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Discrete event simulations model the behavior of complex, real-world systems. Simulating a wide range of 
events and conditions provides a more nuanced model, but also increases its computational footprint. To 
manage these processing requirements in a scalable manner, discrete event simulations can be distributed 
across multiple computing resources. Orchestrating the simulations in a distributed setting involves 
coping with resource uncertainty. 

We consider three key aspects of resource uncertainty: resource failures, heterogeneity, and slowdowns. 
Each of these aspects is managed autonomously, which involves making accurate predictions of future 
execution times and latencies while also accounting for differences in hardware capabilities and dynamic 
resource consumption profiles. Further complicating matters, individual tasks within the simulation are 
stateful and stochastic, requiring inter-task communication and synchronization to produce accurate 
outcomes. We deal with these challenges through intelligent state collection and migration, active resource 
monitoring, and empirical evaluation of resource capabilities under changing conditions.  To underscore 
the viability of our solution, we provide benchmarks using a production discrete event simulation that can 
simultaneously sustain failures, manage resource heterogeneity, and handle slowdowns while being 
orchestrated by our framework. 

Categories and Subject Descriptors: C.4 [Performance of Systems]: Fault tolerance; I.6.8 [Simulation and 
Modeling]: Discrete Event 

General Terms: Algorithms, Design, Performance, Reliability 

Additional Key Words and Phrases: Fault tolerance, distributed discrete event simulation, checkpointing, 
neural networks, prediction  

 INTRODUCTION 1.
In situations where direct experimentation is difficult, expensive, or simply infeasible, 
discrete event simulations (DES) provide a highly expressive solution for modeling 
real-world systems.  This expressivity is derived from representing the interactions 
between all components in the system as events.  Accounting for these interactions is 
often compute-intensive, which makes a divide-and-conquer approach over several 
computing resources an ideal means for quickly gaining insights from the simulation. 
Dividing the workload is beneficial in multiple ways: outputs can be generated faster, 
more parameters can be explored, and additional iterations of the simulation can be 
run to verify output quality. We have explored the challenges involved with 
performing load balancing to optimize performance in the context of a discrete event 
simulation in a previous study [Sui et al. 2013]. However, these performance gains 
come at the expense of additional complexity through increased communication and 
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synchronization required between distributed components. As more components are 
added to a system and executed across a diverse set of computing resources, the 
likelihood of a failure also becomes much higher. 

The primary theme of this paper is resource uncertainty, of which we consider 
three key aspects: fault tolerance, resource slowdowns, and heterogeneity. 
Ultimately, each of these items can have severe and unexpected performance 
consequences in a distributed setting and must be accounted for to ensure resources 
are used efficiently. Our prior research that focused on autonomous fault tolerance 
functionality [Malensek et al. 2013] has been extended in this paper to target the two 
remaining aspects of resource uncertainty. Resource slowdowns may occur due to 
an increase in the number of processes executing concurrently at the resource, load 
spikes, or runaway processes resulting from a coding error. If not circumvented, the 
consequences of such slowdowns can lead to extended execution times. Accounting for 
resource heterogeneity is critical especially when apportioning tasks to resources 
with the objective of faster completion times. In this work, we consider the 
performance-centric aspects of heterogeneity to achieve greater system throughput. 
Our algorithms identify resource slowdowns and circumvent them by launching 
speculative tasks (duplicate tasks that essentially “race” the original task to 
completion).  These speculative tasks are launched on the best available hardware 
configurations to ensure faster completion times.  

In the modern computing landscape, failures are an issue that must be expected 
and dealt with rather than simply avoided or ignored  [Patterson et al. 2002]. The 
longer a software process runs, the more likely it is to experience a hardware or 
software failure. This fact is only exacerbated by the trend towards distributed, 
multi-core architectures that take advantage of the vast processing power found in 
today’s commodity hardware. Each additional unit of processing involved in a task 
increases the overall probability of a failure occurring. 

Our approach to mitigating resource failures involves designing an autonomous 
fault tolerance agent to oversee the execution of distributed discrete event 
simulations. Unlike conventional distributed fault tolerance approaches, our system 
must cope with constantly changing, stateful computations and ensure global 
consistency throughout the system in the event of a failure. This requires system-
level optimizations along with reliable prediction mechanisms that enable a dynamic, 
proactive approach to providing fault tolerant execution for our subject simulation.  
We rely on an adaptive strategy that determines when and how checkpoints should 
be requested in order to reduce the amount of duplicate work and overhead incurred 
from state collection. This is made possible by forecasting state changes and having 
the system plan accordingly. 

Slowdown of a resource results in tasks executing on that resource executing 
significantly slower than other tasks executing concurrently on other resources. 
Resource slowdowns must be mitigated in a timely fashion because of their cascading 
effects. Discrete event simulations include synchronization barriers where different 
components of the simulation synchronize their state. Between successive 
synchronization barriers, the execution time is only as fast as the slowest task. This 
means that a single slow task greatly influences the overall execution time. 

To mitigate resource slowdowns we rely on detection and circumvention. We 
predict resource slowdowns using artificial neural networks based on several factors, 
including the number of context switches, number of collocated processes, memory 
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consumption, and paging. We use speculative tasks to alleviate slowdowns by 
launching slow tasks on faster machines.  

Resource heterogeneity in distributed settings occurs naturally as a result of how 
machines comprising a cluster are added, upgraded, and retired. Coping with 
resource heterogeneity requires us to rank resources and continually monitor them to 
detect slowdowns. A critical aspect in dealing with resource heterogeneity is how 
tasks are apportioned. Large, compute-intensive tasks must be launched on faster 
machines. Such apportioning is needed to minimize imbalances between the tasks 
that comprise a simulation, resulting in faster completion times. 

Paper Contributions 
In this paper we describe a holistic approach for timely, distributed orchestration of 
discrete event simulations in the presence of resource uncertainty. Our specific 
contributions include:  
(1) Use of a learning-based, adaptive checkpointing strategy, (2) ability to handle 
multiple concurrent failures, both persistent and transient, (3) alleviation of resource 
slowdowns in a timely fashion: we predict impending resource slowdown using 
artificial neural networks and launch speculative tasks to circumvent them, (4) 
minimization of duplicate processing by launching speculative tasks only for those 
that are likely to impact completion times, and (5) harnessing resource heterogeneity 
by monitoring and ranking resources, and subsequently using this in our task 
apportioning scheme to minimize imbalances between subtasks and faster 
completion times.  

 SYSTEM ARCHITECTURE 2.
Our system is designed to separate concerns between two components: the cloud 
runtime, which handles orchestration of the simulation, and the simulation itself. 
This separation allows different discrete event simulations to be run within the 
system, provided that they conform to our wire format specification. The wire format 
describes how state information should be shared among components. In this study, 
we used the Granules Cloud Runtime  [Pallickara et al. 2009] for coordinating 
distributed activities within the system, and the North American Animal Disease 
Spread Model (NAADSM)  [Harvey et al. 2007] as our subject discrete event 
simulation. 

 Granules 2.1
Granules  [Pallickara et al. 2009] is a distributed stream-processing framework that 
allows computations to be expressed using the MapReduce paradigm or as directed, 
cyclic graphs. The framework handles deploying, scheduling, and orchestrating 
computations on clusters of machines or in the cloud. Computations can be scheduled 
to run when data is available or at regular intervals, with a configurable number of 
execution iterations. Since computations can execute multiple times, it is possible to 
build state over the course of execution. Granules has been employed in several areas 
of study, including bioinformatics, brain-computer interfaces  [Ericson et al. 2010], 
clustering  [Ericson and Pallickara 2012], and scientific data storage  [Malensek et al. 
2012].  

While Granules is implemented in Java and natively supports Java-based 
computations, the framework also provides bridging functionality that allows 
computations to be written in C, C++, Python, and R. NAADSM is written in C and 
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uses this functionality to communicate directly with the Granules runtime. Granules 
is an open source effort, available at http://granules.cs.colostate.edu. 

 NAADSM 2.2
NAADSM  [Harvey et al. 2007] is an epidemiological model of disease outbreaks in 
livestock populations developed jointly by the US Department of Agriculture, the 
Canadian Food Inspection Agency, Colorado State University, the University of 
Guelph, and the Ontario Ministry of Agriculture, Food, and Rural Affairs. It has been 
applied to studies of several diseases including foot-and-mouth disease  [Pendell et al. 
2007], avian influenza  [Green et al. 2010], and pseudorabies  [Portacci et al. 2009].  

NAADSM is a Monte Carlo model: a simulation is run many times with each run 
representing one possible way that events could occur in a disease outbreak, which 
contributes to an overall picture of the probability distributions of the output 
variables. This means that simulations are generally run many times, and due to 
their processor-intensive nature can benefit greatly from a parallel, divide-and-
conquer approach spread across multiple computing resources. Like many other 
discrete event simulations, NAADSM represents a complete iteration of its event 
processing loop as a basic unit of time; in our case, this is the simulation day, which 
maps to real-world passage of time to model how long a disease outbreak might last.  
We refer to this construct as a simulation interval in the text, as it could be applied to 
minutes, hours, or even years depending on the particular simulation being used.  

In this study we used a NAADSM scenario that simulated an outbreak of foot-
and-mouth disease (FMD). The population was based on Kansas, USA data, but up-
sampled from 46,000 to 660,000 farms, which is the approximate number of FMD-
susceptible farms in the 12 Midwest US states. The scenario’s scale and parameters 
were selected specifically to produce computationally intensive simulations; on a 
single machine in our test cluster, the scenario takes about 18 hours to execute. 

 Test Environment 2.3
The benchmarks described in this study were carried 
out on a 78-node cluster consisting of 48 HP DL160 
servers (Xeon E5620, 12 GB RAM) and 30 HP DL320e 
servers (Xeon E3-1220, 8 GB RAM). Each machine 
was equipped with a gigabit network interface, and 
single-core benchmarks were performed on the DL160 
models.  The Granules framework ran within 
OpenJDK 1.7. 

 Parallelization Framework 2.4
A distributed execution of NAADSM across a cluster 
of computing resources involves two primary 
components: a Controller, which coordinates the global state of the simulation, and 
multiple worker instances, which are deployed to each resource in the cluster and are 
responsible for managing individual instances of NAADSM. Figure 1 illustrates this 
configuration. These two components are the backbone of our discrete event 
simulation parallelization framework.  

When running within Granules, a NAADSM simulation is divided by geography 
with each worker managing a subset of farms in the scenario. Events that may have 
effects outside of a worker’s territory are packaged and transmitted to the Controller 

 
Figure 1. The network layout for 

our distributed discrete event 
simulation framework. 
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in a once-per-simulation-day step that acts as a synchronization barrier across the 
workers. After receiving state updates from each worker instance, the Controller 
broadcasts an aggregated bundle of updates out to the workers to mark the start of a 
new simulation interval. Barrier synchronization is one of several possible methods 
for parallelizing an event loop based discrete event simulation, and has the 
advantage of requiring minimal modification to the underlying simulation 
architecture. In other words, our framework strives to treat the simulation as a black 
box. Since we do not break the simulation into several discrete logical processes (LPs), 
each worker runs the same process with different input and state parameters. This 
allows us to divide a simulation up without modeling interdependencies. 

To balance load across the available resources in a cluster, our system employs a 
dynamic split and merge strategy to divide or consolidate workers depending on 
changing load characteristics. Due to the simulation interval execution barrier, it is 
critical to place load as uniformly as possible across all the workers in the system; 
the simulation can proceed only after all workers have completed their tasks, so a 
run of a simulation interval is only as fast as the slowest worker. 

Our parallelization framework is best suited for simulations that have a spatial 
component that can be divided into individual sub-regions managed by a worker 
instance. This includes atmospheric science  [Cotton et al. 2001], modeling object 
interactions in space  [Jefferson and Leek 2010], and cosmology  [Springel 2005]. 

These architectural decisions make the distributed orchestration layer highly 
adaptable to new types of simulations, but also make each component instance a 
single point of failure; the loss of either the Controller or even a single worker 
prevents further progress of the simulation. To deal with these failure scenarios we 
have introduced another component, called the Speculator, which handles 
speculative execution, failure detection, and recovery operations from within the 
cloud runtime.  

Unlike the speculative execution performed in implementations of 
MapReduce  [Dean and Ghemawat 2008], such as Hadoop [Bialecki et al. 2005], our 
system requires transactional semantics to ensure the consistency of global state 
across the entire cluster during failures. Additionally, the stochastic nature of our 
problem leads to the development of execution hot spots that move across different 
processing elements during the simulation, precluding the sole use of execution time 
as a failure or slowness metric. 

 COPING WITH RESOURCE FAILURES 3.
There are several challenges in ensuring autonomous execution of discrete event 
simulations in the presence of resource failures.  These include: 
• Computations composing the simulation are stateful: Though the simulation is 

stochastic, outcomes depend on the state built up at each task in the simulation. 
• Simulation stalls during failures: State coordination is performed at 

synchronization points (the end of a simulation interval). Here, the failure of a 
single machine can stall the entire simulation. 

 Research Questions 3.1
Creating a fault-tolerant, distributed implementation of a discrete event simulation 
that requires stateful, interdependent tasks led us to pose a number of research 
questions that we have addressed in this paper:  
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1. Can we incorporate support for failure resilience while minimizing overheads? 
Since failures are infrequent, our goal should be to achieve fault tolerance 
without introducing unacceptable overheads into the system.  

2. Can these overheads be minimized while also retaining the ability to cope with 
multiple, concurrent failures, which can either be permanent or transient?  

3. Can failures be detected efficiently? Simply executing duplicate tasks in parallel 
is not an adequate scheme for dealing with failures in our system, so active 
detection of failures is required.  

4. Will simply collecting state information from individual tasks be efficient means 
to provide fault tolerance? How can state collection be optimized?  

5. In the event of a failure, can we minimize the amount of duplicate work? 

 The Speculator 3.2
In our system, the Speculator is responsible for all activities related to fault tolerance 
and speculative execution. This includes detecting failures, launching new workers, 
rolling the simulation back to a consistent state, and managing resources. The 
Speculator can also be used to suspend a simulation, save its state to disk, and then 
resume execution — even on completely different hardware.  

Along with these fault tolerance features, the Speculator also plays a role as an 
autonomous manager of system events, deciding the frequency of system state 
collection and allocation of resources that can be used by the Controller. These 
decisions allow the Speculator to provide its services without imposing a significant 
performance penalty on the execution of the simulation.  

One key aspect of our system architecture is that communication only occurs once 
per simulation time unit, which is a simulation day in the case of NAADSM. This 
means that querying a worker and receiving a result is a two-day process. Because of 
this constraint, the Speculator must be highly 
proactive; simply reacting to events as they take 
place is not sufficient due to the ever-changing state 
of the simulation.  

As a simulation progresses, state updates are 
accumulated during each simulated day. In the case 
of a failure at any resource, the simulation cannot 
progress any further because all workers must 
report state updates that may have effects outside 
their own territory before continuing. The 
challenges that arise in this situation are twofold: 
detection of failures, and failure recovery. 

3.2.1 Failure Detection 

To facilitate failure detection, the components in our 
system transmit small messages, called heartbeats, 
to the Speculator at regular intervals. Heartbeats contain system statistics, such as 
load information, CPU utilization, available memory, and disk activity, which are 
used when making fault tolerance decisions. The interactions between the Speculator 
and the rest of the system are shown in Figure 2. 

When a worker or Controller instance has not sent a heartbeat message after a 
configurable failure timeout threshold, the Speculator assumes it has failed. This 
assumption is confirmed by instructing one of the other machines in the system to 

 
Figure 2. Communication 

between components and the 
Speculator, with heartbeats and 

state transfers highlighted. 
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also attempt to contact the resource. In our tests, a heartbeat interval of 5 seconds 
resulted in a failure being detected in about 7.82 seconds (averaged over 1,000 
samples). This frequency is determined by the average completion time for a 
simulation interval. 

To handle situations where a Speculator fails, multiple instances are started 
transparently and operate in parallel as Shadow Speculators that also receive 
heartbeat and checkpoint messages. Shadow Speculators incur additional network 
overhead due to message duplication, so launching two instances generally provides 
a reasonable balance between failure resilience and performance. The Speculator 
replication factor (such as 3) is automatically maintained by dynamically starting 
additional instances as necessary.  

3.2.2 Failure Recovery 

Workers in our system maintain both local state and global state. Global state 
information is exchanged during each new simulation interval, but local state is only 
used at the individual worker level. With no fault tolerance considerations, this leads 
to an unrecoverable simulation in the event of a worker failure. To cope with the 
possibility of a worker failure, local state information is sent to the Speculator as a 
checkpoint. Checkpoints contain enough local state information for the Speculator to 
re-launch a worker process. Unfortunately, simply re-launching a worker is not 
enough to resume a simulation; all workers must be executing the same simulation 
interval, so the entire simulation must be rolled back to a consistent state. This 
process may require starting or stopping worker instances.  
     Since the Speculator monitors the resources’ system status information and the 
simulation state as well, it can reason about what information it will need to provide 
fault tolerance without impacting the overall performance of the system. For example, 
given a particular disease, the simulation may progress rapidly and then slow down 
as the disease spreads and becomes more computationally intensive. Figure 3 
illustrates this situation, showing execution times in a 64-worker simulation run of 
our Midwest scenario. In the early stages of a simulation, the Speculator does not 
need to request checkpoints frequently because a restart of the entire simulation 
would have a minimal impact on overall execution time. This property makes setting 
a hard “checkpoint interval” inefficient, and led us to develop a fault tolerance 
component designed around making intelligent, autonomous decisions about how 
and when checkpoints should be collected.  

 
Figure 3. Per-day execution time of a 64-worker 

Simulation of foot-and-mouth disease in Midwest 
USA. 

 
Figure 4. Per-worker checkpoint sizes for each 

checkpointing strategy. 
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 Checkpoint Optimizations 3.3
Checkpoints are used for two primary purposes in our system: load balancing and 
fault tolerance. As one might expect, the amount of state information in a simulation 
tends to grow over the course of execution, with the most growth seen during highly 
complex events. We have observed that the most CPU-intensive portions of a 
simulation are accompanied by a growth in checkpoint sizes. 

Given a 64-worker run of the simulation, individual checkpoints of about 8 MB 
will result in 512 MB of data being sent to the Speculator at a time, easily saturating 
its network interface. Decreasing the size of these checkpoints allows the system to 
collect state information more often, reducing the amount of simulation progress lost 
in the event of a failure. We implemented two approaches to reduce the overall size of 
messages being sent in the system: transparent compression, and delta checkpoints.  

3.3.1 Transparent Compression 

With transparent compression, messages sent through Granules are automatically 
compressed using the DEFLATE algorithm [Deutsch 1996], which provides a balance 
between speed and output file sizes.  Compressing small checkpoints proved to have 
only a marginal benefit (10% reduction in size), but larger 4-7 MB checkpoints had a 
compression ratio of about 0.35, and took about 65 ms per megabyte to create. 

3.3.2 Delta Checkpoints 

The current state of a discrete event simulation represents how a sequence of events 
has unfolded thus far. The progression of these events causes state changes in an 
iterative fashion, meaning each checkpoint in our system has some common 
attributes with previous checkpoints. To exploit this property, we created delta 
checkpoints, which contain the binary differences from the last checkpoint generated.  

Several algorithms have been developed for generating binary patch files, such as 
VCDIFF  [Korn and Vo 2002], XDelta [MacDonald 2008], and bsdiff  [Percival 2006], 
which are frequently used in the distribution of software updates. For this work, we 
used our native Java implementation of bsdiff because of the small patch files it 
produces, even when there is a large time gap between checkpoints (multiple 
simulation intervals, in our case). To further speed up the delta checkpoint creation 
process, we replaced the bzip2 compression used in bsdiff with the same DEFLATE 
algorithm used in transparent compression. While bzip2 offers better compression 
ratios, it also tends to consume more processing time. Table 1 summarizes the delta 
checkpoint sizes and their creation times.  

Ultimately, there are tradeoffs associated with each of our checkpointing methods. 
Small checkpoints generally do not need further compression or patching. Larger 
checkpoints that are created during fast-executing parts of the simulation benefit 
most from compression; the compressed files save network bandwidth and can be 
generated quickly. During the longest-running portions of the simulation, delta 
checkpoints enable the system to collect state information frequently to mitigate the 
large amount of lost processing time a failure would cause. Figure 4 shows the size 
differences between uncompressed, compressed, and delta checkpoints. 

Table 1. Delta checkpoint generation averaged over 1000 runs. 
Checkpoint 
Size (MB) 

Delta Size (KB) Creation Time (ms) 
Mean Standard Deviation Mean Standard Deviation 

1 38.66 3.53 517.26 79.07 
4 116.01 4.16 1037.43 36.57 
7 126.40 9.72 1579.68 56.48 
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 Fault Tolerance Policy 3.4
The Speculator has several options at its disposal for providing fault tolerance, each 
with their own tradeoff space. How and when the Speculator requests checkpoints 
ultimately determines the performance impact of our approach and its scalability as 
more workers are added. While thresholds can be set to guide the Speculator’s 
choices, hard rules tend to be brittle and ineffective when faced with different 
simulation and disease types. To provide a flexible model for determining the 
appropriate checkpointing policy, we predict the per-interval execution time of the 
simulation, as well as the cost of generating a checkpoint. These future costs can 
then be evaluated against the likelihood of failures to produce a fault tolerance 
strategy. 

 
Figure 5. Prediction-based checkpoint policy 

changes over time. Days that checkpoints were 
requested on are indicated by a vertical line. 

Figure 6. Shaded areas above the standard 
execution times represent overhead from 

checkpointing. 

3.4.1 Speculative Prediction: Artificial Neural Networks 

Since execution times in our simulation tend to exhibit non-linear patterns, we used 
an Artificial Neural Network (ANN) from the Encog Machine Learning 
Framework  [Heaton Research 2013] to enable the Speculator to predict execution 
times and checkpoint costs. ANNs consist of multiple interconnected neurons that 
receive inputs and produce outputs based on an activation function. These functions 
are influenced by weights that are derived by training the network with 
representative data and adjusting the weights accordingly.  ANNs have an input 
layer and output layer; in our case, the inputs include execution times, checkpoint 
sizes, resource usage statistics, and simulation state variables, while the outputs are 
the predicted execution time and checkpoint sizes.  One or more hidden layers exist 
between the input and output layers, and can be configured with a number of hidden 
units (neurons) to enable a variety of functions and patterns to be learned. 

Collecting a complete snapshot of the system state requires at least two 
simulation intervals: one to request the checkpoints, and one to receive them. Due to 
this constraint, we trained the neural network to predict three simulation intervals 
into the future. This gives the Speculator time to choose an appropriate 
checkpointing strategy for upcoming events and inform workers of when the 
checkpoints should be generated. Both the data contained in heartbeat messages and 
simulation state variables were fed into the neural network. Figure 5 illustrates how 
and when the Speculator requested checkpoints in an iteration of our Midwest 
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scenario. The policy ensured that no more than two minutes of execution time could 
be lost at any point due to a failure.  

To illustrate the advantage of using our adaptive checkpointing strategy, we 
compared its fault tolerance overhead with three simulation runs that had a static 
checkpoint interval of 3 and a fixed checkpoint type. Table 2 shows the stark 
difference in overhead between a static and adaptive strategy. The table also 
demonstrates that simply using a delta strategy for the smallest possible checkpoint 
size does not result in the lowest overhead of the fixed strategies. The slight increase 
in overhead compared to compression is due to the additional processing time 
required to compute delta checkpoints. 

 
Table 2. Comparison of adaptive and fixed 

checkpointing strategies. 
Strategy Overhead 
Fixed, Standard 7.32% 
Fixed, Compressed 5.8% 
Fixed, Delta 5.98% 
Adaptive 1.1% 

 

Table 3. Failure recovery times at different stages of a 
scenario’s execution. 

Failure at 
Interval 

Recovery Time (s) 
Mean Standard Deviation 

50 5.5 1.3 
200 10.4 2.7 
300 7.9 2.1 

 

3.4.2 Fault Tolerance and Failure Recovery Overheads 

In order to evaluate the worst-case performance overhead incurred from our fault 
tolerance system, we ran two identical iterations of our Midwest scenario: one with 
no fault tolerance functionality enabled, and one with checkpoint requests occurring 
every simulation interval. Figure 6 shows the per-interval cost of collecting 
checkpoints in our system; the overhead accounted for a five-minute increase in 
execution time, but the majority was during non-critical execution at the end of the 
simulation. These costs can be avoided with accurate forecasting, as our benchmarks 
have shown.  

Table 3 contains recovery overhead information for induced failures at simulation 
intervals (days) 50, 200, and 300.  These overheads are incurred after the failure has 
been detected, and the majority of the cost is network I/O from transferring state. 

 CIRCUMVENTING RESOURCE SLOWDOWNS & MANAGING HETEROGENEITY 4.
When simulations execute over a collection of resources, uncertainty stems from: 
resource heterogeneity, how tasks are apportioned among heterogeneous resources, 
load spikes at the resources, and load variations due to the information exchange at 
synchronization barriers within a simulation.  

It is not unusual for a resource to have spikes in the number of processes that are 
executing concurrently, leading to increased contention and thus strains on CPU, 
memory and disk utilization. We need to be able to detect such resource slowdowns 
and circumvent them via apportioning of tasks or by launching speculative tasks that 
duplicate the processing being performed on the slow resource. Our experiments in 
this section involve a 64-worker deployment, where workers are dynamically 
migrated to any machine in our 78-node cluster (which may result in several workers 
residing on a single machine). 

Since multiple workers execute each simulation interval in parallel, imbalances 
may exist.  Tasks that complete earlier must wait until the slowest task completes; 
only then is it possible to synchronize state among the tasks and proceed to the next 
simulation interval.   In general, speed and throughput drop as imbalances occur. 



Autonomous, Failure-Resilient Orchestration of Distributed Discrete Event Simulations                                    11  
                                                                                                                                         

 
 
   

 Challenges 4.1
Our research objective is faster, distributed execution of simulations in the presence 
of such uncertainty.  There are several challenges involved in accomplishing this: 
• The number and frequency of synchronization barriers is high: Distributed 

simulations often have multiple synchronization barriers during the course of 
execution. These synchronization barriers are used to exchange information 
about state-changes within particular subtasks that have an impact on the entire 
simulation. In our example case of epidemiological modeling, subtasks 
synchronize their simulation state at the end of each simulation interval. 

• Apportioning tasks among heterogeneous resources: Since the simulation is 
stochastic, the time spent by each task on a particular simulation interval varies. 
The execution times cannot be calculated in a deterministic fashion either before 
or during the simulation run. Apportioning of tasks must account for two 
objectives: (1) minimization of imbalances and (2) avoidance of resource 
slowdowns. 

• Detecting and circumventing resource slowdowns: There is no way to determine 
what percentage of a task has been completed: once a task begins work on a 
particular simulation interval, the only information available is whether the task 
is still executing, has completed, or has failed. Slowdown detection must be done 
as the task is executing and must be inferred based on factors such as CPU 
utilization, memory availability and utilization, disk I/O, and network I/O. 

• Mitigating imbalances in workloads: Imbalances may exist between 
synchronization barriers.  These imbalances may either be due to the scope of a 
particular task or the machine that it is executing on. If an attempt is not made 
to mitigate these imbalances, they will persist for the next synchronization 
barrier and could get worse, leading to longer completion times.  

• Interference uncertainty: The interference (due to other concurrent processes) at a 
machine is unpredictable.  This interference could be periodic or bursty, and can 
occur at any machine at any time. The greater the interference, the greater the 
CPU and memory contention, leading to correspondingly longer execution times.     

 Research Questions 4.2
Research questions that we explore in the context of orchestrating simulations in the 
presence of resource heterogeneity and slowdowns include the following: 
• There is a mix of resources in the system.  Can we profile these resources and 

rank them accordingly? 
• How can we apportion tasks so that we exploit this heterogeneity? Can we 

distribute tasks across resources such that the total execution time for a 
simulation interval is minimized? 

• How can we cope with resource slowdowns?   To accomplish this we must be able 
to identify slowdowns and initiate counter measures to mitigate them. 

• How can we ensure fast completion times in such settings?  

 Methodology:  Circumventing Slowdowns and Coping with Heterogeneity 4.3
Our approach targets several aspects of coping with resource uncertainty. These 
include: profiling resources, apportioning tasks while taking into account both the 
complexity of the task and resource profile, identification of resources that are 
slowing down, and launching speculative tasks on faster resources to circumvent 
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stragglers (tasks still working on a simulation iteration while most of the others have 
finished).  

We gather resource capabilities such as the number of cores and available, 
physical memory, and along with a software benchmark use these profiles to 
normalize and rank resources.  We use this ranking of resources to launch compute-
intensive tasks on best available resources, which are likely to provide the shortest 
completion times for the task. We also launch straggler tasks based on this resource 
ranking.  

We apportion tasks over the available resources based on the expected completion 
times for tasks between synchronization barriers. The objective of this apportioning 
is to minimize imbalances between tasks, i.e., to ensure that tasks complete at more 
or less the same time between synchronization barriers. Tasks that are likely to be 
compute-intensive and long running must be executed on faster machines. 

Since the simulation is stochastic, we cannot deterministically calculate the task 
completion times; rather, we need to predict them. We predict execution times at a 
fine-grained level: for each task and for each simulation interval. We also predict 
completion times for tasks between synchronization barriers. For the simulation that 
we consider, this prediction is based on disease biology (incubation period, infectious 
period, etc.), geographical scope of the region being managed by the particular task, 
and the disease prevalence within the region at the particular synchronization 
barrier. We use artificial neural networks to make this prediction. 

Next, we identify tasks that are likely to impact execution time. These could be 
tasks that have a disproportionate share of the processing workload (even though 
they may execute on faster machines) or may be executing on slower machines. This 
allows us to identify tasks that are likely to take longer to execute and introduce 
imbalances where other tasks must wait at the synchronization barrier. We use the 
synchronization barriers to gather this information and also to apportion workloads 
to mitigate imbalances. 

Another issue that needs to be accounted for is stragglers, which are tasks with 
longer than average completion times. There are two aspects related to dealing with 
stragglers. First, we need to identify tasks that are likely to be stragglers. Second, we 
must circumvent stragglers by launching speculative (backup) tasks on faster 
resources. 

We use speculative tasks as a mechanism to mitigate resource slowdowns. Doing 
so will require us to solve three problems: the which, where and when problems. 
Deciding which tasks to launch will involve detecting which workers are running 
more slowly than expected and which are likely to slow down soon. Deciding where to 
launch the tasks will involve resource state prediction and considerations around 
data locality and network topology. Deciding when to launch will involve solving a 
tradeoff: we want to respond swiftly to changing conditions, but avoid excessive 
overhead from too-frequent launches. 

To identify tasks that are likely to be stragglers, we predict when resources will 
slow down. We use an ANN to predict slowdowns based on tracking CPU utilization, 
the number of processes, and memory utilization including paging. Since execution 
times also increase because of an increase in CPU-bound processes that result in 
increased context switches, we track them as well.  

We then launch speculative tasks for stragglers on better machines. Our approach 
identifies: (1) a set of machines that have spare capacity to take on speculative tasks, 
and (2) the stragglers that are most likely to benefit the simulation (i.e., faster 
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executions of these tasks would decrease imbalances and result in shorter overall 
execution time). We also consider situations without interference and quantify the 
overhead added by the speculative launch mechanism. 

 Profiling resources 4.4
In our public cluster, resources are heterogeneous and we wish to launch tasks on the 
best available resources. We rank resources by CPU speed: our simulation is a CPU-
intensive task, so memory and disk I/O are not expected to be the dominating factors. 
We measured CPU speed with a benchmark called the RAW benchmark suite. 
Because we are using a public cluster, we attempted to avoid having other users’ 
processes interfere with the speed measurement by 1) selecting a benchmark from 
the suite that has a short running time (we chose the FFT benchmark), 2) running 
the benchmark at several different times of day, and 3) choosing the fastest recorded 
time. We hypothesize that the fastest test is the one with the least interference. 

Beyond CPU speed, we also record CPU utilization, memory and network use, and 
disk I/O. Each instance of our test simulation uses a single CPU core and a 
predictable amount of memory, which provides a baseline estimate of the cost of 
launching another worker process.  The criteria we developed to identify resources 
that can run a worker instance without interfering with other users’ processes are 
given in the following subsections. 

4.4.1 CPU 

We account for both user space processing (UserTime) and kernel processing 
(SystemTime).  We also measure the number of active processes (load average).  The 
constraints we developed are (percentages taken across all cores): 

• SystemTime <= 35%, UserTime + SystemTime <= 70% 
• Load Average / Total number of cores <= 3 

4.4.2 Memory 

We consider both existing tasks that may be running in resource-constrained 
situations as well as the conditions for scheduling new tasks.  Acceptable memory 
conditions are: 

• Memory Consumed <= 70% (existing tasks) 
• Memory Consumed <= 50% (new tasks) 

Additionally, we inspect the percentage of I/O requests related to swap operations 
(paging).  If swapping accounts for even a small portion of I/O, then the resource 
lacks memory.  Therefore, we only consider resources that are not actively swapping. 

4.4.3 Network and Disk I/O 

For disk-based I/O, we inspect average disk utilization over a configurable window 
and favor machines at or below 30% of their capacity. We also evaluate the average 
waiting time of all disk requests (await). We ensure that the network latency 
between components is low with a configurable threshold.  In our cluster, we 
considered machines with a ping latency above 5ms to be experiencing slow network 
conditions. 

 Harnessing Resource Profiles  4.5
Our algorithm is built around a sorted list in which each node represents a machine, 
and the list is sorted by the current speed of the machine. The current speed is the 
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product of the “normalized speed” (as measured by the benchmark program) and a 
slowdown factor. The slowdown factor represents the ratio between performance with 
and without resource contention by monitoring long-term trends. The long-term 
trend is the measured historical pattern of usage at certain times of the day. 
Each node of the list contains the items below: 
1. Number of available and occupied resources 
2. Hardware information (CPU, Memory, Disk I/O, Network I/O) 
3. Normalized speed 𝛼! and slowdown factor Si. 
The Controller and Speculator use this list to find the fastest machine. When 
launching speculative tasks, the system will compare the predicted execution time of 
the task on the current machine and the fastest spare machine in the list. Since the 
list is sorted during each update, determining the appropriate machine is fast.  

4.5.1 List updating mechanism 

The list is updated frequently, with the timing of the updates based on two 
heartbeats. The more frequent heartbeat occurs every 10 seconds, and it triggers a 
check of the CPU use, memory use, network use, and disk I/O. If the memory use, 
network use, or disk I/O is over threshold as defined in the previous section, then the 
slowdown factor is set to 0. A slowdown factor of zero will make the computed current 
speed zero, thus placing the machine at the bottom of the sorted list and preventing 
new speculative tasks on the machine. However, there is one exception to this rule 
when a resource has much greater capabilities than the baseline (as detected by our 
benchmark). In these situations, the slowdown factor will not be zeroed if the 
resource in question has unused capacity equal or greater than the baseline 
hardware configuration.  After these aspects have been considered, the measures of 
CPU use are combined into a vector and fed to an ANN to predict the slowdown 
factor. 

The less frequent heartbeat occurs every 5 minutes, and it triggers a check of the 
historical trends data. We measured the usage of all machines in our cluster for 24 
hours to discover patterns. For example, some machines are used for classes during 
the daytime, but are idling at night. There are also programs launched at specific 
times of the day by administrators and by other research groups. If the historical 
usage data shows that the machine will soon be occupied, then the slowdown factor is 
set to zero. 

4.5.2 Launching speculative tasks 

Before launching a speculative task, we consider whether the operation is likely to 
provide a performance gain. Launching a speculative task will impose overheads, 
specifically, transferring a checkpoint over the network. We assume the network 
transfer latency for checkpoint has a linear relationship with the checkpoint size. 

The predicted time for a task to run on the current machine i is represented as T. 
Given the normalized speeds and the slowdown factors found for machines i and j, 
and the transfer latency Ttrans, then the predicted time to transfer a checkpoint to 

machine j and execute the task on machine j is 
!!!!
!!!!

T + Ttrans. If 
!!!!
!!!!

T + Ttrans < T, we 

launch the speculative task and we predict the performance will be better. 
There are two ways the system decides to launch speculative tasks. Between 

simulation intervals, the system will decide whether or not to launch speculative 
tasks. At this time, speculative tasks can start at the same time as the normal tasks, 
avoiding additional latency costs. The second way to launch a speculative task is 
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based on the heartbeat that checks machines’ current speed. If a machine is 
operating slower than our system would expect, we predict whether performance 
would be improved by launching speculative tasks for the all of the tasks currently on 
the slow machine onto the fastest machine. This helps avoid toggling, where loads 
constantly shift between two machines. 

Our system already contains a fault tolerance process in which checkpoints are 
requested when necessary. However, the slowdown detection mechanism requires a 
checkpoint for each simulation interval to enable fast and dynamic migration of 
processes. Therefore, workers also store a local checkpoint on their disk after each 
synchronization point. Local checkpoints only incur network latency in the event of a 
process migration, and are handled by a separate thread to avoid blocking the 
simulation process. This also means that when the Speculator requests a checkpoint, 
the latest local checkpoint will be transmitted without needing to be generated on-
demand. This feature allows us to dynamically manage the tradeoff space between 
I/O overhead and checkpoint availability. 

 When speculative workers are launched, they get added to the worker list 
alongside the other workers that are responsible for the same task. Whichever 
worker finishes the task first will be kept active for subsequent simulation intervals; 
the other workers that were managing the same task are “cleaned up” and returned 
to the worker pool. When requested, workers can directly transmit their state 
information to another worker instance to create a speculative task.  This avoids the 
need for centralized communication through the Controller or Speculator. 

4.5.3 Execution Time Prediction 

We use an additional Artificial Neural Network to predict the slowdown factor. The 
inputs to the ANN are the number of processes on a machine, number of users, load 
averages, and CPU time (system, user, and idle). The output from the ANN is the 
slowdown factor discussed at the beginning of this section. The ANN was configured 
with one hidden layer with 15 hidden units. 

Data to train the ANN was gathered with the RAW benchmark and our own 
monitoring tools. CPU speed was first measured on various machines without load, 
and then the test was repeated while random loads were placed on the machines. We 
used resilient propagation (RPROP) to train the network.  

 
Figure 7 Execution time vs. overhead Figure 8 Ranked selection comparison  
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 Performance evaluation of managing heterogeneity and circumventing slowdowns 4.6
As a first step, we measured the overhead of our slow worker detection mechanism. 
In comparison with the original Granules-NAADSM framework, the new framework 
adds a checkpoint operation every simulation interval. This new step could have a 
negative impact on execution time. 

In this experiment, each worker requested a complete checkpoint message from 
the NAADSM simulator and stored it on the local disk. There is no network 
communication or data compression used in this process. We measured the time gap 
between the checkpoint request and feedback from the simulation. The overhead 
versus execution time is shown in Figure 7. We see that the overhead time is almost 
constant, around 500ms for all simulation intervals. In comparison with the 
execution time of more than 5 seconds on an average simulation interval, this 
overhead is small. 

 Our test environment was a cluster of heterogeneous machines, with considerable 
variation in CPU speed, total memory, and network speed. During the experiments, 
there might or might not be interference from other users. In our experimental 
design, we show results from both situations.  Even if there is no interference from 
other users, our new framework can still provide improved execution times. In 
previous versions of our distributed orchestration system, worker processes were 
launched in a random pattern. With the slowdown detection mechanism, machines 
are ranked by current speed, and so worker processes will be launched onto the 
fastest available machines. The comparison of performance with random machine 
selection vs. selection of the fastest machine is shown in Figure 8. The total execution 
time with random machine selection is 2034.5 seconds, and with selection of the 
fastest machine is 1684.7 seconds, an improvement of 17.2%. The peaks around 
simulation day 100 occur because there is a merge threshold of 5 seconds. The system 
does not do merge operations when the execution time is less than 5 seconds to avoid 
a situation where split and merge overheads dominate the execution time.  As shown 
here, slowdown detection works well even when there is no interference from other 
users of the cluster. 

In the next experiment, we added interference into the cluster by launching 
resource-intensive programs on specific machines before starting the simulation. By 
avoiding busy machines with the machine selection functionality, the split-merge 
strategy performs well even without the speculative launch mechanism. This is 

 
Figure 9 Execution time comparison with/without 

interference 
 

 
Figure 10 Execution time comparison with/without 

slow detection mechanism 
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depicted in Figure 9. 
In the next experiment, we launched resource-intensive programs randomly 

during the execution of the simulation. The performance comparison with and 
without the speculative launch mechanism is shown in Figure 10. Under conditions 
of unpredictable interference, the total execution without the slowdown detection 
mechanism is 2216.7 seconds. With the slowdown detection mechanism, the total 
execution time is 1924.0 seconds, an improvement of 13.2%. 

This experiment shows that even without the slowdown detection mechanism, the 
execution time is not affected greatly by interference in the cluster. This is due to the 
self-adjusting ability of the dynamic split and merge strategy: split and merge 
operations are based on predicted execution time, so the workload will be adjusted if 
a machine is slow or too heavily loaded. But examining the execution time in Figure 
10 during peak execution times (day 150 to day 200), we see that the slowdown 
detection performs better overall. This is due the random timing of the launching of 
interfering programs. Split and merge operations are slow to react to changing 
circumstances because the operations are done only at the end of each simulation 
interval. The slowdown detection algorithm is much faster to react, since it uses 
frequent heartbeats to decide when to launch a speculative task. 

We can conclude that the slowdown detection mechanism performs well in 
different environments with resource uncertainty. With or without interference from 
other users in the cluster, the slowdown detection mechanism outperforms the 
dynamic split and merge strategy without slowdown detection. 

 RELATED WORK 5.
While our system primarily targets cloud or cluster deployments, checkpointing also 
plays an important role in creating fault-tolerant grid environments. Recognizing the 
importance of checkpointing schemes that dynamically adapt to their environment, 
[Chtepen et al. 2009] proposes a number of heuristics for determining a checkpoint 
interval. Unlike our system, their design does not require global state 
synchronization, but it does account for estimated execution time and checkpoint 
overhead to determine whether a job should be allowed to checkpoint its state or not. 

Aurora [Park et al. 2006 and 2007] follows the controller-worker paradigm and 
also supports speculative tasks for fault tolerance and dealing with heterogeneity.  
Aurora shares many similarities with our framework, but does not feature a 
prediction-based fault tolerance module or deal with slowdown detection. 

[Cucuzzo et al. 2007] proposes a heuristic-based method for autonomous 
checkpointing by each logical process in a distributed discrete event simulation. This 
technique accounts for simulation state information to determine when to checkpoint 
and in doing so completely avoids coordination overhead. However, this also results 
in situations where processes must “catch up” with the rest of the system if they have 
not recently recorded a checkpoint. Since our framework is designed for stochastic 
simulations, checkpointed state cannot deviate across simulation iterations.  

[D’Angelo 2011] surveys the challenges and current trends seen in discrete event 
simulation parallelization and distribution, particularly noting the user-facing 
difficulties in running these simulations on a parallel architecture and how the trend 
toward cloud deployments has created a paradigm shift.  For instance, distributed 
simulations that rely on optimistic parallelization with rollback suffer as network 
latencies increase; one possible solution may be conservative time synchronization 
[Vanmechelen et al. 2013]. The proposed multi-agent middleware solution is finer-



18                                                                                                                            Z. Sui et al. 
 

 
 
 

grained than our controller-worker model, but facilitating entity migrations would 
also require a more involved retrofitting process for sequential simulations. 

In the context of distributed event execution with realtime requirements, [Feng 
and Lee 2007] propose an actor-based system that models interactions between 
components as dependencies. This allows the system to provide intelligent 
checkpointing and perform fine-grained rollback operations when a failure occurs, 
contrasting with our approach of synchronizing the simulation interval across all 
workers. However, this process does require more information about the events and 
their interactions. 

Another checkpoint-based approach involving the structured high-level 
architecture (HLA) is presented in [Eklof et al. 2005]. In this case, checkpoints are 
stored in a universal stable storage repository by the federates, and several new 
publish-subscribe interactions are added to model checkpoint-related 
communications. As noted for the previously described technologies, this approach 
requires following a particular simulation structure a priori. 

Ramirez Ortiz and Jiménez have also researched rollback operations and 
speculative execution in discrete event simulations. In their work, a coordinator 
handles snapshotting the simulation, but requires execution to completely halt while 
the process is carried out; our solution interleaves snapshot operations with other 
processing, and only requires the simulation to stop if a failure has occurred 
[Ramirez Ortiz and Jiménez 2011]. 

Lee et al. improves on standard slot scheduling algorithms in MapReduce by 
maintaining a pool of core resources and accelerator resources that are dynamically 
adjusted at runtime, similar to our “spare worker” concept [Lee et al. 2011].  In this 
case, the computing rate (CR) is calculated for each of the heterogeneous resources by 
running a pilot job on every possible hardware configuration.  This helps identify 
machines that can benefit from GPU acceleration, have faster CPUs, etc., but is also 
a greedy approach that may cause overall throughput to decline in some situations. 
Based on this information, the cloud driver makes changes to the resource pool. 

[Roy et al. 2011] uses predictive models for workload forecasting in the context of 
auto-scaling elastic clouds. Specifically, moving averages are computed over a sliding 
window to predict incoming loads and scale accordingly.  In this case, both 
reconfiguration costs and SLA violations are taken into account when managing the 
virtual machines.  

 CONCLUSIONS AND FUTURE WORK 6.
We have devised an adaptive checkpointing strategy and fault tolerance framework 
for discrete event simulations that dynamically selects both the timing and 
mechanism to perform checkpoints. The mechanism to perform checkpoints could 
either be full-fledged or deltas computed based on differences between successive full-
fledged checkpoints. The decision is based on the time it takes to compute the 
checkpoint (and the overhead it adds to the overall simulation), the transmission 
overhead, and the amount of work that needs to be duplicated should the simulation 
be rolled back.  

To our knowledge, this is the first attempt to incorporate fault tolerance into a 
discrete event simulation orchestrated using a stream-processing engine. All 
interactions and control messages are orchestrated as streams. Distributed workers 
that orchestrate this simulation run inside computations that are activated when 
data is available on their input streams.  
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Our framework can handle an arbitrary number of failures. The system can 
sustain permanent failures of all workers in the system. The system allows 
incorporation of redundancy for the checkpoint orchestrator (Speculator). With 
multiple Speculators, when the primary fails, one of the surviving speculators is 
promoted to be the primary. Where there is just one instance of the Speculator, we 
can sustain transient failures (such as restart of a machine) because Speculators 
manage their state by writing to, and reconstructing from, persistent local storage.  

We have verified the correctness of our recovery strategy for the stochastic 
discrete event simulation. We have done this in the presence of multiple, concurrent 
failures and an adaptive checkpointing strategy.  

The overheads introduced by our strategy are acceptable in situations where 
failures do not take place. In situations where a failure occurs, we reduce the 
recovery costs by minimizing the amount of work that needs to be duplicated. 

 Future Work 6.1
While the simple neural network we used to predict changes in system state 
performed well for our purposes, a Recurrent Neural Network (RNN) may provide 
better performance for making predictions due to their internal memory. In the 
future, we will evaluate different prediction techniques, including utilizing Elman 
networks.  

Our delta checkpoint scheme provides different options to improve performance by 
allowing both the compression and suffix sorting algorithms to be changed at 
runtime. Selection of the appropriate algorithms could be performed automatically 
during the training process, or could be changed dynamically by the Speculator as 
conditions in the system change over time.  

We also plan to adapt our parallelization and fault tolerance frameworks to 
oversee the execution of a different discrete event simulation to help identify common 
traits and execution patterns that affect fault tolerance functionality. This could 
incorporate new system health metrics and learning techniques to make our 
framework even more generalizable. 
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