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Summary
Planning for large-scale epidemiological outbreaks in livestock populations often involves exe-
cuting compute-intensive disease spread simulations. To capture the probabilities of various
outcomes, these simulations are executed several times over a collection of representative input
scenarios, producing voluminous data. The resulting datasets contain valuable insights, including
sequences of events that lead to extreme outbreaks. However, discovering and leveraging such
information is also computationally expensive.
In this study, we set out to achieve two goals: (1) providing a distributed framework for mod-
eling disease transmission at scale using Spark, including improvements to the default GraphX
partitioning strategy, and (2) giving planners and epidemiologists a means to analyze interac-
tions between entities (herds) during simulated disease outbreaks. Using our disease transmission
network (DTN), planners or analysts can isolate herds that have a disproportionate effect on epi-
demiological outcomes, enabling effective allocation of limited resources such as vaccinations
and field personnel. We use a representative dataset to verify our approach, and optimized the
underlying graph partitioning algorithm to ensure the system will scale with increases in the
dataset size or number of participating machines. Our analysis includes identification of influ-
ential herds as well as the creation of machine learning models for accurate classifications that
generalize to other datasets.
KEYWORDS:
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1 INTRODUCTION
According to the Food and Agricultural Organization (FAO), there are
currently more than 1.5 billion cattle, 1.1 billion sheep, and 0.97 billion
pigs and goats in the global livestock industry,which employs at least 1.3
billion people (1). Effective planning and response to infectious threats
in livestock are critical for the ecological system, the global economy,
and human health in the case of zoonotic diseases (such as swine flu)
that exhibit cross-species transmission. There have been significant
efforts in the epidemiological modeling community to understand and
predict the distribution of disease within a herd as well as transmission

between herds (2). Epidemiological models, often expressed as stochas-
tic discrete event simulations, involve hundreds to thousands of input
parameters and tend to be compute-intensive.
In this study,we consider theNorthAmericanAnimalDisease Spread

Model (NAADSM), which has been vetted by over 300 epidemiologists
and veterinarians and is one of the key tools used by the US Depart-
ment of Agriculture to plan for disease incursions (3). NAADSM can
be used to model foot-and-mouth disease (FMD), highly pathogenic
avian influenza, swine flu, pseudorabies, and more (4, 5, 6). The holis-
tic, system-based simulation approach in NAADSM considers disease
biology parameters including transmission via airborne or direct con-
tact, control measures (such as vaccinations), effectiveness of vaccines,
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quarantines, shipments, and veterinarian visits. Simulated datasets are
an easily-accessible stand-in for real-world data in studies that involve
disease spread and outbreak prevention. However, it is worth noting
that drawing direct conclusions from such datasets is often difficult
and must be applied alongside a series of other planning, prevention,
and response protocols that strike a balance between data-based and
theory-based approaches (7, 8). These outbreaks tend to be devastating
to the livestock populations and local economies when they do happen,
motivating continued study across disciplines.
In stochastic simulations such as NAADSM, each set of input param-

eters is executed several times to gain statistical confidence in the
results. These iterations contribute to the overall representation of the
output variables’ probability distributions. Additionally, these studies
often include “what-if” analysis where several parameters are adjusted
to determine their impact on overall disease spread. Each adjustment
to these parameters results in a new variant of an outbreak scenario.
Several cycles of what-if analysis, combined with the number of pos-
sible input parameters and the need for multiple simulation iterations
produces voluminous output datasets. While efforts have been made
to reduce the size of these datasets through prediction, their compu-
tational and storage demands remain high (9). Key outputs used dur-
ing planning include the disease duration, number of infections, and
depletion of vaccine stockpiles. While this study targets livestock dis-
ease outbreaks, themethodology that we describe is broadly applicable
to systems where entities are organized into large networks and the
spread of information — be it pathogens, ideas, or traffic movements —
is based on relationships between entities.
One of the primary concerns during disease outbreak planning and

prevention is allocating limited resources. Our goal in this effort is
to identify entities (herds) that could contribute disproportionately to
disease spread; i.e., once a particular herd is infected, the overall dis-
ease duration, total number of infections, and the probability of the
disease becoming endemic are all high. Identifying such herds allows
limited resources such as vaccines, field personnel, and biosurveillance
to be allocated more effectively and in a targeted fashion. This involves
analyzing voluminous data from simulation runs and tracking disease
evolution over time. Pinpointing highly influential herds that contribute
disproportionately to outbreaks is key when developing an effective
response plan.

1.1 Scientific Challenges
Timely identification and characterization of influential herds intro-
duces a set of unique challenges:

1. Dataset Size: Epidemiological state is dispersed over a large num-
ber of files (3.2 million in our primary dataset). Each simulated
time step produces an output file containing a variety of simula-
tion data that must be processed to capture disease spread over
time (6.26 TB of files in our primary dataset, with an additional 8
TB from secondary datasets for a total of 14.26 TB).

2. Timeliness: Our algorithms and analysis workflows must exe-
cute in parallel across a cluster of computing resources to
ensure timely results. Given the data volumes and disk I/O costs
involved, repeated sweeps over the dataset would introduce
significant delays in analysis.

3. Scalability: The proposed approach must scale with increases in
the number of herds and interconnectivity between them. This
ensures that themethodology is applicable in other scenarios.

4. Accuracy and Interpretability: Our analysis must be reasonably
accurate, and support interpretability by explaining why a herd
is considered highly influential. This is critical for fine-tuning
outbreak responses.

1.2 ResearchQuestions
Research questions that we explore in this study include the following:
RQ1 What data structure(s) allow us to represent disease spread interac-

tions for analysis? Specifically, we must capture infection infor-
mation from the simulation output and preserve the cumulative
dynamics of disease spread. (§4.2)

RQ2 Howcanwemeasure the influence of eachherd? This involves discov-
ering the epidemic characteristics of influential herds as well as
the features that comprise these characteristics, which enables
interpretability and herd classification. (§4.3)

RQ3 How can we enable the analysis at scale? Given the data volumes at
hand,wemust avoid repeated sweeps over on-disk data and exe-
cute analysis concurrently onmultiplemachines. Specifically, our
methodology must scale with increases in the number of herds,
contacts, andmachines available for analysis. (§4.4.5, §5)

RQ4 Given a data model for disease transmission, how can we improve
performance in a distributed setting? This involves reducing the
amount of time required to construct the data representation,
avoiding communication latencies between participating hard-
ware, and ensuring effective load balancing (§5).

1.3 Overview of Approach
Our methodology for identification of influential herds in voluminous
epidemiology data involves: (1) extracting relevant information needed
for analysis from the dataset, (2) constructing a graph-based data
structure, called the disease transmission network (DTN) to encode this
information, (3) using the DTN for network analysis via the PageRank
algorithm, and (4) identification and characterization of super-spreaders
and seeders. Preprocessing and analysis tasks are expressed as dis-
tributed computations implemented using Apache Spark (10), with the
dataset stored inHDFS (11). These tasks execute concurrently onmulti-
plemachineswithdata locality, andavoidmaking repeateddisk accesses
by performing analysis in mainmemory.
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To further improve the performanceof our approach,we adaptedour

algorithms to runwithin theSparkGraphX framework (12).Wealsopro-
vide extensions to the default GraphX partitioning algorithm, EdgePar-
tition2D, to reduce the amount of network communication required
during partitioning. This leads to better overall graph ingestion perfor-
mance,which is vital in network-constrainedenvironments or situations
where the graph is frequently changed asmore data becomes available.
Our epidemiology dataset encompassesmultiple representative sce-

narios and iterations, whichwe process to extract and recordmillions of
infection incidents. This includes tracking the number, source, destina-
tion, and duration of infections. This information is encoded in the dis-
ease transmission network. The DTN is a weighted, directed graph that
summarizes the number of infections between herds; nodes within the
DTN are herds and edges represent infection transmissions. The direc-
tion of traversals within the DTN varies depending on the algorithm
underpinning the analysis.
Once generated, we analyze the DTN in multiple steps to identify

and characterize highly influential herds. One avenue we leverage for
analysis is the PageRank algorithm, which was originally used in the
Google search engine to estimate the importance of web pages (13). In
our study, we use PageRank to estimate the probability that a herd con-
tributes to a random infection chain. We calculate PageRank values for
each herd in theDTN; if a herd has a higher PageRank value,we consider
the herd to bemore influential in the disease outbreak.
Once we identify influential herds based on PageRank values, we

perform further analysis to understand other epidemic characteris-
tics such as classifying super-spreaders and seeders. In epidemiology, a
super-spreader is a host that infects disproportionally more secondary
contacts than other hosts. We use the Pareto Principle (14) to deter-
mine super-spreaders, and model the relationship between features
extracted from the output dataset to classify the super-spreaders using
support vector machines. On the other hand, seeders are hosts that are
among the first to be infected. Besides global analysis using theDTN,we
also allow identification of the most influential herd(s) on a local scale
based on cross-herd reachability.

1.4 Paper Contributions
This paper presents our approach for identifying and characterizing
highly influential herds by analyzing voluminous epidemiology data.Our
specific contributions include:

1. We have designed a graph-based data structure, the disease
transmission network, that preserves cumulative dynamics of dis-
ease spread across space and time. The data structure supports
traversals that are needed for analysis and characterization. This
network, along with subsequent analysis, helps inform planning
and response decisions in the case of infectious threats.

2. Novel identification of influential herds by harnessing and adapt-
ing the PageRank algorithm in the context of epidemiology, with

support for interpretability of the analysis by identifying key
features that characterize influential herds.

3. Classificationof super-spreaders usingmachine learningmodels.
The resultingmodels can be used to informwhy a particular herd
should be given priority during outbreak responses.

4. Our approach avoids repeated I/O passes over the datasets
and compactly encodes results in the memory-resident disease
transmission network. We also provide enhancements to the
default graph partitioning algorithm in Spark GraphX to reduce
network communication across partitions.

1.5 Paper Organization
The rest of the paper is organized as follows. Section 2 outlines the
simulation and dataset used in this study, followed by related work in
Section 3. The first portion of our methodology in Section 4 describes
our disease transmission network (DTN), our approach for identify-
ing/classifying influential herds. Section 5 extends our methodology to
improve both DTN construction performance and analysis latencies.
Both methodology sections are concluded with detailed analysis and
performance benchmarks. Finally, our conclusions and future research
directions are described in Section 6.

1.6 Paper Extensions
Since the publication of our previous work, Network Analysis for Identi-
fying and Characterizing Disease Outbreak Influence from Voluminous Epi-
demiology Data (15), we have extended our system to incorporate graph
partitioning optimizations that greatly speed up the analysis process.
Our partitioning algorithm builds on Spark GraphX (12) and is broadly
applicable to other types of disease spread modeling and graph-based
representations. This extension includes a detailed discussion on the
implementation of our graph partitioning strategy (Section 5), a thor-
ough benchmark suite (Section 5.4), additional background and intro-
ductory material, and a survey of related graph partitioning techniques
from the literature as well additional coverage of big data approaches
(Sections 3.3 and 3.2). In total, this extension represents 50%newmate-
rial.

2 BACKGROUND
Our framework analyzes epidemiological data produced via simulated
disease spread. We also leverage state-of-the-art technologies in dis-
tributed computation to perform our analysis. This section describes
these components in detail and also provides information on the exper-
imental setup used for the benchmarks in Sections 4.4 and 5.4.
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2.1 NAADSM
The North American Animal Disease Spread Model (NAADSM) is a
stochastic simulation of disease outbreaks to aid in strategy develop-
ment and decision making (3). In this model, groups of livestock, called
herds, are the basis of the simulation. Disease spread between herds
is influenced by production types, inter-group similarities (shipment
rates, infection rates, etc.), relative locations, and distances between
herds. When a herd is infected, it follows a natural cycle of disease
states consisting of: susceptible, latent, sub-clinically infectious, clini-
cally infectious, naturally immune, vaccine immune, and destroyed. This
cycle can be interrupted by disease control strategies including quar-
antine, destruction and vaccination. Disease spread among herds can
happen in any of three methods: direct contact, indirect contact, and
airborne spread. Stochastic processes drive all operations in the model
and are based on user-defined distributions and relational functions.
NAADSM input parameters can be of six types: yes/no values, inte-
gers, floatingpoint numbers, probabilities, probability density functions,
and relational functions. Collectively, these parameters form a scenario.
Because the simulation is stochastic, it is generally run for several iter-
ations (32 per scenario, in this study) to gain confidence in the output
distributions. To reduce the overall execution time of the simulation,
NAADSM can be parallelized over a cluster of computing resources in a
fault-tolerant fashion (16).

2.2 Dataset
Our subject dataset was derived from a sensitivity analysis that
explored the NAADSMparameter space to producemultiple valid com-
binations of inputs set in Colorado, USA (9, 17). This process generated
100,000 scenario variants that were executed 32 times for a total of 3.2
million outputs (6.26 TB). In the interest of determining whether our
models could generalize, we also used a similar dataset set in Iowa, USA,
to bring the total dataset size up to 14.26 TB. In this particular sce-
nario, a single initial herd is infected, with disease spread eventually
encompassing tens of thousands of herds. The output of the simulation
contains attributes representing the disease status of individual herds
and how the infection spreads across herds within the network. These
outputs also account for topological characteristics such as connectivity
between the herds, proximity, and contact due tomovements.

2.3 SystemComponents
We leverage the Spark framework (10) to provide scalable and fault-
tolerant computing capabilities over a cluster ofmachines. Spark is used
for writing applications to process large amounts of data which can
be stored in distributed file systems such as HDFS, local file systems,
or data streams, and includes functionality such as map, reduce, filter,
and join. Compared to traditional MapReduce implementations, Spark
allows in-memory, iterative computations. This is particularly beneficial
for algorithms such as PageRank, and allows our analysis operations to
avoid disk I/O unless absolutely necessary. We use Spark to generate

disease transmission networks (DTNs) fromour epidemiological simula-
tion output dataset, as well as performing analysis of highly-influential
herds based on the DTN. We also implemented the DTN under the
Spark GraphX framework (12), with a performance comparison pro-
vided in Section 5.4.1. To facilitate distribution of files across the cluster
and ensure data locality during computations, we used the Hadoop
Distributed File System (HDFS) (11) to store our dataset and output
files.

2.4 Experimental Setup
The benchmarks and evaluations carried out in this study were per-
formed on a cluster of 30 HP Z420 servers (8-core Xeon E5-2560V2
@ 2.60 GHz, 32 GB RAM, 1 TB disk). Distributed computations were
executed on Spark 2.0 and Scala 2.11, with the OpenJDK JVM ver-
sion 1.8.0_141. Each host was configured with Fedora 25 (Linux kernel
4.11.12).Weused our epidemiological test dataset fromColorado, USA,
which was distributed across the HDFS cluster (version 2.7.3), totaling
3.2 million scenario iterations and 6.26 TB of data. Additional scenarios
set in Iowa, USA, were used to verify the performance of our classifica-
tions, which consumed another 8.0 TB of disk space for a total dataset
size of 14.26 TB.

3 RELATEDWORK
Our solution for characterizing influential herds in disease outbreaks
cross-cuts three areas of study: network analysis, big data, and graph
partitioning. Herein we review related approaches.

3.1 Network Analysis
Influential herds transmit disease to their neighbors, ultimately making
outbreaks last longer or become more severe. As a result, the influence
of a herd depends largely on the influence of its neighbors. Analysis of
influence in epidemiology has seen considerable study, with much of
the work revolving around the various characteristics of infected enti-
ties and their impact on disease transmission (18, 19). However, these
approaches generally examine standalone characteristics and not the
underlying network or relationships that result from disease spread.
Social Network Analysis (SNA) focuses on human interactions in

social networks, but can be applied to analyze animal epidemics as well.
Considerable research has been conducted on influence in social net-
works (20, 21, 22, 23, 24, 25, 26). The Independent Cascade (IC) model
and Linear Threshold (LT) model are commonly used to describe the
influence of nodes in directed graphs. The LT model declares a node as
either active or inactive based on a threshold and the sum of weights of
neighboring edges. On the other hand, in the ICmodel, each active node
is given an opportunity to activate its inactive neighbors, with the pro-
cess repeating until a steady state is reached. In this case, active nodes
are considered to be highly influential. However, since both of these
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methods rely on binary states (active or inactive), relative measures
between nodes are not supported.
Cha et al. studies the influence of users in Twitter based on three

metrics: in-degree, retweets andmentions. This approach uses Spearman’s
rank correlation coefficient to compare user influence, and evaluates
the behavior of the three metrics for highly influential users (24). An
approach outlined byKhrabrov andCybenko (27) uses dailymentions of
users on Twitter as a basis for calculating different rank metrics such as
PageRank, DRank, and StarRank to determine influence.
Aggarwal et al. (21) proposes twoalgorithms, SteadyStateSpreadand

RankedReplace, to determine information flow representatives, a small
group of authoritative figures to whom the release of information leads
tomaximumspread. SteadyStateSpread iteratively finds a candidate set
of nodes with higher steady state flow values as candidate representa-
tives. This method ignores the structural relationship of nodes, which
inspired the RankedReplace algorithm. In RankedReplace, nodes are
replaced iteratively and sorted in descending order by their steady state
flow values tomaximize total flow (21).
Substantial effort has been devoted to identifying hotspots that

result in super-spreading events (SSEs). Lloyd-Smith et al. defines a pro-
tocol to identify super-spreaders, which is applicable in understanding
SARS outbreaks (28). The protocol suggests that the mean number of
secondary infections from a particular host follows a Poisson distri-
bution and outliers are often accountable for super-spreading events.
However, underestimation of the epidemic potential can occur when
field observations of mean secondary infections are low (29). Fujie-
Odagaki et al. focuses on intrinsically strong herd infectiousness and
social connections (30). Our particular dataset, however, does not pro-
vide such information.

3.2 Big Data Approaches
Distributed storage systems such as HDFS (11), Cassandra (31), HBase
(32), and MongoDB (33) all provide the necessary interfaces to man-
age epidemiology data at scale. Combined with a computation engine
such as Hadoop (34, 35, 36), these platforms are highly flexible, but
do not provide network-specific analysis constructs. Additionally, the
MapReduce paradigmdoes not readily support iterative (or loop-based)
computations over datasets without extensions such as HaLoop (37).
By leveraging the Spark framework, we can support iterative computa-
tion as well as in-memory working sets backed by resilient distributed
datasets (RDDs) (38). This allows OLAP (online analytical processing)
operations, contrastingwith constrained-scaleOLTP (online transaction
processing) functionality found in traditional graph databases (39, 40).
Epidemiological big data analysis systems include Google Flu Trends

(41), which uses web search data to model flu-like symptoms in user
queries and leverages the correlation between medical searches and
physician visits to estimate influenza activity across the United States.
The system demonstrated faster results compared to traditional dis-
ease surveillance methods, but also suffered high-profile failures due
to potential over-fitting, changes in the underlying Google search

algorithm, and the opaque nature of the system (42). Scenarios such
as these encouraged our use of several different metrics to strengthen
the veracity of our findings. Galileo (43, 44, 45, 46) uses a graph-based
indexing scheme to enable analysis between entities in multidimen-
sional data, with support for spatial queries based on proximity, poly-
gons, or administrative boundaries (47). SWAN (48) is a distributed
knowledgebase for coordinating and researchingAlzheimerDisease. By
using semantic web concepts and variable privacy settings, researchers
can collect information and collaborate while also avoiding duplicated
effort.While SWANhandles datamanagement, analytics activitiesmust
be carried out using other software packages.

3.3 Graph Partitioning Strategies
Real-world graphs tend to be voluminous, requiring vertices and edges
to be distributed over a cluster of machines. One unique aspect of
dealing with distributed graphs is the impact of the partitioning strat-
egy on load balancing and computational throughput; many networks
exhibit connections with a power law distribution and cannot be sim-
ply divided uniformly across entities in the graph. Partitions often lead
to load balancing problems, and synchronization between these parti-
tions leads to high communication latencies. Optimal graph partitions
reduce communication costswhile also providing a uniform distribution
of load. Therefore, the research community has concentrated on real-
time graph partitioning schemes and partitioning without knowledge of
the complete graph.
PowerGraph, a distributed graph processing framework, introduced

the oblivious graph partitioning scheme (49). This strategy requires
information regarding previous edge assignments to improve current
assignments, but does not collect information from other partitions to
avoid communication overheads. Sajjad et al. proposes the HoVerCut
methodology, which can be coupled with existing graph partitioning
algorithms (50). This method uses a distributed multithreaded environ-
ment where each thread is subpartitioner that executes the partitioning
algorithm. Additionally, HoVerCut employs a windowing technique for
batch updates to reduce the impact of shared state. This method is
said to be the foundation of optimal communication between partitions.
PowerGraph also introduced the PDS (Perfect Difference Set) scheme
(51), which requires (p2 + p + 1) partitions where p is a prime num-
ber. Due to this constraint, PDS is used less frequently in real-world
applications.
Several graph partitioning algorithms place emphasis on the degree

of the vertex to employ better heuristics (52, 53, 54). These algo-
rithms assign vertices to partitions based on a random hash function
and then attempt to determine edge partitions. Xie et al. suggests a
degree-based hashing algorithm, Libra (53), based on the idea that bet-
ter partitions are achieved if more vertices with higher degrees are
cut. Therefore, having two choices for each edge — the source and the
destination vertex partition — this algorithm assigns an edge to the
vertex partition with a lower degree. Petroni et al. proposes a stream-
based, vertex-cut partitioning algorithm, High-Degree Replicated First
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(HDRF) (52). This algorithm attempts to replicate high-degree vertices
and maintains locality for low-degree vertices. Chen et al. employs
the Hyrid-cut (54), which differentiates partitioning schemes for low-
degree and high-degree vertices based on the in-degree of a vertex;
however, this method is applicable only to directed graphs. All edges
are assigned to their respective target vertex partitions, followed by
reassignment of edges with high-degree vertices (identified by a degree
threshold). These algorithms produce better partitions for power-law
graphs in terms of communication and load balancing since they repli-
cate high-degree vertices. However, determining the degree of the
vertices beforehand increases graph ingestion time.

4 METHODOLOGY: SUPER-SPREADER
IDENTIFICATION, CLASSIFICATION, ANDANALYSIS
Our goal is to identify and classify highly influential herds in the disease
outbreak network. To achieve this goal, we have composed a work-
flow that comprises multiple analysis phases. As depicted in Figure 1 ,
there are 3 major phases. In Phase 1, we perform data preprocessing
to extract features and create the disease transmission network that
is leveraged by subsequent analysis steps. Phase 2 generates global
herd rankings and influence measures from the DTN. Phase 3 focuses
on characterizing highly influential herds by studying their epidemic
attributes and modeling the relationship between the characteristics.
We perform validation and evaluation for each phase in Section 4.4.

4.1 Creating DTNs
NAADSM generates one output file per scenario. Results for each iter-
ation are assembled based on simulation time steps. A data fragment
from an iteration contains over 2000 input variables and 10-20 output
variables, including the outbreak duration, number of infected herds,
and vaccinations used.
Since scanning the raw data for each analysis step is not efficient at

this scale, we removed initially infected herds from each of 3.2 million
iterations. With the remainder of the dataset, we generated a weighted
directed graph called the disease transmission network (DTN). The DTN
is denoted as G = (V,E), where V is the set of vertices, representing
herds, andE is the set of edges, representing infection propagation. To
create the DTN, we extract infection propagation pairs from the dataset,
which are tuples that include the infected herd and source of infec-
tion. We use the Spark framework to compute infection percentages
for every infection propagation pair, which are used as the weights for
directed edges in the graph. For example, if A and B are two vertices
connected by an edge with weight 1/5, then A is source of infection
in 1 out of 5 instances where B is infected. Apart from removing ini-
tially infected herds, we did not perform additional pruning on the DTN
because our methodology is robust to noise from low-impact herds in
the source dataset.

4.2 Identifying Highly Influential Herds
Influential herds play a pivotal role in transmitting disease to their
neighbors by making outbreaks last longer or become more severe. In
these situations, the influence of a herd depends on the influence of
its neighbors. In other words, a herd has high influence if it is infecting
other highly influential herds. This type of interaction can be efficiently
modeled by the PageRank algorithm.

4.2.1 PageRank Algorithm
PageRank was proposed by Larry Page et al. (13) and used by the
Google search engine to sort search results by their relevance or impor-
tance. The algorithm assigns a PageRank value to each web page, which
describes the probability that a random surfer (randomly clicking on
links) will arrive at the web page. The higher the PageRank value, more
important the web page is. In general, highly linked pages are more
important than pages with a low number of incoming links. Further, the
PageRank value of a particular page determines how influential its out-
going links will be; if a page has very few input links but some are from
highly linked web pages, then the page is ranked higher than a page
that has more, but less important input links. This means that a website
can achieve a high PageRank value either by having a large number of
incoming links or by being linked to from an important page. This notion
of importance is similar to being influential; considerable research has
been conducted on using PageRank to determine influence (20, 21).

4.2.2 Using PageRank toMeasure the Degree of Influence
Construction of the DTN produces a weighted, directed graph, where
the weight of each edge is the rate at which one herd is infected by
another. As a result, the sum of input links’ weights must be equal to
1. When a disease is transmitted from vertex A to vertex B, we model
the interaction as A influencing B. Similarly, vertex A influences all of
its downstreamneighbors. However, the PageRank algorithm computes
the importance of herds based on input links, whereas in our case the
influence of a vertex is decided by output links. Therefore, we invert the
direction of edges in the graph without changing their weights to gen-
erate an inverted graph. This preserves the semantics of the network
and allows usage of the PageRank algorithm without modification. A
demonstration of an inverted graph is provided in Figure 2 .

4.3 Classifying Highly Influential Herds
After discovering influential herds, we provide two types of classifica-
tions to understand their characteristics. First, we classify the herds
based on their likelihood to be super-spreaders. Second, we perform
localized classifications to detect herds that have a particularly strong
influence on another herd but not necessarily the system as a whole.
In epidemiology, the presence of super-spreaders is a phenomenon

that is widely observed in disease outbreaks. A super-spreader is an
infected herd that spreads the disease disproportionally to other herds
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FIGURE 1 High-level overview of our analysis workflow.

(55). For a given outbreak, there may exist more than one super-
spreader and the majority of individuals infect multiple secondary con-
tacts. The most recent SARS outbreak involved super-spreading events
(SSE) (56). In this section, we investigate classifying super-spreaders
from the group of highly influential herds. Classifying super-spreaders
helps provide more efficient planning that controls contacts such as
shipments or veterinarian visits.

4.3.1 Empirical Classification of Super-Spreaders
Super-spreaders tend to follow the Pareto principle (57), also known
as the 80-20 rule, where approximately 20% of infected individuals are
responsible for 80% of causality (14). A herd is also considered to be a
super-spreader if it is responsible for a significantly larger percentage
of transmission (28). To detect super-spreaders, we measure the per-
herd infection contribution (contherdID) for each scenario by calculating
the percentage of total infections caused by each herd. Infection con-
tributions are collected from each scenario, averaged, and then sorted.
We apply the 80-20 rule to select the top 20% of herds in descending
order as probable super-spreaders, with all herds of equal ranking in the
top 20% considered. Using this methodology, we observed that the top

FIGURE 2 Formation of an inverted graph of disease transmissions for
use with the PageRank algorithm.

23.43% infection contributorswere responsible for68.85%of the infec-
tions. This result provided a foundation for attribute-based modeling
and classification.

4.3.2 Model-Based Classification of Super-Spreaders
Super-spreaders behave differently from the rest of the population, but
determining why a particular herd becomes a super-spreader can pro-
vide high-level insight for disease spread analysis. Potential features
that often influence super-spreaders include (55):

• Degree of local infections: Number of herds directly infected by a
particular herd

• Depth of disease transmission: Length of the traversal path
through the disease transmission network due to the associated
herd’s infection

• Rate of contribution: Percentage of the total number of infected
herds

• Level of Infection: Relative position of the herd in the infection
chain hierarchy

We backtrace through the disease transmission network to deter-
mine each of these properties. After collecting training data for each
herd across our subject dataset, we applied multiple machine learning
classifiers: support vector machines (SVMs) (58), random forests (59),
and quadratic discriminant analysis (QDA) (60). An initial exploration of
these models’ hyperparameters found that the classifications produced
by SVMs exhibited the highest performance. To train the SVMs,we used
stochastic gradient descent (SGD). SGD is a stochastic method for find-
ing local minima or maxima by updating a set of parameters iteratively
to minimize an objective function (61). The major advantage of SGD is
its efficiency and amenability to parallel computation, which ensures
scalability in our particular use case (62).

4.3.3 Reachability Analysis via Localized Attributes
Up to this point, discussion has revolved around determining influential
herds across the entire disease transmission network. However, there
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are often localized relationships between herds that are significant but
not highlighted by global analysis. Determining localized influence for a
particular subset of herds is useful in situations where a planner wishes
to isolate an infection or slow the spread of disease. These relationships
are measured by the localized influence value, which is calculated based
on Formula 1:

Infl_valij =
NPRi ∗NOCij

Avg_distij (1)
Where:
Infl_valij= Influence value of herd i on herd j
NPRi= Normalized PageRank value (1-10) of herd i, representing
global influence in the DTN
NOCij = Normalized occurrence count (1-10) of herd i when herd j is
infected
Avg_distij is a measure of distance between herd i and herd j, which is
calculated by the following formula:

Avg_distij =

∑n
k=1 distk(i, j)

n
(2)

Where:
n =Number of times herd i is infecting herd j
distk(i, j) = Distance between herd i and herd j in hops for kth occur-
rence

This results in herds having more influence on those in close proxim-
ity. For instance, a herd that is a single hop away is more influential than
a herd that is two hops away in the DTN. DividingNPRi byAvg_distij
gives an approximate value of influence of herd i on herd j. By using
NOCij , we increase the importance of herds that are infected often by
a another herd.

4.4 Evaluation
Herein we evaluate ourmethodology; our benchmarks includemachine
learning classifications, statistical evaluations, and analysis of the scala-
bility of our approach using Apache Spark.

4.4.1 Classifying Super-Spreaders withMachine Learning
Using the DTN to backtrace through herd interactions, we gener-
ated training data based on features that commonly indicate super-
spreaders (as described in section 4.3.2). Herd classifications were
stored in this dataset as a binary value, with 1 indicating a super-
spreader and 0 representing a regular herd. Our baseline classification
via the 80-20 rule was used as ground truth, and we applied several
machine learning algorithms on the training data. Classifications were
implemented with scikit-learn (62), and a randomized 90-10 split was
used for the training and testing datasets, respectively. As depicted in
Table 1 , the SVM model provided the highest accuracy. However, it
is worth noting that each of the machine learning algorithms achieved
reasonable accuracy based on our feature set.

TABLE 1 Accuracy for each machine learning classification algorithm
evaluated. To demonstrate generality, we also used our SVMmodel on a
different scenario set in Iowa, USA.

Classifier Accuracy
Quadratic Discriminant Analysis 83.97%
Random Forest Classifier 88.9%
Support VectorMachine (SVM) 90.02%
SVM, IowaDataset 93.50%

One of the primary benefits of generating machine learning mod-
els is generalizability; if the model generalizes well, then it can predict
super-spreaders in new or unseen datasets without needing to perform
analysis over the disease transmission network. To evaluate the gener-
ality of our SVMmodel trained on the Colorado dataset, we obtained a
second scenario set in Iowa, USA, which consisted of 8 TB of simulation
output. Using the model, we were able to predict super-spreaders with
an accuracy of 93.50% as shown in Table 1 . This is likely due to some
similarities in parameters between the two scenarios, as both simulated
an outbreak of foot-and-mouth disease.
After thealgorithmsare fully trained, coefficients associatedwith the

features capture their respective impacts on classification. We provide
these coefficients as outputs during the modeling process. Coefficients
fromour SVMclassifier are shown in Figure 3 ; positiveweights suggest
a positive correlationwith the output (classification as a super-spreader
or not), and vice versa. Based on these results, the degree of local infec-
tions exhibits a strong correlation with the herd in question being a
super-spreader, which is also true of SARS outbreaks (30). Conversely,
the level of infection in the DTN hierarchy was negatively correlated
with being a super-spreader, and the contribution rate and depth of
disease transmission were not weighted as highly for this particular
model.

4.4.2 Statistical Evaluation of Super-Spreaders
To understand the composition of highly influential herds, we applied
a variety of statistical techniques on the data produced by our disease
transmission network. Our analysis includes a proportion test, ROC
(receiver operating characteristic) curves for the experiments, as well
as a breakdown of seeders, super-spreaders, and combined influential
herds.

4.4.3 Highly Influential Herds vs Super-Spreaders
We performed a two-sample proportion test to statistically support
our claim that herds with high PageRank values include higher propor-
tions of super-spreaders. In this evaluation, we assessed the top 20% of
PageRanked herds (likely super-spreaders) with the next 20% (referring
back to the 80-20 rule). To conduct the proportion test, we randomly
selected 1000 herds from each set and noted the mean number of
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FIGURE 3 Feature coefficients from our SVM classifier; larger values
indicatemore influential features.

super-spreaders across 40 iterations: x̄top = 839.93, x̄next = 192.5.
This experiment revealed a significant difference between high PageR-
ank (π̂top = 0.83993, ntop = 1000) and low PageRank (π̂next =

0.1925, nnext = 1000) herds; z∗ = 8.657, p < 0.00001 for π0 = 0.5

with a 95% confidence interval [0.614, 0.6808]. These results suggest
that herds with high PageRank values contain a higher proportion of
super-spreaders compared to the populationwith lowPageRank values.
In the next part of this experiment, we analyzed the inclusion of

super-spreaders in the composition of highly influential herds. We
found 3747 probable super-spreaders using the approach described
in section 4.3.1. We then calculated the number of herds having
the top n PageRank values among the 3747 super-spreaders, n ∈
{50, 100, 200, · · · , 18800}. The ROC curve for this experiment is shown
in Figure 4 . Based on the curve, the experiment resulted in high accu-
racy, meaning super-spreaders account for a considerably large portion
of the overall set of influential herds. The reason behind this result is
that both groups infect a higher number of herds on average; according
to Figure 3 , the degree of local infection contributes most when classi-
fying a herd as a super-spreader, and herds with high PageRank values
tend to infect a higher number of herds overall as mentioned in 4.2.1.
Moreover, we can observe that the likelihood ratio is decreasing as we
move along horizontal axis. The part of curvewith a high likelihood ratio
refers to herdswith high influence values, whereas the other part of the
curve refers its counterpart.

4.4.4 Highly Influential Herds vs Seeders
This experiment analyzes the involvement of seeder herds (herds that
are infected by the set of initially infected herds) in the evolution
of super-spreaders. As described in Section 4.1, we remove initially
infected herds from the infection propagation pairs and collect the
rest of the data for analysis. Over the 3.2 million iterations, we found
6504 distinct seeders. We performed same experiment as described
in the previous section (4.4.3), except this time the number of herds
having the top n PageRank value are among 6504 seeders instead of
super-spreaders, n ∈ {50, 100, 200, · · · , 18800}. The ROC curve for

FIGURE4 ROCcurve for herds classified as super-spreaders compared
with herds that exhibited high PageRank values.

this experiment is shown in Figure 5 ; we can observe a small peak
initially, followed by monotonic increases afterwards. The area under
the curve is much less compared with the previous experiment per-
formed on super-spreaders. This result suggests that seeders do not
contribute to the composition of highly influential herds as much as the
super-spreaders. There are likely two reasons for this: first, among the
6504 seeder herds, most are classified as seeders very few times in the
overall dataset of 3.2 million simulated outbreaks, resulting in a lower
number of overall infections. Second, seeders often infect herds with a
low PageRank value, resulting in a little contribution towards their own
influence.
The True Positive Rate (TPR) and False Positive Rate (FPR) used to

create the ROC curves in the previous experiments are calculated using
following formula:

TPRn =
NIn

Tp

FPRn =
n−NIn
Tn

(3)

Where:
NIn = Intersection of super-spreaders or seeders with the top n highly
influential herds
Tp = Total number of super-spreaders or seeders
Tn = Total number of non-super-spreaders or non-seeders

4.4.5 Scalability Evaluation
We measured the time taken by the Spark framework to compute
PageRank values of herds in the disease transmission network for vari-
ous combinations of data and cluster sizes. From the100,000 simulation
outputs in our Colorado dataset, we extracted disease transmission
information in the form of infection propagation pairs and executed
our PageRank implementation.We considered cluster sizeswith a vary-
ing number of machines, each of which was accountable for four Spark
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FIGURE 5 ROC curve for herds classified as seeders compared with
herds that exhibited high PageRank values.
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FIGURE 6 Scalability of our approach executing under the Apache
Spark framework. By increasing the cluster size to 30 machines, we
reduce the execution time by about 25%.

workers. Figure 6 demonstrates the results of this benchmark; the
vertical axis contains the time taken to perform the computation, with
dataset sizes presented on the horizontal axis. Clusters of 10 and 20
machines exhibited similar execution times due to resource constraints
that increased synchronization delays between stages, but the clus-
ter of 30 machines improved computation times by about 25% for the
full-sized dataset.

5 METHODOLOGY: GRAPHPARTITIONING
A single commodity machine completes a typical NAADSM simulation
run in about 20hours (16, 63). Subsequent analysis of theDTN is an iter-
ative process that can far exceed simulation execution time. To facilitate
faster and more efficient analysis, we adapted our disease transmission
network to run within the Apache Spark GraphX framework (12). Given
that PageRank is a graph algorithm (13), GraphX is well-suited for our
purposes.
In an ideal scenario, the input graph representing our DTN will be

partitioned uniformly across a cluster ofmachines. In practice, however,
super-spreaders have a disproportionate effect on graph characteris-
tics and lead to imbalances in load. These imbalances increase both
network communication and graph ingestion time. To improve perfor-
mance, we extended the underlying 2D graph partitioning scheme used
in GraphX. This enhanced partitioning scheme ensures that each ver-
tex in the graph saves up to two network transfers compared to the
standard partitioner while distributing a nearly uniform amount of load
among machines, allowing the PageRank algorithm that underpins our
analysis to complete faster.

5.1 Graph Partitioning Background
Graphs and their related algorithms are applied in a wide variety of
domains, including social networks, recommendation systems,webdoc-
uments, routing, andmore. These applications have grown considerably
over time; the Facebook friend graph has more than 1 billion vertices
(users) and nearly 1 trillion edges (friendships) (64). Moreover, many
machine learning techniques (such as deep neural networks) can be
represented as graphs. Applications in these domains demand nearly
real-time results. Although computing and storage capacities continue
to increase, a singlemachine is unable to satisfy these real-time require-
ments completely. This led to the advent of distributed graph compu-
tation systems (also called distributed graph-parallel systems), which
operate on clusters of commodity hardware (65, 66, 67, 12). These sys-
tems employ the “Think Like a Vertex” (68) programming model and
expose developer-friendly APIs wherein any graph algorithm can be
expressed from the perspective of a vertex. The partitioning algorithm
used with these graphs directly impacts performance in a distributed
setting, influenced by the following:
• Ingestion time: this refers to the time taken by the system to
partition and load the graph before starting analysis. Some parti-
tioning strategies incur more ingestion time than others.

• Communication costs: the amount of network transfer between
partitions. Since partitions are stored on different machines,
some amount of communication is required to achieve synchro-
nization. This plays a prominent role in the performance of the
partitioning scheme as well as the graph algorithm.

• Load balancing: this refers to the quality of load distribution,
which ultimately boils down to the number of vertices and edges
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assigned to each partition. Improper distribution leads to under-
or over-utilization of cluster resources.

Balanced graph partitioning is classified as an NP-complete problem
(69), meaning that solutions are generally acquired by heuristics or
approximation. With the arrival of graph-parallel systems, the research
community has taken interest in streaming graph partitioning algo-
rithms, which partition a vertex or an edge based only on local informa-
tion rather than the complete graph. These algorithms are divided into
two categories: edge-cut and vertex-cut.

5.1.1 Edge-Cut
Edge-cut algorithms allocate vertices in a roughly uniform fashion
across partitions, and then cut anddistribute the edges across partitions
to produce complete subgraphs. It is worth noting that cut edges and
their corresponding vertices are replicated. Due to this characteristic,
the communication cost associated with edge-cut algorithms is directly
proportional to the number of edges cut. Each partition is responsible
for an approximately equal number of vertices, whereas the number of
edges is variable and determines the load-balancing factor.
Figure 7 (a) shows an example of edge-cut partitioning on a graph

with 5 vertices and 11 edges. The goal is to divide the graph into two
parts, with each part representing a complete subgraph. As mentioned
previously, vertices are partitioned first. In this example, they are parti-
tioned using an elementary hash partitioner:

v mod n

Where v is a vertex identifier and n is the total number of partitions.
Hence, vertices 1, 3, and 5 are placed into partition 1, and vertices 2

and 4 are placed into partition 2. Given the hypothetical cut shown in
Figure 7 (a), the destination partitions of edges (1, 2), (5, 2), (5, 4),
(2, 5), (4, 5), and (4, 3) are ambiguous. To place these edges, a determin-
istic schememust be employed; suppose the edges are placed into their
destination vertex’s partition, meaning edge (1, 2) would be placed in
the same partition as vertex 2. This scheme would produce incomplete
subgraphs; for example, all of the edges of vertex 2 are not in the same
partition — edge (2, 5) is in partition 1. In order to function properly,
these subgraphs need to be complete. Therefore, some of the vertices
and edges are replicated (denoted by red dashed lines in Figure 7 -b),
leading to increased communication.

5.1.2 Vertex-Cut
In vertex-cut algorithms, edges are distributed equally among partitions
and vertices are cut and replicated to produce complete subgraphs. In
this scheme, communication costs are directly proportional to the num-
ber of vertex replicas, while the load-balancing factor is determined by
the number of edges assigned to each partition.
Figure 8 shows vertex-cut partitioning. As in the previous example,

a directed graph with 5 vertices and 11 edges is provided. Edges are

distributed equally among the partitions using a function such as:
(Vs + Vd) mod n

Where Vs is the source vertex and Vd is the destination vertex. This
places edges (1, 2), (5, 2), (2, 5), (5, 4), (4, 5), (4, 3) in partition 1, with
the rest placed in partition 2. Furthermore, suppose vertices are parti-
tioned using our elementary hash partitioner, (v mod n). Like the previ-
ous example, this strategy also creates incomplete subgraphs. However,
this strategy only transmits vertex data between partitions (repre-
sented by vertices highlighted in red).

5.1.3 Evaluating PartitionQuality
To evaluate partition quality, we use the following criteria:

• Replication Factor: amount of replicated vertices/edges. This
measure is directly proportional to the communication between
partitions.

• Load Balancing Factor: distribution of load among partitions, rep-
resented by the standard deviation of the number of edges for
which eachpartition is responsible. A lower loadbalancing factor
indicates better utilization of cluster resources.

An ideal scheme achieves uniform distribution while incurring min-
imal replication. Ingestion time is often directly proportional to the
quality of partitions, with longer ingestion times producing better parti-
tions.
Early graph-parallel systems, such as Pregel (65) and GraphLab (67),

employed the edge-cut partitioning scheme. Subsequent research dis-
covered significant load balancing issues in the case of power-law
graphs (49) (also known as real-world graphs or natural graphs), due to
large edge imbalances. Therefore, Powergraph (49) employed vertex-
cut partitioning and reported a significant improvement in power-
law graph partition quality. Successive graph-parallel systems including
Spark GraphX (12) have also employed some form of vertex-cut parti-
tioning. Edge-cut and vertex-cut partitioning schemes serve different
purposes. Edge-cut is well-suited for graphs with a high number of low-
degree vertices since there exists a high possibility of assignment of all
edges of a vertex to the same partition. In contrast, vertex-cut is best fit
for graphs with a small number of high-degree vertices since edges are
evenly distributed.

5.2 2DGraph Partitioning
Modern graph-parallel systems employ vertex-cut partitioning guided
by a variety of heuristics. 2D partitioning (also known as grid-based par-
titioning) was proposed by Nilesh et al. (70) and claims an upper bound
of 2
√
n − 1 on the vertex replication factor, where n is the number of

partitions.
Graphs possess two properties: vertices and edges. The identifier

space of vertices is one-dimensional because we can assume each
vertex has a unique ID. However, the identifier space of edges is
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FIGURE 7 A demonstration of edge-cut partitioning.

FIGURE 8 A demonstration of vertex-cut partitioning.

two-dimensional because source and destination vertex identifiers are
required to uniquely identify an edge. Due to this requirement, a grid
can be leveraged to hold edge properties. In this strategy, partitions are
assumed to be a grid of rows and columns. The vertex identifier space is
mapped to this grid using hash functions, with the intersections of the
rows and columns representing edges.

5.2.1 EdgePartition2D
The 2D partitioning strategy used in GraphX is called EdgePartition2D
(71). Consider a graphG = (V,E), where V is the set of vertices andE
is the set of edges. Every vertexV has aunique identifier, andevery edge
E contains a source and destination vertex. The goal here is to divide
the graph into n parts such that the resulting partitions incur minimum
communication with near-uniform distribution. Herein we explain this
partitioning strategy in detail; the complete process is pictured in Figure
9 .
Logically, the partition space in EdgePartition2D is a two-

dimensional grid. Ifn is a perfect square, then the gridwill have an equal
number of rows and columns (hereafter referred to as rows and cols,
respectively), or √n. On the other hand, if the grid is not square, cols
can be atmost one greater than rows. In this situation, cols is the ceiling

FIGURE 9 Vertex and edge placement in the EdgePartition2D
algorithm.

of the decimal value of√n and rows is expressed as:

rows =
n+ cols− 1

cols

Every column has this count of rows except for the last column, where
the number of rows may vary from 1 to rows, hereafter denoted by
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lastColRows. For example, if n = 27, then cols = 6 and rows = 5,
where the last columnwould have 3 rows.
Vertices are assigned to partitions based on the elementary mod-

ular hashing discussed previously. Consequently, vertices are equally
distributed among partitions. Edges, on the other hand, are assigned by
hashing both the source and the destination vertices. The source ver-
tex identifier space is mapped to the columns; therefore, the column
selection for any edge is performed using the source vertex, hereafter
denoted by src. If n is a perfect square, col is identified by:

col = (src ∗mixingPrime) mod
√
n

If not, col is identified by:
col =

(src ∗mixingPrime) mod n

rows

WheremixingPrime is a large prime number that is used to improve
the balance of edge distributions (71).
Similarly, destination vertices are mapped to rows. Hence, the row

selection for an edge is accomplished by the destination vertex, here-
after denoted by dst. If n is a perfect square, the row is identified
using:

row = (dst ∗mixingPrime) mod
√
n

Otherwise:
When col < cols− 1:

row = (dst ∗mixingPrime) mod rows

When col ≥ cols− 1:
row = (dst ∗mixingPrime) mod lastColRows

From the perspective of a vertex, the EdgePartition2D scheme helps
us determine the upper bound on the vertex replication factor. Consider
a vertex with identifier v which could be either a source or destination
in the graph. All edges where v is the source vertex would be placed in
the same column, col, of the grid. Similarly, the edges where v is the des-
tination vertex would be placed in the same row. Therefore, any edge
containing v has to be placed in any of the√n+

√
n−1 = 2

√
n−1 par-

titions, which justifies the upper bound on the vertex replication factor,
shown in Figure 10 .

5.3 Enhanced 2D Partitioning
EdgePartition2D excels at load balancing while also reducing commu-
nication between partitions. However, the vertex partitioning factor in
EdgePartition2D is not completely optimized; as mentioned previously,
the partitioner is implemented using elementarymodular hashing. Con-
sider a grid of c columns and r rows. For a vertex v, all the edges where
v is the source vertex are placed in partitions of the ith column, i <= c,
and all the edges where v is the destination vertex are placed in parti-
tions of the jth row, j <= r. Given this, v would be ideally placed in the
intersecting partition of the ith column and jth row. Instead, it is placed
in the partition expressed by v mod (r ∗ c).

FIGURE 10 Upper bound on the replication factor of the EdgeParti-
tion2D algorithm.

An improved version of this algorithm places v in the partition where
a hypothetical edge with v as both the source and the destination ver-
tex would be placed. However, this modification raises load balancing
issues; consider n partitions where n is a perfect square resulting in a
grid with√n rows and√n columns. As described previously, a square
gridwould employ the samehashing scheme for both columns and rows,
(v ∗ mixingPrime) mod

√
n. Applying this vertex partitioner would

result in all vertices being placed in the diagonal partitions of the grid.
In other words, the non-diagonal partitions would not accommodate
any vertices. However, it is possible to achieve a better balance of load
by employing different hashing techniques for source and destination
vertices.
Given a perfect square for the number of partitions, n, our approach

selects the column for vertex v using the following hash function:
(v ∗mixingPrime) mod n

√
n

While row selection remains the same as the default implementation.
Since the modified column selection leverages both the modulo and the
division operation, the column index differs from the row index. This
enables vertices to disperse over the grid. For instance, consider:

n = 100

v = 1546

mixingPrime = 1

With the standard EdgePartitioner2D, v would be placed into the
(1546 ∗ 1) mod 10 = 6th column, and (1546 ∗ 1) mod 10 = 6th

row in the grid of 10 × 10. With our approach, it would be placed into
((int)((1546 ∗ 1) mod 100/10)) = 4th column and 6th row.
Due to the vertex being placed into the intersecting partition of the

row and the column where the hypothetical edge having that vertex as
the source and the destination would be placed, the vertex has to repli-
cate itself to√n−1partitions in a columnand√n−1partitions in a row.
Hence, the upper bound on the replication factor would become 2

√
n−

2, or one less than the existing implementation, illustrated in Figure
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11 . For an iterative algorithm like PageRank, this avoids two network
transfers per vertex per iteration, improving overall performance.

FIGURE 11 Replication factor of our enhanced partitioning approach.

Given the difference in hashing techniques employed for source and
destination vertices, distribution throughout the grid is balanced even
in the case of a perfect square for the number of partitions. Although
our modified partitioning scheme changes the source vertex hashing
function, the destination hash remains the same. Therefore, the parti-
tions identifiedby theEdgePartition2Dschemeandour approachwould
differ for a particular edge, but load balancing properties are nearly
preserved.

5.4 Evaluation
Herein we evaluate our enhanced 2D graph partitioning strategy in
Spark GraphX. We compare our approach with EdgePartition2D in
terms of graph ingestion time, vertex replication factor, PageRank exe-
cution time, and workload distribution. All of the experiments were
conducted on the inverted graph (DTN) generated from our subject
dataset, which comprised 18,890 vertices and 1,682,361 edges. Results
were collected for a variable number of partitions: {10, 25, 50, 75, 100,
125, 144, 200}. This set contains both non-square and square numbers
to embody all aspects of the candidate algorithms.

5.4.1 Scalability
To evaluate the performance of our algorithms under Spark GraphX,
we re-ran the scalability benchmark outlined in Section 4.4.5 using
the GraphX-based implementation. The experiment measured the time
takenby the framework to computePageRank values of herds in the dis-
ease transmission network for various combinations of data and cluster
sizes. From the 100,000 simulation outputs from our Colorado dataset,
disease transmission information in the form of infection propagation
pairs was extracted, and the PageRank implementation was executed
for 25 iterations. During this evaluation, cluster sizes with a varying
number of machines were considered, each of which accounted for four
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FIGURE 12 Evaluation of the scalability of our approach using GraphX
with variable cluster and dataset sizes.

Spark workers. Figure 12 demonstrates the results of this benchmark;
the vertical axis contains the time taken to perform the computation,
and dataset sizes are presented on the horizontal axis.
Results are similar to those in the previous experiment, but the

PageRank process completes much faster under GraphX (roughly 16
seconds versus 73 seconds in the previous implementation with 100%
of the dataset and 30 machines). Figure 13 illustrates the execution
speed improvements in the GraphX version of the DTN over our pre-
vious Spark implementation. The Resilient Distributed Graph (RDG)
structure in GraphX is designed specifically for our particular use case,
which accelerates graph-specific processing (12).

5.4.2 Graph Ingestion Time
As discussed previously, graph ingestion time refers to how long it
takes to partition and load the graph into memory. Conceptually, this
is the time taken by the partitioning algorithm starting from divid-
ing the graph and creating subgraphs up to loading each element into
memory for further computation. Partitioning may affect the ingestion
time adversely, so it is worth studying and comparing with the previ-
ous implementation. Figure 14 shows the comparison of ingestion time
between the two partitioning algorithms for varying of numbers of par-
titions. The enhanced algorithm delivered nearly the same results as
the EdgePartition2D scheme. This observation is reasonable as both the
algorithms are implemented using stream-based hashing techniques.
They are capable of placing an edge or a vertex in an appropriate parti-
tion without having any prior knowledge of other placements.

5.4.3 Replication Factor
The vertex replication factor describes the amount of replication
incurred by the partitioning algorithm and is directly associated with
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FIGURE 13 A comparison of the GraphX version of our DTN with
the previous Spark implementation. The reduction in execution time is
shown for each dataset and cluster size.

FIGURE 14 Comparison of graph ingestion time. Our enhanced
approach does not introduce a substantial change in ingestion perfor-
mance over EdgePartition2D.

the amount of communication required. Overall, the replication fac-
tor is the key metric that decides the performance of any partitioning
algorithm. In other words, a smaller replication factor implies less com-
munication and better performance. Figure 15 shows a comparison
between the original and enhanced partitioning algorithm in terms of
themean vertex replication factor for a variable set of partitions. In this
benchmark, our enhanced partitioning strategy demonstrated better
replication factor results than the standard EdgePartition2D scheme.
It is worth noting that the difference in replication factor for any par-
ticular observation is more than one. The reason behind this behavior
is that our algorithm decreases the upper bound on vertex replication
from 2

√
n− 1 to 2

√
n− 2.

FIGURE 15 Comparison of vertex replication factors between
EdgePartition2D and our approach. In all configurations our enhanced
approach reduces the replication factor (by 1.3 on average).

In order to determine whether the differences between mean repli-
cation factors was statistically significant, we performed the Wilcoxon
signed-rank test because the distribution was not normal (p − value =

0.03744 for Shapiro-Wilk normality test). TheWilcoxon signed-rank test
demonstrated that the difference between mean replication factor of
both the approaches is statistically significant (Z = −2.5205, p =

0.007812). Moreover, the 95%Bootstrap Studentized Confidence Inter-
val is (−1.414,−1.141) which indicates that the mean replication factor
in our enhanced algorithm is at least one less than that in EdgeParti-
tion2D.

5.4.4 Load Balancing: Vertex Distribution
LoadBalancing refers to thedistributionof graphelements (vertices and
edges) across partitions. A key issue that affects thismetric is thatwork-
load distribution and the replication factor are conflicting interests,
with improvements to one often having a negative impact on the other.
Edge-cut partitioning is a classic example of this issue; in an attempt
to improve the replication factor for high-degree vertices in power-law
graphs, the strategy delivers unbalanced partitions in terms of edge dis-
tribution. In contrast, an ideal schemekeeps both of these factorswithin
an acceptable bound. We measure the balance of load with side-by-
side boxplots of vertex distributions, shown in Figures 16 and 17 . The
observed similarity between the approaches along with the reduction
in upper bound of the vertex replication factor is the prime reason for
improvement in the performance of our enhanced approach. Figure 16
depicts the comparison in the vertices distribution for n = 75, and
Figure 17 demonstrates the variation in distributions for n = 125

and n = 144. These results demonstrate that our enhancements to
EdgePartition2D do not have a negative impact on load balancing. It can
be observed in Figure 17 that vertices are distributed in a balanced
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FIGURE 16 Comparison of vertex distributions, n = 75.

FIGURE 17 Comparison of vertex distributions, n = 125 and n = 144.

fashion even with a perfect square for the number of partitions due
to the algorithm employing different hashing techniques for the source
and the destination vertices.

5.4.5 Load Balancing: Edge Distribution
Figures 18 and 19 display the edge distribution across a variety of
partition sizes, including both perfect and imperfect squares. The dis-
tributions remain similar for both algorithms, which is to be expected
as the edge partitioning logic for imperfect squares is untouched by the
new algorithm. Additionally, because only the source vertex hash has
changed, the row assignments will remain the same.

5.4.6 Execution Time
In this benchmark suite, execution time refers to the amount of time con-
sumed by the algorithm starting from the creation of the graph to the
completion of the algorithm. This metric is affected by all three of the
previous metrics discussed in this section. Figure 20 shows the exe-
cution times of both algorithms. We can observe that our algorithm
consumed less or an equal amount of execution time compared to

FIGURE 18 Comparison of edge distributions, n = 75.

FIGURE 19 Comparison of edge distributions,
n = {100, 125, 144, 200}.

EdegePartition2D. The primary reason for this is the reduction in mean
vertex replication factor allows the algorithm to reduce communication
and complete the partitioning process faster.
A Paired Samples t-test was performed to compare EdgePartition2D

toour enhanced algorithm in termsof execution time.We found a signif-
icant difference in execution time between the enhanced version (M =

36.75, SD = 17.04) and EdgePartition2D (M = 39.5, SD = 15.56);
t(7) = 3.671, p < 0.005.

6 CONCLUSIONSANDFUTUREWORK
In this study, we presented our methodology for identifying epidemio-
logically influential herds and understanding their characteristics over
voluminous data. Identification of influential herds will help planners
allocate limited resources more effectively. Our methodology includes
multiple analysis components such as: (1) generating a disease network
data structure, (2) estimating the influence of a particular herd using the
PageRank algorithm, and (3) characterizing influential herds based on
their epidemiological characteristics and herd-based relevance.
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FIGURE 20 Comparison of execution times between EdgePartition2D
and our enhanced version of the algorithm, in seconds.

RQ1 What data structure(s) allowus to represent disease spread inter-
actions for analysis?

To achieve effective analysis with reasonable latency, we extract entire
chains of infections from the output dataset and construct a graph-
based disease transmission network (DTN) that represents a holistic
view of disease transmissions by maintaining the probability of infec-
tions between each herd pair. The DTN is a compact data structure that
is less than 0.002%of the original dataset size. Since infections between
herds are observed over 3.2 million iteration outputs, maintaining this
pairwise probability with the DTN reduces the number of I/O accesses
(encompassing both disk and network I/O) to the dataset significantly.
RQ2 How canwemeasure the influence of each herd?
We leverage the PageRank algorithm to estimate the influence of each
herd in the DTN. The PageRank associated with a herd represents the
probability that it contributes to a random infection chain. Our statis-
tical analysis demonstrates that super-spreaders are well-represented
among the highly influential herds. We have modeled the relationship
between features of a herd extracted from the DTN and the likelihood
of being a super-spreader using support vector machines (SVMs). Our
model provides an accuracy of greater than 90% for FMD outbreaks in
the state of Colorado; furthermore, this model transfers well and has
an accuracy of over 93% when analyzing likely outbreaks in Iowa. This
result demonstrates the generalizability of our methodology.
RQ3 How canwe enable the analysis at scale?
Our analysis and experiments were performed using Apache Spark and
were distributed across a cluster of computing resources. This approach
was shown to be effective and scalable in our benchmark evaluation.
RQ4 Given a datamodel for disease transmission, how canwe improve

performance in a distributed setting?
We extended the graph partitioning algorithm in Spark GraphX,
EdgePartitioner2D, to reduce network communication and speed up

analysis. To achieve this reduction in communication, our modifications
to the algorithm trade off a small amount of load balancing uniformity.
We believe that this approach is broadly applicable, and best suited for
applications that require frequent graph construction or communica-
tion between nodes. This is especially important in use cases with lim-
ited network bandwidth, such as Internet of Things (IoT) deployments
where distributed nodes may also participate in taking measurements,
collecting observations, and then building the DTN.
Our approach facilitates planning for disease outbreaks by pinpoint-

ing sources of infection that have significant contributions to disease
spread. Our system architecture ensures such analysis is fast, efficient,
and canmake use of distributed resources at scale.

6.1 FutureWork
As part of our future work we plan to explore the feature space
to improve the accuracy of our super-spreader detection model. We
will extend the DTN data structure to include other features such as
herd types, time-series data, and quality measures. Another avenue for
future research is to leverage input parameters that are used for sim-
ulation variants to model the relationship between input features and
highly influential herds.Moreover, the underlying graph-parallel system
can be further extended to employ a partitioning strategy specifically
designed for the updated version of the DTN. We may also experi-
ment with other types of models/simulations and compare the results
of real-world datasets with simulated data, if available, with the goal
of eventually modeling live outbreaks. Finally, we plan to implement
support for an incremental PageRank algorithm that can accommodate
changes in the DTN in real time.
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