, a tree-style topology 
could be applied in situations involving firewalls. Users can configure the sensor 
nodes behind the firewall as child nodes and define their parent node as nodes lo-
cated outside the firewall to enable communication between the nodes.  
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For the geospatial sensor data, DataTurbine provides an online data mapping inter-
face: converting incoming data from sensors to overlays of data. Streamed data is 
transformed into the KML format and data displays can be layered on the Google 
Earth interface. This provides a visual interface to the domain experts for easy-to-
use navigation over the complex data streams. 

4.4 The Earth System Grid: Data Access in Grid Settings 
A cyberinfastructure project, the Earth System Grid (ESG) has developed an envi-
ronment for managing climate data from multiple climate model sources, observa-
tion data, and analysis/visualization tools used by the climate research community 
[42]. Participating institutes publish datasets in ESG. The ESG publication API 
manages the publishing process. Based on the THREDDS catalog[43], the ESG 
publication API provides easy-to-use command line tools to package and transfer 
the newly published datasets. ESG extends the THREDDS metadata specification 
to organize metadata.  
 
The Berkeley Storage Manager (BeStMan) is an implementation of the Storage 
Resource Manager (SRM) system used in ESG [44]. BeStMan provides interfaces 
to various storage systems, including the Mass Storage System (MSSs).  High Per-
formance Storage System(HPSS) in LBNL, ORNL, and MSS at NCAR are acces-
sible through a unified ESG gateway portal. BeStMan enables users to access 
storage systems with different security mechanisms.  
 
Datasets stored at multiple institutes across North America can be moved to the 
user’s site for simulation, analysis or visualization. DataMover-Lite (DML) [42] 
from the Berkeley Lab is a simple file transfer tool with a graphical user interface 
that supports various data transfer protocols including http, https, gridftp, ftp, and 
scp. In ESG data sites are equipped with DML to move files over 
GridFTP/HTTPS with built-in grid security mechanisms. DML splits files for 
multiple HTTP connections for faster downloads.  For large datasets, the Bulk 
Data Mover (BDM) [42] provides a scalable data movement solution. BDM man-
ages the transfer of millions of data files those have a total size of 100s of TB re-
liably. 
 
GridFTP [45] is used as the underlying technology for data download by users, 
data movement between resources, and data synchronization between replications. 
Globus Online [46] is a data transfer management software-as-a-service built on 
top of GridFTP. This software provided by ANL and University of Chicago en-
ables the ESG community to transfer their data. Features include performance 
monitoring, retrying failed transfers, and automatic fault recovery.  Globus Online 
optimizes the transfer to ensure best performance based on the transfer size and 
number of files per transfer. 
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4.5 SciDB: Database Management System for Multi-
dimensional data 

Instead of building on existing relational databases, SciDB [47] is a different type 
of database designed specifically for large-scale scientific applications. Storing 
and processing data from sensor arrays is the primary use case SciDB was de-
signed around, and has been harnessed for appications in seismology, astronomy, 
and climate research. The creators of SciDB identified three main differences be-
tween business data and scientific data: first, in scientific data, the sources of data 
generally have a location associated with them, which could include adjacency to 
other sensors or coordinates in space. Second, the data being collected in scientific 
applications also usually requires complex processing before and/or after storage. 
Finally, sensors and other scientific instruments generate data on the petabyte-
scale, so the database must be able to cope with these massive storage needs.  

The logical data storage model in SciDB is different from traditional tabular 
database systems. SciDB databases consist of n-dimensional arrays of cells. The 
datatypes held by cells are defined at an array’s creation, and they can be either 
scalars or sub-arrays. These combinations of datatypes and values are called at-
tributes. The arrays in SciDB do not necessarily have to be contiguous; cells can 
be empty, creating a sparse or “jagged” array. Storing data in this manner helps ar-
rays match a variety of scientific data, and also allows data to be grouped in a 
fashion that is most optimal for processing later. The SciDB storage manager also 
supports “in situ” data; a large amount of time is spent in the scientific community 
simply loading and moving data, so SciDB allows manipulating external data that 
is not part of the database to eliminate load times. While the external data must be 
in the SciDB format, it is also possible to write adaptors that can allow importing 
data from formats such as NetCDF or HDF5.  

SciDB is a shared nothing system, meaning each node in the system runs the 
SciDB engine and operates independently of other nodes. Collections of data are 
decomposed into “chunks” and compressed before being stored on a node’s local 
disk. Nodes can be removed or added to the system without affecting other nodes, 
and data processing operations will continue to run as long as they do not refer-
ence data that is unavailable. Upon entry into the system, nodes contact a central 
catalog to inform the system of their presence, which represents a single point of 
failure. The catalog is implemented as a PostgreSQL database [48] which also 
contains information about data chunks stored in the system [47].  

To facilitate the division of data, SciDB uses “chunking” and “vertical parti-
tioning.” Since cells can contain multiple attributes, vertical partitioning splits the 
attributes up into their own separate arrays. This division is beneficial because 
computations often only involve a subset of the overall attributes an array might 
have. Once the attributes are split, they can be broken up into chunks. Depending 
on the application, chunks can “overlap,” meaning a chunk may contain parts of 
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adjacent chunks. This behavior is configurable by the database administrator and 
can greatly reduce communication costs if chunks overlap in a way that fits the 
processing that will be applied to them, at the cost of using more disk space.  

While most relational database tables are updateable by default, SciDB’s ar-
rays are not. For many scientific applications, updates are undesirable because 
keeping record of original results before processing is necessary. To support sub-
sequent processing after the initial import, SciDB records changes to the dataset 
and exposes this to users in the form of an additional “history” dimension [48]. 
The history also allows users to change calculations applied to data in a past his-
tory snapshot and then have the rest of the values in subsequent processing recal-
cuated as well.  

For processing data, SciDB is modular in nature. It includes a base set of 
functions for working with data, but also allows user-defined array operators to be 
written in C++, following a model similar to PostgreSQL’s user-defined functions. 
These array operators can be used to create “enhanced” arrays, where a function is 
applied to an array and then both the original and enhanced cells can be accessed. 
Enhanced arrays allow users to access the same data but from different perspec-
tives. Writing array operators facilitates pushing computations to data instead of 
having to query and transfer information from the database, mitigating the costs of 
disk and network latencies. In addition, the database’s distributed nature also pro-
vides parallelism when running array operators across a number of nodes. Exten-
sible language bindings are also provided to allow users to query data with their 
project’s native programming language, if necessary.  

4.6 Hadoop MapReduce: Computing Platform 

Utilizing the MapReduce paradigm [49] and a form of structured storage is an-
other solution for processing and storing large amounts of geospatial data. As pro-
posed in [50] and [51], Apache Hadoop [52] and HDFS (Hadoop Distributed File 
System) [53] can be used to execute geospatial queries in parallel.  

Many geospatial queries involve computing data surrounding individual 
points and then processing their combined results, which fits the MapReduce 
paradigm well. For example, queries often require determining the nearest neigh-
boring points of some arbitrary target point in a geographical area. During the map 
phase of MapReduce, each data point in the area is distributed to a mapper, which 
then determines the nearest neighbor of its point. In the reduce phase, any results 
matching the target point are collected to form a final set of nearest neighbors.  

Since standard R-trees represent a global index, they are not suitable for a dis-
tributed environment. Wang and Wang [51] propose building indexes for each 
data file that enters the system to alleviate this problem. Alternatively, instead of 
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the standard tree-based indexing approaches, Akdogan et al. [50] utilize a flat spa-
tial index using Voronoi diagrams. Voronoi diagrams partition a region into a col-
lection of polygons. By removing the tree hierarchy, data coupling is reduced 
while also allowing the data to be spread evenly across available nodes for better 
load balancing. This storage model also means that computations can be pushed to 
the data they operate on rather than requiring programs to request data and have it 
transferred to them.  

While using cloud computing frameworks such as Hadoop can provide bene-
fits for large, data-intensive geospatial applications, there are some downsides to 
this approach. First, using HDFS results in data files being broken up into pieces 
called ‘splits.’ If a query requires data from a neighboring split, an additional 
MapReduce phase may be required to reconcile results from the two splits. In ad-
dition, using a cloud framework for geospatial applications places more burden on 
the end user to decide how to query and store data, whereas extensions built atop 
relational databases generally support a common set of geospatial datatypes and 
procedures that can be exploited with SQL. 

4.7 Kepler: Scientific Workflow  

While Hadoop and the MapReduce paradigm can provide immense processing 
benefits for scientific users, there is also a considerable learning curve involved 
with using the Hadoop framework. The Kepler Project, [54] a scientific processing 
workflow tool, allows users to create workflows using a graphical user interface. 
Kepler is a type of “actor-oriented modeling,” where actors are components that 
are designed to perform various processing tasks. In the case of Kepler, 
MapReduce is implemented as an actor that can be added to workflows.  

In a workflow, actors have “ports,” which either produce or consume data. 
Actors generally take data items in, process them, and then pass the results on to 
the next actor in the workflow. Data may take different paths through the 
workflow and can execute both serially and in parallel.  

Kepler provides a good solution for users wanting to benefit from MapReduce 
without having to use it for every step in their processing. By default, data files are 
not stored in HDFS and instead are copied into HDFS from the filesystem before 
the MapReduce actor runs, so large changes to an existing workflow are not nec-
essary. It is also possible to configure Kepler to use data that is already stored in 
HDFS, but then other actors would need to support HDFS as well if they need ac-
cess to the data. The implications of copying files into HDFS before processing 
are not entirely clear, but could be a large bottleneck when working with massive 
datasets.  
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Kepler is particularly well-suited for applications that don’t always fit the 
MapReduce model due to MapReduce being simply one of many possible actors 
in a workflow. It also makes MapReduce much more accessible for scientific ap-
plications.  

5. Conclusions 
This chapter provided a survey of challenges involved in analyzing geospatial 
datasets. The proliferation of networked sensors, measurement devices, instru-
ments, and simulations have resulted in large data volumes. Processing such data 
requires addressing several challenges that include ensuring efficient representa-
tions, models, formats, transfers, and computational frameworks. 
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Index terms (alphabetically): 
Actor-oriented Modeling 
atmospheric science 
B-tree 
chronological data 
cloud 
curation 
data capture 
data hosting 
data models 
Data Turbine 
earth science grid 
ecology 
FITS 
geosciences 
Geospatial Information Systems 
GIS 
grid 
Hadoop 
HDF 
HDFS 
Kepler 
MapReduce 
metadata 
NetCDF 
observational data 
OpenDAP 
OpenGIS 
PostGIS 
PostgreSQL 
R-tree 
raster 
SciDB 
sensor network 
Shared Nothing 
simulations 
spatial data 
topology 
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vector 
Vertical Partitioning 
VisIt 
visualization 
Voronoi Diagram 
weather models 


