
JavaIntro-notes.pdf

Intro to Java

© 1996-2003 jGuru.com. All Rights Reserved. Intro to Java-1

Introduction to Java
Topics in this section include:

• Source code and compilation

• Class files and interpretation

• Applications versus applets

• Java language fundamentals

• User-defined data types with Java

• Java syntax

Overview
Java is a modern, evolutionary computing language that combines an elegant
language design with powerful features that were previously available primarily in
specialty languages. In addition to the core language components, Java software
distributions include many powerful, supporting software libraries for tasks such
as database, network, and graphical user interface (GUI) programming. In this
section, we focus on the core Java language features.

Java is a true object-oriented (OO) programming language. The main implication of
this statement is that in order to write programs with Java, you must work within
its object-oriented structure.

Object-oriented languages provide a framework for designing programs that
represent real-world entities such as cars, employees, insurance policies, and so
on. Representing real-world entities with nonobject-oriented languages is difficult
because it's necessary to describe entities such as a truck with rather primitive
language constructs such as Pascal's record, C's struct, and others that represent
data only.

The behavior of an entity must be handled separately with language constructs
such as procedures and/or functions, hence, the term procedural programming
languages. Given this separation, the programmer must manually associate a data
structure with the appropriate procedures that operate on, that is, manipulate, the
data.

In contrast, object-oriented languages provide a more powerful class construct

Intro to Java

Intro to Java-2 © 1996-2003 jGuru.com. All Rights Reserved.

for representing user-defined entities. The class construct supports the creation
of user-defined data types, such as Employee, that represent both the data that
describes a particular employee and the manipulation or use of that data.

Java programs employ user-defined data types liberally. Designing nontrivial Java
classes requires, of course, a good working knowledge of Java syntax. The
following sections, illustrate Java syntax and program design in the context of
several Java class definitions.

User-defined Data Types
With Java, every computer program must define one or more user-defined data
types via the class construct. For example, to create a program that behaves like
a dog, we can define a class that (minimally) represents a dog:

class Dog {
 void bark() {
 System.out.println("Woof.");
 }
}

This user-defined data type begins with the keyword class, followed by the
name for the data type, in this case, Dog, followed by the specification of what it
is to be a dog between opening and closing curly brackets. This simple example
provides no data fields, only the single behavior of barking, as represented by the
method bark().

Methods
A method is the object-oriented equivalent of a procedure in nonobject-oriented
languages. That is, a method is a program construct that provides the mechanism
(method) for performing some act, in this case, barking. Given an instance of some
entity, we invoke behavior with a dot syntax that associates an instance with a
method in the class definition:

Method Invocation Syntax

<instance>.<behavior>()

<variable> = <instance>.<behavior>(<arguments>...)

To elicit a bark from a dog fido, for example, the operation would be:

fido.bark()

Intro to Java

© 1996-2003 jGuru.com. All Rights Reserved. Intro to Java-3

Syntactically, Java supports passing data to a method and capturing a value
returned from a method, neither of which takes place in the previous invocation.

Java is a strongly typed language, meaning that it expects variables, variable
values, return types, and so on to match properly, partly because data types are
used to distinguish among multiple methods with the same name. Method return
types and parameters are specified during definition:

Method Definition Syntax

void <method-name>(<arguments>...) {
 <statements>...
}

<return-type> <method-name>(<arguments>...) {
 <statements>...
}

Historically, the combination of method name, return type, and argument list is
called the method signature. With modern OO languages, a class may define
multiple methods with the same name, as long as they are distinguishable by their
signatures; this practice is called method overloading. Java has the restriction that
return type does not contribute to the method signature, thus, having two
methods with the same names and arguments, but different return types is not
possible.

For the current example, the return type of void indicates that bark() does not
compute any value for delivery back it to the invoking program component. Also,
bark() is invoked without any arguments. In object parlance, invoking a method
relative to a particular object (a class instance) is often called message passing. In
this case, the message contains no supplemental data (no arguments).

For now, if we create an instance of Dog, it can bark when provoked, but we have
no way of representing data, for example, how many times it will bark, its breed,
and so on. Before looking at language constructs that will make the Dog data type
more versatile, we must consider a mechanical aspect of the Java language, namely,
what's necessary to run a program.

Java Applications
With the Java class and method syntax in hand, we can design a Java program.
Java applications consist of one or more classes that define data and behavior.
Java applications are translated into a distilled format by a Java compiler. This

Intro to Java

Intro to Java-4 © 1996-2003 jGuru.com. All Rights Reserved.

distilled format is nothing more than a linear sequence of operation-operand(s)
tuples:

<operation> <operand>

<operation> <operand>

<operation> <operand>

This stream of data is often called a bytecode stream, or simply Java bytecodes.
The operations in the bytecode stream implement an instruction set for a so-called
virtual machine (software-based instruction processor), commonly called a Java
virtual machine (JVM). Programs that implement the JVM simply process Java
class files, sometimes specific to a particular environment. For example, Java-
enabled web browsers such as Netscape Navigator and Internet Explorer include a
JVM implementation. Standalone programs that implement the JVM are typically
called Java interpreters.

The Java compiler stores this bytecode stream in a so-called class file with the
filename extension .class. Any Java interpreter can read/process this stream--it
"interprets" each operation and its accompanying data (operands). This
interpretation phase consists of (1) further translating the distilled Java bytecodes
into the machine instructions for the host computer and (2) managing the
program's execution. The following diagram illustrates the compilation and
execution processes:

Java class files are portable across platforms. Java compilers and interpreters are
typically not portable; they are written in a language such as C and compiled to

Intro to Java

© 1996-2003 jGuru.com. All Rights Reserved. Intro to Java-5

the native machine language for each computer platform. Because Java compilers
produce bytecode files that follow a prescribed format and are machine
independent, and because any Java interpreter can read and further translate the
bytecodes to machine instructions, a Java program will run anywhere--without
recompilation.

A class definition such as Dog is typically stored in a Java source file with a
matching name, in this case, Dog.java. A Java compiler processes the source file
producing the bytecode class file, in this case, Dog.class. In the case of Dog,
however, this file is not a Java program.

A Java program consists of one or more class files, one of which must define a
program starting point--Dog.class does not. In other words, this starting point is
the difference between a class such as Dog and a class definition that implements a
program. In Java, a program's starting point is defined by a method named
main(). Likewise, a program must have a well-defined stopping point. In Java,
one way to stop a program is by invoking/executing the (system) method exit().

So, before we can do anything exciting, we must have a program that starts and
stops cleanly. We can accomplish this with an arbitrary, user-defined data type
that provides the main() and exit() behavior, plus a simple output operation to
verify that it actually works:

public class SimpleProgram {
 public static void main(String[] args) {
 System.out.println("This is a simple program.");
 System.exit(0);
 }
}

The signature for main() is invariable; for now, simply define a program entry
point following this example--with the modifiers public and static and the
return type void. Also, System (java.lang.System) is a standard class supplied
with every Java environment; it defines many utility-type operations. Two
examples are illustrated here: (1) displaying data to the standard output device
(usually either an IDE window or an operating system command window) and (2)
initiating a program exit.

Note that the 0 in the call to exit() indicates to the calling program, the Java
interpreter, that zero/nothing went wrong; that is, the program is terminating
normally, not in an error state.

At this point, we have two class definitions: one, a real-world, user-defined data
type Dog, and the other, a rather magical class that connects application-specific

Intro to Java

Intro to Java-6 © 1996-2003 jGuru.com. All Rights Reserved.

behavior with the mechanics of starting and stopping a program.

Now is a good time to get acquainted with your Java development environment. If
you have an integrated development environment (IDE), it may or may not be file-
oriented. With most environments Java source code is stored in a file. One popular
exception is IBM's VisualAge for Java, which stores class definitions in a
workspace area.

When using an IDE that is file-oriented, note that the filenames and class names
must match exactly; in particular, the file and class names are case sensitive. Also,
you must work within the rules established for a Java environment with respect to
system environment variable settings, and so on. The section Runtime
Environments and Class Path Settings includes general information on system
settings.

The first magercise is simple but important, because it tests your Java
configuration. It includes these basic steps:

• Write SimpleProgram exactly as shown here

• Save it as required by the IDE

• Somewhere in the IDE workspace environment

• Or, in a separate file named SimpleProgram.java depending on the IDE

• Build the program

• Execute it

• Observe the output

Magercises occur throughout the course; simply follow the links.

Applications versus Applets
A Java application consists of one or more class files, one of which defines the
main() method. You can run an application in any environment that provides a
Java interpreter, for example, anywhere there's a Java IDE. The Java Runtime
Environment (JRE) from Sun provides an interpreter as well, but omits the
development-related tools such as the compiler.

A Java applet is not an application; it does not define main(). Instead, applets
depend on host applications for start-up, windowing, and shut-down operations,

Intro to Java

© 1996-2003 jGuru.com. All Rights Reserved. Intro to Java-7

typically, a web browser:

Many applets simply render a graphical image in a designated area of the web
browser window; others provide a GUI with command buttons that initiate
application-specific operations. Applets operate under several security
restrictions, which protects users from unknowingly downloading applets that
snoop for private data, damage local file systems, and so on.

Applet programming involves many Java concepts that are, by definition, beyond
the scope of an introductory section. The final topic in this section includes an
introduction to applets (Java Applets).

Java Commenting Syntax
Java supports three types of commenting, illustrated in the following table:

Comment Example Description

int x; // a comment Remainder of line beginning with "//" is a comment
area

/*
The variable x is an
integer:
*/
int x;

All text between the "/*" and "*/", inclusive, is
ignored by compiler

/**
x -- an integer
representing the x
coordinate
*/
int x;

All text between the "/**" and "*/", inclusive, is
ignored by compiler and intended for javadoc
documentation utility

Intro to Java

Intro to Java-8 © 1996-2003 jGuru.com. All Rights Reserved.

coordinate
*/
int x;

documentation utility

The javadoc documentation tool is quite powerful. The standard Java
distribution from Sun includes documentation built with javadoc; hence, one
avenue for learning this tool is to study the HTML documentation alongside the
Java source code, which contains the comments that javadoc converts into
HTML.

Variable Definition and Assignment
Given a user-defined data type such as Dog, we would like to create an instance of
Dog and use it subsequently in a program. Doing so requires both variable
definition and assignment operations. A data definition operation specifies a data
type and a variable name, and optionally, an initial value:

Data Definition

<data-type> <variable>;

<data-type> <variable-1>, <variable-2>, ..., <variable-n>;

<data-type> <variable> = <data-value>;

The data type may be a primitive, or built-in, type or a user-defined type such as
Dog. The value may be a literal value or an instance of a user-defined type such as
Dog. Primitive data types are discussed in Java Data Types.

Several examples of data definitions follow:

Data Definition Examples

int x;

int x = 9;

boolean terminate =
false;

Dog dog = new Dog();

The new operator is described in the next section (Creating Class Instances).

An assignment operation can occur in the following contexts:

Intro to Java

© 1996-2003 jGuru.com. All Rights Reserved. Intro to Java-9

Assignment Operation

<data-type> <variable> = <data-value>;

<data-type> <variable>;
<other-statements>...
<variable> = <data-value>;

The data value to the right of the assignment operator can be a literal value, or any
operation that produces a scalar value. Several examples follow:

Assignment Example Comment

int x = 4; Data definition with assignment

x = 9; Assumes prior definition of x

temperature = 21.4; Assumes prior definition of temperature

dog = new Dog(); Assumes prior definition of dog

Creating Class Instances
With the capability for starting and stopping a program, plus variable definition
and assignment, we can now use the previously developed data type Dog. First,
we modify SimpleProgram to have a more meaningful name, for example,
ADogsLife:

public class ADogsLife {
 public static void main(String[] args) {
 System.exit(0);
 }
}

Next, we define the program's behavior in terms of its main() method.
Specifically, main() creates an instance of Dog named dog (case is significant in
Java) and provokes the dog to bark:

public class ADogsLife {
 public static void main(String[] args) {
 Dog dog = new Dog();
 dog.bark();
 System.exit(0);
 }
}

Intro to Java

Intro to Java-10 © 1996-2003 jGuru.com. All Rights Reserved.

In Java, as with other languages, a program allocates objects dynamically. Java's
storage allocation operator is new:

Storage Allocation Syntax

new <data-type>(<arguments>...)

<data-type> <variable> = new <data-type>(<arguments>...)

The new operator asks the Java runtime environment to create dynamically (on the
fly) an instance of a user-defined data type, for example, "new Dog()". You can
also associate the instance with a variable for future reference (hence, the term
reference variable), for example, "Dog bowwow = new Dog()". The data type for
the reference variable bowwow must be specified to the left of the variable name, in
this case, "Dog bowwow".

Objects receive their storage on/from the heap, which is simply a memory pool
area managed by the Java interpreter. The following diagram illustrates the
memory allocation for the class files, plus the instance of Dog allocated on the
heap:

Java Data Types
Java supports a variety of primitive (built-in) data types such as int for
representing integer data, float for representing floating-point values, and others,
as well as class-defined data types that exist in supporting libraries (Java
packages). (All Java primitive data types have lowercase letters.)

The String class is defined in java.lang, the core package of supplemental class
definitions that are fundamental to Java programming. A more complete reference
to this class includes the package specification java.lang.String. (By

Intro to Java

© 1996-2003 jGuru.com. All Rights Reserved. Intro to Java-11

convention, class names have mixed-case letters: the first letter of each word is
uppercase.)

The Java language has the following primitive types:

Primitive Type Description

boolean true/false

byte 8 bits

char 16 bits (UNICODE)

short 16 bits

int 32 bits

long 64 bits

float 32 bits IEEE 754-1985

double 64 bits IEEE 754-1985

For an overview of common nonprimitive data types, that is, class definitions
provided by the Java environment, see the java.lang package within the
standard Java distribution documentation, or the documentation supplied with
your Java IDE.

Method Overloading
Not all dogs sound alike, however, so to add a little barking variety to the Dog
implementation, we should define an alternative bark() method that accepts a
barking sound as a string:

class Dog {
 void bark() {
 System.out.println("Woof.");
 }

 void bark(String barkSound) {
 System.out.println(barkSound);
 }
}

This version of Dog is legal because even though we have two bark() methods,

Intro to Java

Intro to Java-12 © 1996-2003 jGuru.com. All Rights Reserved.

the differing signatures allows the Java interpreter to chose the appropriate
method invocation. The method definition syntax "void bark(String
barkSound)" indicates that this variation of bark() accepts an argument of type
String, referred to within the method as barkSound.

As another example of method overloading, consider the program DogChorus,
which creates two dogs and elicits a different barking behavior for each dog:

public class DogChorus {
 public static void main(String[] args) {
 Dog fido = new Dog();
 Dog spot = new Dog();
 fido.bark();
 spot.bark("Arf. Arf.");
 fido.bark("Arf. Arf.");
 System.exit(0);
 }
}

Because Dog supports two different barking behaviors, both defined by methods
named bark(), we can design our program to associate either barking behavior
with, say, fido. In DogChorus, we invoke different barking behaviors for fido
and spot. Note that fido changes his bark after hearing spot.

Instance Variables
So far, we're defining instances of objects in terms of their behaviors, which in
many cases is legitimate, but, in general, user-defined data types incorporate state
variables as well. That is, for each instance of Dog, it's important to support
variability with respect to characteristics such as hair color, weight, and so on.
State variables that distinguish one instance of Dog from another are called instance
variables.

Now suppose we add an instance variable to reflect a particular dog's barking
sound; a String instance can represent each dog's bark:

class Dog {
 String barkSound = new String("Woof.");

 void bark() {
 System.out.println(barkSound);
 }

 void bark(String barkSound) {
 System.out.println(barkSound);
 }
}

Intro to Java

© 1996-2003 jGuru.com. All Rights Reserved. Intro to Java-13

The definition of Dog now includes the instance variable barkSound. Each time a
new instance of Dog is created, that instance will include a reference variable for an
instance of String representing that particular dog's bark. This instance variable is
initialized to the default value of "Woof.". Consider the line of code

 String barkSound = new String("Woof.");

This statement allocates an instance of String, initializes it with the value
"Woof." (provided in the parentheses following the String class name), and
stores this data under the reference variable barkSound. Note that the reference
variable barkSound is part of each instance of Dog, but that it references an
instance of String that's allocated on the heap, as is the instance of Dog:

Now that the default barking behavior is represented by an instance variable, we
can remove the "Woof." data from the original bark() method, replacing it with a
reference to the current value of barkSound:

 void bark() {
 System.out.println(barkSound);
 }

That is, we've transferred unconditional state data from a method definition into
an instance variable that can vary from one dog to the next, and perhaps more
importantly, for a particular dog, its value can change dynamically.

Access Methods
In order for the value of an instance variable to vary over time, we must supply a
method to change its value; such a method is typically referred to as an access
method. By convention, a method that's provided simply to affect a change to an
instance variable's value begins with the word "set":

Intro to Java

Intro to Java-14 © 1996-2003 jGuru.com. All Rights Reserved.

 void setBark(String barkSound) {
 this.barkSound = barkSound;
 }

This method is interesting because it uses two different variables with the same
name, barkSound. First, the barkSound defined as an parameter is the new
barking sound. Any unqualified reference to barkSound within this method refers
to this data passed as an argument. We also have, however, a barkSound instance
variable for each dog that is instantiated. With Java, we can use the special
"instance handle" this to refer to the current instance of Dog. Hence,

 this.barkSound = barkSound;

replaces the current value of the instance variable (this.barkSound with the new
value passed as an argument (barkSound) to setBark().

To put the this variable in perspective, suppose we create an instance of Dog
referred to as fido. Then, if we execute setBark() with respect to fido, namely,

 fido.setBark("Ruff.");

the this instance in setBark()is fido and, in particular, this.barkSound is the
barkSound instance variable for the fido object.

In the following version of DogChorus, we create an object, fido, change its
barking characteristic from the default "Woof." to "Ruff.", and then invoke the
barking behavior:

public class DogChorus {
 public static void main(String[] args) {
 Dog fido = new Dog();
 fido.setBark("Ruff.");
 fido.bark();
 System.exit(0);
 }
}

With this modification, the characteristics of an object such as fido are reflected
by both the current values of instance/state variables and the available behaviors
defined by the methods in Dog.

Instance Methods
The type of methods we're designing at present are called instance methods
because they are invoked relative to a particular instance of a class. For this
reason, an instance method can reference an instance variable directly, without the
this qualifier, as long as there is no variable name conflict, for example,

Intro to Java

© 1996-2003 jGuru.com. All Rights Reserved. Intro to Java-15

 void bark() {
 System.out.println(barkSound);
 }

In this case, the no-argument version of bark() references the instance variable
barkSound directly. As implied by the setBark() definition, however, we could
also write bark() as follows:

 void bark() {
 System.out.println(this.barkSound);
 }

Here, there are no other variables within (local to) bark() named barkSound, so
these implementations are equivalent.

Conditional Execution
So far, within each method we've used sequential execution only, executing one
statement after another. Like other languages, Java provides language constructs
for conditional execution, specifically, if, switch, and the conditional operator ?.

Conditional Constructs

if (<boolean-expression>)
 <statement>...
else
 <statement>...

switch (<expression>) {
 case <const-expression>:
 <statements>...
 break;

 more-case-statement-break-groups...

 default:
 <statements>...
}

(<boolean-expression>) ? <if-true-expression>
: <if-false-expression>

The more general construct, if has the syntax:

if (<boolean-expression>)
 <statement>...

where <statement>... can be one statement, for example,

Intro to Java

Intro to Java-16 © 1996-2003 jGuru.com. All Rights Reserved.

x = 4;

or multiple statements grouped within curly brackets (a statement group), for
example,

{
 x = 4;
 y = 6;
}

and <boolean-expression> is any expression that evaluates to a boolean value,
for example,

Boolean
Expression

Interpretation

x < 3 x is less than 3

x == y x is equal to y

x >= y x is greater than or equal to y

x != 10 x is not equal to 10

<variable> variable is true

If the Boolean expression evaluates to true, the statement (or statement group)
following the if clause is executed.

Java also supports an optional else clause; the syntax is:

if (<boolean-expression>)
 <statements>...
else
 <statements>...

If the Boolean expression evaluates to true, the statement (or statement group)
following the if clause is executed; otherwise, the statement (or statement group)
following the else clause is executed.

Boolean expressions often include one or more Java comparison operators, which
are listed in the following table:

Comparison
Operator

Interpretation

Intro to Java

© 1996-2003 jGuru.com. All Rights Reserved. Intro to Java-17

Operator

< less than

<= less than or equal to

> greater than

>= greater than or equal to

== equal to

!= not equal to

Returning to our user-defined type Dog, we can add additional state variables for
more flexible representation of real-world objects. Suppose we add instance
variables gentle and obedienceTrained, which can be true or false:

class Dog {
 String barkSound = new String("Woof.");
 boolean gentle = true;
 boolean obedienceTrained = false;
 ...

In Java, Boolean values are literals (case is significant), and boolean variables
accept either value. For gentle and obedienceTrained there are no new
operators because we're not creating objects--we're creating primitive variables and
assigning them the default values true and false.

Access methods provide the flexibility for modifying these instance variables on a
dog-by-dog basis:

 void setGentle(boolean gentle) {
 this.gentle = gentle;
 }

 void setObedienceTrained(boolean trained) {
 obedienceTrained = trained;
 }

Note that the reference to obedienceTrained in setObedienceTrained() does
not require qualification with this because there is no local variable by the same
name.

Intro to Java

Intro to Java-18 © 1996-2003 jGuru.com. All Rights Reserved.

Methods that Return Values
With these new variables, we can provide convenience methods such as

 boolean isGoodWithChildren() {
 if (gentle == true && obedienceTrained == true)
 return true;
 else
 return false;
 }

This method introduces additional Java syntax. First, instead of the modifier void,
isGoodWithChildren() provides a return type, in this case, boolean. With the
replacement of void by either a primitive, system-, or user-defined data type, the
method must provide a return statement for every execution path possible
through the method--the Java compiler enforces this "contract."

A return statement has the syntax

return <value>;

where <value> is any expression that evaluates to the appropriate return data
type.

For isGoodWithChildren(), if the if statement's Boolean expression evaluates
to true, the first return executes, which terminates the method execution and
returns the result of the evaluation, which in this case is simply the literal value
true. If the Boolean expression evaluates to false, the code block following the
else clause is evaluated, in this case, a single return statement that returns false.

In this example, the Boolean expression is compound--it includes two expressions,
each with the == comparison operator. The comparative expressions are linked
with the logical and operator &&; hence, the complete expression evaluates to
true only if both subexpressions evaluate to true.

Boolean expressions often include one or more Java logical operators, which are
listed in the following table:

Logical Operator Interpretation

&& and ("short-circuit" version)

& and ("full-evaluation" version)

Intro to Java

© 1996-2003 jGuru.com. All Rights Reserved. Intro to Java-19

|| or ("short-circuit" version)

| or ("full-evaluation" version)

With the "short-circuit" versions, evaluation of subsequent subexpressions is
abandoned as soon as a subexpression evaluates to false (in the case of &&) or
true (in the case of ||).

Although isGoodWithChildren() provides a full illustration of if, including the
optional else clause, this method can be coded more succinctly. Java, like C, is a
syntactically powerful language. First, we can actually remove the if because the
return values correspond to the Boolean expression, that is, if the Boolean
expression evaluates to true, return true; otherwise, return false. The more
concise implementation is:

 boolean isGoodWithChildren() {
 return (gentle == true && obedienceTrained == true);
 }

One more reduction is possible. Note that each subexpression involves a boolean
variable compared to the boolean literal true. In this case, each subexpression
can be reduced to the boolean variable itself:

 boolean isGoodWithChildren() {
 return (gentle && obedienceTrained);
 }

Access Methods Revisited
Dog provides set-style access methods for modifying an instance variable. At
times, it's necessary to retrieve an instance variable's value. Typically, if a class
has instance variables that support set operations, they support get operations as
well. For each of our set methods, we should code a corresponding get method, for
example,

 boolean getObedienceTrained() {
 return obedienceTrained;
 }

Note that in the case of boolean instance variables such as obedienceTrained,
some programmers prefer the is-style naming convention over the get-style and
some programmers like to provide both:

 boolean isObedienceTrained() {
 return obedienceTrained;

Intro to Java

Intro to Java-20 © 1996-2003 jGuru.com. All Rights Reserved.

 }

Note that isGoodWithChildren() from the previous section is not really an
access method--it does not return (report) an instance variable's value. Instead, it
combines higher level, meaningful information with respect to an instance of the
class Dog.

Iterative Execution
Java provides the while, do-while, and for language constructs for iterating over
a statement (or statement group) multiple times. while is the more general
iterative construct; for is the more syntactically powerful.

Iterative Constructs

while (<boolean-expression>)
 <statements>...

do
 <statements>...
while (<boolean-expression>)

for (<init-stmts>...; <boolean-expression>; <exprs>...)
 <statements>...

With iteration, we can (to the dismay of our neighbors) make barking behavior
repetitive:

 void bark(int times) {
 while (times > 0) {
 System.out.println(barkSound);
 times = times - 1;
 }
 }

Thus, with yet another bark() method, we support the object-oriented task of
sending a Dog instance the bark message, accompanied with a message request
(method argument) for n barks, represented in the method definition by the
parameter times.

DogChorus now begins to reflect its name:

public class DogChorus {
 public static void main(String[] args) {
 Dog fido = new Dog();
 Dog spot = new Dog();
 spot.setBark("Arf. Arf.");
 fido.bark();

Intro to Java

© 1996-2003 jGuru.com. All Rights Reserved. Intro to Java-21

 spot.bark();
 fido.bark(4);
 spot.bark(3);
 new Dog().bark(4); // unknown dog
 System.exit(0);
 }
}

DogChorus now displays the following:

Woof.
Arf. Arf.
Woof.
Woof.
Woof.
Woof.
Arf. Arf.
Arf. Arf.
Arf. Arf.
Woof.
Woof.
Woof.
Woof.

Note the line in the source code with the comment "// unknown dog". As we
mentioned, Java is a dynamic language, another example of which we illustrate
here. An "unnamed" Dog is instantiated on the fly (appears suddenly from down
the street), joins in the chorus, and then disappears.

That is, with Java we can create an instance of any class on the fly, without
assigning it to a reference variable for future use (assuming we need it only once),
and use it directly. Furthermore, the Java syntax and order of evaluation for "new
<data-type>()" is designed so that we can do this without having to group the
new operation in parentheses.

Java's MultiFunction Operators
We've mentioned that Java is syntactically powerful, like C. Java supports several
powerful, multifunction operators described in the following table:

Multifunction
Operator

Interpretation

++ increment (by 1)

-- decrement (by 1)

Intro to Java

Intro to Java-22 © 1996-2003 jGuru.com. All Rights Reserved.

+= increment (by specified value)

-= decrement (by specified value)

*= multiply (by specified value)

/= divide (by specified value)

&= bitwise and (with specified value)

|= bitwise inclusive or (with specified value)

^= bitwise exclusive or (with specified value)

%= integer remainder (by specified value)

These operators (actually operator combinations) are multifunction operators in
the sense that they combine multiple operations: expression evaluation followed
by variable assignment. For example, x++ first evaluates x, increments the
resulting value by 1, assigns the result back to x, and "produces" the initial value
of x as the ultimate evaluation. In contrast, ++x first evaluates x, increments the
resulting value by 1, assigns the result back to x, and produces the updated value
of x as the ultimate evaluation.

Note that x++ and ++x are equivalent in standalone contexts where the only task is
to increment a variable by one, that is, contexts where the ultimate evaluation is
ignored:

int x = 4;
x++; // same effect as ++x
System.out.println("x = " + x);

This code produces the output:

x = 5

In the call to println(), the argument is a concatenation of the string "x = " and
x after its conversion to a string. String operations, including the use of + for string
concatenation, are discussed in the section Strings.

In the following context, the placement of the increment operator is important:

int x = 4;
int y = x++;

Intro to Java

© 1996-2003 jGuru.com. All Rights Reserved. Intro to Java-23

int z = ++x;
System.out.println(
 "x = " + x + " y = " + y + " z = " + z);

This code produces the output:

x = 6 y = 4 z = 6

The following table includes examples and interpretations:

Multifunction
Operator

Example
Pedestrian
Equivalent

++ x++, ++x x = x + 1

-- x--, --x x = x - 1

+= x += y x = x + y

-= x -= y x = x - y

*= x *= y x = x * y

/= x /= y x = x / y

&= x &= y x = x & y

|= x |= y x = x | y

^= x ^= y x = x ^ y

%= x %= y x = x % y

Note that Java restricts bitwise operations with &, |, and ^ to integer values,
which makes sense. Further information on binary operations is available in many
introductory computer science texts.

Using the decrement operator we can rewrite the iterative operation in bark()
somewhat more succinctly as follows:

 void bark(int times) {
 while (times > 0) {
 System.out.println(barkSound);
 times--;
 }
 }

Further code reduction is possible:

Intro to Java

Intro to Java-24 © 1996-2003 jGuru.com. All Rights Reserved.

 void bark(int times) {
 while (times-- > 0)
 System.out.println(barkSound);
 }

In this case, we use the ultimate evaluation of times in the while construct's
Boolean expression that controls iteration (loop continuation). In particular,
times-- decrements the variable but "produces" the initial value of times for the
expression evaluation proceeding the greater-than comparison operation.

Strings
As mentioned, String is a system-defined class--not a primitive--defined in
java.lang, the core package of supplemental class definitions included with all
Java distributions. The lang package is considered so essential that no steps are
neccessary by the programmer to use its classes. A quick examination of
java.lang.String shows an extensive number of methods for string
manipulation.

The lang package also provides a complementary class,
java.lang.StringBuffer. String instances are immutable; that is, they cannot
be modified. To use equivalent terminology, String operations are
nondestructive. A programmer simply creates strings, uses them, and when there
is no further reference to them, the Java interpreter's garbage collection facility
(Java Garbage Collection) recovers the storage space. Most of the string-oriented
tasks necessary for normal programming can be accomplished with instances of
String (which is quite efficient), for example, creating string constants,
concatenating strings, and so on.

StringBuffer, on the other hand, is more powerful. It includes many methods
for destructive string operations, for example, substring and character-level
manipulation of strings such as splicing one or more characters into the middle of a
string. A good rule of thumb is to use String wherever possible, and consider
StringBuffer only when the functionality provided by String is inadequate.

In an earlier section, we performed a common display operation involving strings,
namely:

System.out.println("x = " + x);

This simple line of code demonstrates several string-related issues. First, note that
println() accepts one argument, which is satisfied by the result of the
expression evaluation that includes +. In this context, + performs a string

Intro to Java

© 1996-2003 jGuru.com. All Rights Reserved. Intro to Java-25

concatenation.

Because + is recognized by the Java compiler as a string concatenation operator,
the compiler will automatically generate the code to convert any non-String
operands to String instances. In this case, if x is an int with the value 5, its
value will be converted, generating the string constant "5". The latter is
concatenated with "x = " producing "x = 5", the single argument to println().

Thus, in the earlier example, we had the code

int x = 4;
x++; // same effect as ++x
System.out.println("x = " + x);

which produces the output:

x = 5

Note that you can use this automatic conversion and concatenation anywhere, not
just as an argument to a method such as println(). This feature is incredibly
powerful and convenient, demonstrating once again Java's syntactic power:

String waterCoolerGreeting;
if (employee.getAge() > 40) {
 waterCoolerGreeting =
 employee.getFirstName() +
 "! Wow, what's it like to be " +
 employee.getAge() + "?";
}
else
 waterCoolerGreeting =
 "Hi, " + employee.getFirstName() + "!"

Another issue is the use of a double quote-delimited character sequence directly,
for example, "x = ". Because String is a class, the general way to create a string
instance is:

String prompt = new String("x = ");

Note that we have to provide a string in order to create a string! As a convenience
for the programmer, Java always recognizes a sequence of characters between
double quotes as a string constant; hence, we can use the following short-cut to
create a String instance and assign it to the reference variable prompt:

String prompt = "x = ";
String barkSound = "Woof.";

One final issue is that automatic conversion to a String instance works for

Intro to Java

Intro to Java-26 © 1996-2003 jGuru.com. All Rights Reserved.

objects as well as for integers and other primitives. How? All Java classes are a
specialization of the most general Java class java.lang.Object, which implies
that all classes automatically inherit its toString() method. (Class inheritance is
beyond the scope of this section, but this one issue is quite interesting and useful
now.) During automatic conversions of objects to strings, the Java compiler
invokes an object's toString() method to do this object-specific conversion.

The toString() method inherited from Object does very little--a placeholder
method really. For every class we design, we can (and should) provide a simple
toString() method that concatenates together pertinent information for that
instance. It is definitely worth the effort to provide toString() because it is
incredibly useful in debugging operations.

Assuming the existence of several additional instance variables and access methods
that distinguish one dog from another, let's define a toString() method that
returns a collection of descriptive information about an instance of Dog:

class Dog {
 String barkSound = "Woof.";
 String name = "none";
 String breed = "unknown";
 boolean gentle = true;
 boolean obedienceTrained = false;
 int age = 0;
 ...
 public String toString() {
 return "[name = " + name + "] " +
 "[breed = " + breed + "] " +
 "[age = " + age + "] ";
 }
 ...

The test program TestDogToString uses the Dog instance directly in a display
statement:

public class TestDogToString {
 public static void main(String[] args) {
 Dog bruno = new Dog();
 bruno.setBark("RRUUFFFF.");
 bruno.setName("Bruno");
 bruno.setBreed("Newfoundland");
 bruno.setAge(14);
 bruno.bark();
 System.out.println(bruno); // automatic conversion
 }
}

Running this program displays:

Intro to Java

© 1996-2003 jGuru.com. All Rights Reserved. Intro to Java-27

RRUUFFFF.
[name = Bruno] [breed = Newfoundland] [age = 14]

For now, note that the toString() method must have the public modifier. Java
is a powerful language and many of its features such as inheritance, data and
method accessibility, and others are discussed elsewhere. The toString()
functionality is convenient and warrants early coverage, despite these unaddressed
issues. It's a very good idea to include a toString() method for every user-
defined data type.

Reference Variable Usage
It's common to use the term reference variable for any variable that holds a
reference to dynamically allocated storage for a class instance, for example, fido
in the following code:

Dog fido = new Dog();

In reality, all variables in high-level languages provide a symbolic reference to a
low-level data storage area. Consider the following code:

int x;
Dog fido;

Each of these variables represents a data storage area that can hold one scalar
value. Using x we can store an integer value such as 5 for subsequent retrieval
(reference). Using fido we can store a data value that is the low-level address (in
memory) of a dynamically allocated instance of a user-defined data type. The
critical point is that, in both cases, the variable "holds" a scalar value.

In both cases, we can use an assignment operation to store a data value:

int x = 5; // 1.
int y = x; // 2. x's value also stored in y
Dog fido = new Dog(); // 3.
Dog myDog = fido; // 4. fido's value also stored
 // in myDog
Dog spot = null; // 5.

In the second line, y is initialized with the current value of x. In the fourth line,
myDog is initialized with the current value of fido. Note, however, that the value
in fido is not the instance of Dog; it is the Java interpreter's "recollection" of
where (in memory) it stored the instance of Dog. Thus, we can use either reference
variable to access this one instance of Dog.

With objects, the context in which we use the variable determines whether it

Intro to Java

Intro to Java-28 © 1996-2003 jGuru.com. All Rights Reserved.

simply evaluates to the memory address of an object or actually initiates more
powerful operations. When the usage involves dot notation, for example,
fido.bark(), the evaluation includes binding the object to the appropriate
method from the class definition, that is, invoking a method and performing the
implied actions. But, when the usage is something like "... = fido;", the
evaluation is simply the address.

Consider the expression evaluations that take place within the parentheses in the
following code:

String sound = "Woof."; // 1.
fido.bark(sound); // 2. void bark(String barkSound) {...}
int numberBarks = 4; // 3.
fido.bark(numberBarks); // 4. void bark(int times) {...}

In the first line, the String instance "Woof." is dynamically allocated in storage
and its location/address stored in sound. In the second line, the evaluation of the
argument to bark() is simply the scalar value (memory address) stored in the
sound reference variable because it is more logical to pass along a scalar value than
to make another copy of the string instance. That is, the argument is a copy of the
scalar value held in sound.

In the fourth line, the evaluation of the argument to bark() is simply the scalar
value stored in numberBarks. In both cases, the data passed as arguments agree in
type with the respective parameters in the method definitions. And, in both cases,
the method invocation involves making a copy of the value and passing the copy
forward.

In the latter case, this process is generally called call by value because the invoked
method receives a copy of the ultimate value (4) from the int variable
numberBarks. When the argument and parameter types are nonprimitive (a
defined class), this process is generally called call by reference because the invoked
method receives a copy of a reference value.

Consider the implication for how the parameters are used in the invoked methods.
In the latter case, the int parameter times is actually modified (decremented) in
the method:

 void bark(int times) {
 while (times-- > 0)
 System.out.println(barkSound);
 }

This modification does not, of course, affect numberBarks, which exists in a

Intro to Java

© 1996-2003 jGuru.com. All Rights Reserved. Intro to Java-29

different context (in the invoking method main()), because this method receives a
copy of the value in numberBarks.

In the former case, the String parameter barkSound is evaluated as the argument
to println(), but because it is a reference variable, the scalar value is, once again,
copied and passed forward in the method invocation chain:

 void bark(String barkSound) {
 System.out.println(barkSound);
 }

This evaluation of a reference variable is consistent with a previous example from
the section Strings:

Dog bruno = new Dog();
...
System.out.println(bruno);

In this case, the expression evaluation for the argument to println() is a
reference variable alone (no dot notation), so its scalar value is copied and passed
alone. In both cases, the context, that is, the ultimate evaluation within
println(), requires automatic conversion to a string for display. Ultimately,
within one of the println() methods (actually, after yet another round of
invocations in the case of bruno), dot notation is finally applied to the object, in
effect, "<reference-variable>.toString()".

There is one important ramification of call-by-reference argument passing. If a
method received a reference to an object, it can potentially modify the state of that
object:

class Person {
 ...
 void walkDog(Dog dog) {
 if (dog.barksAtEverything() && dog.tugsAtLeash())
 dog.setGentle(false);
 }
 ...
}

Therefore, in designing classes the burden is on the class designer to control which
state variables can be modified, and by whom. Instance variable and instance
method accessibility issues are discussed elsewhere.

Default Variable Initializations
In Java, variable initialization depends on context. Consider the following:

Intro to Java

Intro to Java-30 © 1996-2003 jGuru.com. All Rights Reserved.

int x;
Dog fido;

If x and fido are instance variables, they are automatically initialized to 0 and
null, respectively. null is a special literal that can be assigned to any reference
variable.

In general, if there is no explicit initialization for an instance variable definition,
Java automatically initializes the variable to a "zero-like" value, depending on the
data type:

Data Type Default Initialization Value

boolean false

byte 0

char \u0000

short 0

int 0

long 0

float 0.0

double 0.0

<user-defined-type> null

Consider the following program:

public class TestVariableInit {
 public static void main(String[] args) {
 TestClass tc = new TestClass();
 System.out.println("tc.iStr = " + tc.iStr);
 System.out.println("tc.i = " + tc.i);
 }
}
class TestClass {
 int i; // instance variable
 String iStr; // instance variable
}

TestVariableInit produces the following output:

D:\>java TestVariableInit

Intro to Java

© 1996-2003 jGuru.com. All Rights Reserved. Intro to Java-31

tc.iStr = null
tc.i = 0

Several books state that this default initialization applies in all contexts, for
example, with variables local to a method (local variables), and that in the case of
uninitialized local variables the compiler will generate a warning, or possibly an
error, depending on the Java environment.

The fact is that, historically, several Java environments have performed no
initialization for local variables and have given no warning or error, in which case
the value is garbage. This situation can produce very hard to diagnose runtime
errors.

In the case of the Java Development Kit (JDK) from Sun Microsystems, the
compiler reports uninitialized local variables as an error--at the point of their
reference. Suppose we modify main() in TestVariableInit as follows:

 public static void main(String[] args) {
 TestClass tc = new TestClass();
 String lStr; // local variable
 int i; // local variable
 System.out.println("tc.iStr = " + tc.iStr);
 System.out.println("tc.i = " + tc.i);
 System.out.println("lStr = " + lStr);
 System.out.println("i = " + i);
 }

Attempting to compile TestVariableInit produces the following output:

D:\>javac TestVariableInit.java
TestVariableInit.java:8: Variable lStr may not
have been initialized.
 System.out.println("lStr = " + lStr);
 ^
TestVariableInit.java:9: Variable i may not
have been initialized.
 System.out.println("i = " + i);
 ^
2 errors

In this type of situation, the idea that the Java environment guarantees a default
value, but simply doesn't allow you to use it, is rather ridiculous. (If a tree falls in
the forest, does it make a sound if no one is there to hear it?)

Most programmers would agree that instance variables should be initialized for the
sake of readability, and local variables must be initialized for the sake of
programmers' sanity everywhere, that is, for wherever and with whatever
environment the source code might be compiled today, tomorrow, and after no one

Intro to Java

Intro to Java-32 © 1996-2003 jGuru.com. All Rights Reserved.

remembers who wrote the code.

Arrays
Java provides several classes for managing sets or collections of data, for example,
Vector (see java.util.Vector). And, of course, you can design your own
classes.

In addition, Java supports arrays. A Java array is different from a user-defined
container object such as a Vector instance in the sense that Java provides built-in,
language-level syntactic support for arrays, as do many other languages. Although
language-level support for arrays increases the complexity of the language
definition, it's justified (in the minds of most programmers) because array usage is
entrenched in traditional programming.

An array is a linear collection of data elements, each element directly accessible via
its index. The first element has index 0; the last element has index n - 1. It has the
form:

Generic Array Object

elements

element type

element 0

element 1

...

element n - 1

The syntax for creating an array object is:

Array Definition

<data-type>[] <variable-
name>;

This declaration defines the array object--it does not allocate memory for the array
object, nor does it allocate the elements of the array. Also, you may not specify a
size within the square brackets.

Intro to Java

© 1996-2003 jGuru.com. All Rights Reserved. Intro to Java-33

To allocate an array, use the new operator:

int[] x = new int[5]; // array of five elements

The array x of Java primitives has the form:

new int[5]

5

int

0

0

0

0

0

Consider an array definition for a user-defined type such as Dog:

Dog[] dog = new Dog[5];

This definition creates the array object itself, but not the elements:

new Dog[5]

5

Dog

null address

null address

null address

null address

null address

Subsequently, you can use the new operator to create objects in order to initialize
the array elements (which are reference variables):

Intro to Java

Intro to Java-34 © 1996-2003 jGuru.com. All Rights Reserved.

dog[0] = new Dog();
...
dog[4] = new Dog();

To create multidimensional arrays, simply create arrays of arrays, for example,

T[][] t = new T[10][5];

This definition creates ten arrays of references to arrays of references for objects
of type T. This definition does not allocate memory for instances of T.

There is a short-hand notation for defining an array and initializing its elements in
one step using comma-separated data values between curly brackets:

Array Definition and Initialization

<data-type>[] <variable-name> = {
 <expression>, <expression>, ...
};

The following table provides examples:

Examples of Array Definition and Initialization

int x = 4;
int[] anArray = {3, x, 9, 2};

String[] seasons = {"winter", "spring", "summer", "fall"};

Note that the array size is determined from the number of initializers.

Accessing an undefined array element causes a runtime exception called
ArrayIndexOutOfBoundsException. Accessing a defined array element that has
not yet been assigned to an object results in a runtime exception called
NullPointerException.

Arrays are useful for enhancing the versatility of our user-defined type Dog.
Suppose we add an array variable to store a dog's daily diet:

class Dog {
 String[] dailyDiet = null;
 String barkSound = "Woof.";
 String name = "none";
 String breed = "unknown";
 ...

dailyDiet is initialized to null, suggesting that there is no legitimate default

Intro to Java

© 1996-2003 jGuru.com. All Rights Reserved. Intro to Java-35

value. That is, the class definition assumes that an access method will initialize
this field, and methods that use this variable should handle a null value gracefully.

Next, we provide access methods for setting and getting the diet:

 void setDiet(String[] diet) {
 dailyDiet = new String[diet.length];
 for (int i = 0; i < diet.length; i++)
 dailyDiet[i] = diet[i];
 }

 String[] getDiet() {
 return dailyDiet;
 }

setDiet() creates an (instance variable) array dailyDiet from the array passed
as an argument, represented by the parameter diet. setDiet() uses the length
variable of the parameter diet (available for all arrays) to determine the number of
elements. This value appears directly within the "[]" brackets following the new
operator to allocate the required number of elements, each of which can hold a
String reference variable.

In this situation, we use the for construct to iterate over the array. The for
construct has the syntax:

for (<init-stmts>...; <boolean-expression>; <exprs>...)
 <statements>...

The iteration control area for the for statement has three semicolon-separated
components. The first component <init-stmts>... is one or more comma-separated
initializations, performed once prior to the first iteration. The third component
<exprs>... is one or more comma-separated expressions, performed after each
iteration cycle. The second component is the iteration test condition. As with a
while statement, this test is performed before each iteration cycle.

The for loop control area initializes one index variable i to 0. After each iteration
its value is incremented so that it indexes the next element in the array. In the
statement group area (the loop body), we copy each reference variable array
element from the parameter array to the instance variable array.

The following method demonstrates that the Dog class definition must handle
null values for dailyDiet gracefully:

 void displayDiet() {
 if (dailyDiet == null) {
 System.out.println(

Intro to Java

Intro to Java-36 © 1996-2003 jGuru.com. All Rights Reserved.

 "No diet established for " + getName() + ".");
 return;
 }
 else {
 System.out.println(
 "The diet established for " + getName() + " is:");
 for (int i = 0; i < dailyDiet.length; i++)
 System.out.println(dailyDiet[i]);
 }
 }

The following program creates a Dog instance, establishes its daily diet, and
displays the diet:

public class DogDiet {
 public static void main(String[] args) {
 Dog fido = new Dog();
 fido.setName("Fido");
 String[] diet = {
 "2 quarts dry food",
 "1 can meat",
 "2 buckets fresh water"
 };
 fido.setDiet(diet);
 fido.displayDiet();
 }
}

DogDiet produces the following output:

D:\>java DogDiet
The diet established for Fido is:
2 quarts dry food
1 can meat
2 buckets fresh water

Equality
There is a difference between comparing primitives for equality and comparing
two objects for equality. If the value 5 is stored in two different int variables, a
comparison of the variables for equality will produce the boolean value true:

public class TestIntComparison {
 public static void main(String[] args) {
 int x = 5, y = 5;
 System.out.println(
 "x == y yields " +
 (x == y));
 }
}

TestIntComparison produces the following output:

Intro to Java

© 1996-2003 jGuru.com. All Rights Reserved. Intro to Java-37

D:\>java TestIntComparison
x == y yields true

The equality operator for primitives compares the values.

On the other hand, the equality operator for objects compares the references not
the content of the objects. It asks, "do these references refer to the same object?"
Consider a trivial version of Dog for illustration purposes that only has a tag
number and an age.

class Dog {
 int tag;
 int age;
 public void setTag(int t) {tag=t;}
 public void setAge(int a) {age=a;}
}

If you have two dogs, even if they have the exact same content, they are not equal
using the == operator. In the following code fragment, the output will show that a
and b are not equal according to this operator.

Dog a = new Dog();
a.setTag(23129);
a.setAge(7);
Dog b = new Dog();
b.setTag(23129);
b.setAge(7);
if (a==b) {
 System.out.println("a is equal to b");
}
else {
 System.out.println("a is not equal to b");
}

So, how do you compare two objects by value not by reference? Java has a
convention that says method equals() defines object value equality. There is a
definition of equals() in class Object that is used by default if you do not
override it in a subclass. To compare values of dogs a and b, you would rewrite
the comparison above as:

if (a.equals(b)) {
 System.out.println("a is equals() to b");
}
else {
 System.out.println("a is not equals() to b");
}

In this case, the two dogs will still be found equal unless you override equals()
in Dog because Object.equals() mimics the == operator functionality. The

Intro to Java

Intro to Java-38 © 1996-2003 jGuru.com. All Rights Reserved.

definition of equals() in Dog is fairly straightforward:

class Dog {
 int tag;
 int age;
 public void setTag(int t) {tag=t;}
 public void setAge(int a) {age=a;}
 public boolean equals(Object o) {
 Dog d = (Dog)o;
 if (tag==d.tag && age==d.age) {
 return true;
 }
 return false;
 }
}

Why does equals() define the argument type as Object instead of Dog? Because
you are overriding the definition of equals() from the superclass, Object, you
must repeat the same signature. You expect the argument coming in to be another
Dog, so you cast the argument to a Dog in order to access its fields.

However, since equals() is defined in Dog, you should check to see that the
incoming object is in fact a Dog because somebody could have said:

fido.equals("blort");

The "blort" string is a kind of Object and, hence, would match the equals()
signature in Dog. A correct version of equals() is:

public boolean equals(Object o) {
 if (o instanceof Dog) {
 Dog d = (Dog)o;
 if (tag==d.tag && age==d.age) {
 return true;
 }
 }
 // false if not Dog or contents mismatched
 return false;
}

The instanceof operator asks whether or not o is a kind of Dog (which includes
subclasses of Dog).

Comparison of strings introduces a final wrinkle to comparing objects. Is

"abc"=="def"

true or false? This is false because they are physically different objects (obvious
because they have different content). However, is the following expression

Intro to Java

© 1996-2003 jGuru.com. All Rights Reserved. Intro to Java-39

"abc"=="abc"

true or false? Unfortunately, it depends on the compiler. The compiler is free to
optimize those two references to "abc" into one object instead of two objects, in
which case the expression is true. However, it does not have to perform this
optimization--the expression could be false!

Unless you really want to determine if two strings are physically the same object,
always use the equals() method:

boolean b = "abc".equals("def"); // false
boolean c = "abc".equals("abc"); // true

Expressiveness
We mentioned that Java is a syntactically powerful language. As an example of
Java's expressiveness, as well as Java's expression evaluation order, this section
demonstrates how to design a class that supports "chained method evaluation."

Java evaluates expressions from left to right, subject to the standard operator
precedence rules. Of course, evaluation order can be controlled with groups of
parentheses, as with other languages:

int x = (4 + 32) / (2 + 1); // x == 12

We mentioned that the new operator has a convenient left-to-right evaluation
precedence that facilitates one-shot creation of objects, followed by a method
invocation to perform some operation:

new Dog().bark();

The expression evaluation proceeds as follows:

1. new Dog() yields an unnamed instance of Dog

• Call it "dogWithNoName"

2. This instance is bound to bark() and executed

• "dogWithNoName.bark()"

An important point is that Java continues this "evaluation plus binding" strategy
in a left-to-right fashion until it consumes the entire expression. Thus, as long as
"something" to the left of a dot evaluates to an object and "something" to the right
of a dot evaluates to a method, Java will bind the method to the object and

Intro to Java

Intro to Java-40 © 1996-2003 jGuru.com. All Rights Reserved.

perform the operation.

Consider the following program:

public class EvalDemo {
 public static void main(String[] args) {
 EvalDemo e = new EvalDemo();
 e.printIt("One, ")
 .printIt("Two, ")
 .printIt("Three.");
 }

 public EvalDemo printIt(String s) {
 System.out.print(s);
 return this;
 }
}

It defines the method printIt(), which has an interesting design. The return type
is the class name, EvalDemo, and the method finishes with a return statement for
the current instance itself, namely, this. Thus, given an instance of this class, we
can write code such as the following:

e.printIt("One, ").printIt("Two, ").printIt("Three.");

Each invocation of printIt() performs a unit of work, in this case, displaying a
message, and then again yields (evaluates to) the current object. The expression
evaluation then continues with

<current-object>.printIt("Two, ").printIt("Three.");

and so on, until the entire expression is consumed.

The output from this program confirms the left-to-right evaluation:

D:\>java EvalDemo
One, Two, Three.

Anytime you have a class design with void methods, that is, the methods
otherwise do not need to return a particular value, you can use this strategy to
support method chaining.

Garbage Collection
One of the really powerful features of Java is its memory-management strategy.
Java allocates objects on the heap dynamically as requested by the new operator:

Intro to Java

© 1996-2003 jGuru.com. All Rights Reserved. Intro to Java-41

Other languages put the burden on the programmer to free these objects when
they're no longer needed with an operator such as delete or a library function
such as free(). Java does not provide this functionality for the programmer
because the Java runtime environment automatically reclaims the memory for
objects that are no longer associated with a reference variable. This memory
reclamation process is called garbage collection.

Garbage collection involves (1) keeping a count of all references to each object and
(2) periodically reclaiming memory for all objects with a reference count of zero.
Garbage collection is an old computing technology; it has been used with several
computing languages and with environments such as text editors.

Consider the following method:

...
 void aMethod() {
 Dog dog = new Dog();
 // do something with the instance dog
 ...
 }
...

dog is a local variable within aMethod(), allocated automatically upon method
invocation. The new operation creates an instance of Dog; its memory address is
stored in dog; and, its reference count is incremented to 1. When this method
finishes/returns, the reference variable dog goes out of scope and the reference
count is decremented to 0. At this point, the Dog instance is subject to reclamation
by the garbage collector.

Next, consider the following code segment:

...
while (true)

Intro to Java

Intro to Java-42 © 1996-2003 jGuru.com. All Rights Reserved.

 Dog dog = new Dog();
...

Each iteration of the while loop (which continues forever) allocates a new
instance of Dog, storing the reference in the variable dog and replacing the
reference to the Dog instance allocated in the previous iteration. At this point, the
previously allocated instance is subject to reclamation by the garbage collector.

The garbage collector automatically runs periodically. You can manually invoke
the garbage collector at any time with System.gc().

Runtime Environments and Class Path Settings
The Java interpreter (runtime environment) dynamically loads classes upon the
first reference to the class. It searched for classes based on the directories listed in
the environment variable CLASSPATH. If you use an IDE, it may automatically
handle CLASSPATH internally, or write a classpath setting to the appropriate
system file during installation.

If you do not use an IDE, for example, if you're using the Java Development Kit
(JDK) from Sun, you may have to set a classpath before running the Java
compiler and interpreter, javac and java, respectively. Also, note that in most
situations the installation procedure will automatically update the PATH
environment variable, but if you're unable to run javac or java, you should be
aware that this setting could be wrong.

PATH environment variable settings vary across operating systems and vendors. In
a Windows environment, the following setting augments the old/existing PATH
setting (%PATH%) with c:\java\bin:

set PATH=%PATH%;c:\java\bin

For this example, when attempting to run a Java IDE, or the JDK's compiler or
interpreter, Windows includes the directory c:\java\bin in the search for the
executable program. Of course, this setting (c:\java\bin) will vary from one
Java environment to the next. Note that the path separator character is ";" for
Windows environments and ":" for UNIX environments.

If you find it necessary to set the CLASSPATH environment variable, for example, if
you're using the JDK from Sun, it should include all directories on your computer
system where you have Java class files that you want the Java compiler and
interpreter to locate. As you add new class-file directories, you will typically
augment this classpath setting. In a Windows environment, the following
statement sets CLASSPATH to include three components/sites:

Intro to Java

© 1996-2003 jGuru.com. All Rights Reserved. Intro to Java-43

set CLASSPATH=c:\java\lib\classes.zip;c:\myjava\classes;.

Note that this setting includes a zipped class file archive classes.zip in the lib
directory of a particular Java environment's distribution directory, represented
generically here as c:\java\. That is, most Java environments can read class files
stored in archive files of type .zip and .jar, as well as unarchived class files in
any specified directory. During installation, many Java environments "remember"
the location of their class files; thus, setting the Java environment's class file
location is not necessary.

In this example, CLASSPATH's semicolon-separated entries also includes
c:\myjava\classes\, a personal/user collection of class files, and ".", which
represents the current directory. The latter setting is convenient for working with
Java files in an arbitrary directory that's not listed in the classpath setting.

Windows 9x and NT users can set classpaths manually with a text editor in the
file autoexec.bat, plus Windows NT users can set a classpath via the control
panel's System dialog. UNIX users can set a classpath manually in the
appropriate shell script's configuration file. Please refer to the appropriate system
reference books and documentation that describe how to set an environment
variable.

If you're using the JDK from Sun, you can (1) install one of several freeware, or
cheapware, tools that automate the process of presenting a text editor window for
writing Java programs and then invoking javac or java from a graphical IDE
button or (2) invoke these programs directly from a command window.

It's impractical to attempt a demonstration of the many IDEs, however, compiling
and running a Java application with the JDK is quite straightforward. The
following commands demonstrate the appropriate commands:

D:\>javac SimpleProgram.java
D:\>java SimpleProgram
This is a simple program.

Your Java environment will almost certainly vary in several ways from what
we've described here.

Java Applets
Java is a powerful and elegant programming language. Ironically, however, many
people think of Java only in terms of its use for developing applets. In reality,
Java is becoming the language of choice for a broad range of other development

Intro to Java

Intro to Java-44 © 1996-2003 jGuru.com. All Rights Reserved.

areas. Nevertheless, applets play an role important in many intranet environments
because they provide an (elegant) way of implementing web-based user interfaces
to enterprise-wide computing services.

An applet is an instance of a user-defined class that specializes (inherits from)
Applet (java.applet.Applet). Class inheritance is beyond the scope of this
section, but, for now, to specialize a class is to extend its capabilities. Applet is a
placeholder class with an empty paint() method. Thus, to develop a minimal
applet that displays in a portion of a web browser window, you implement a
paint() method that renders graphical output.

Applets employ Java's Abstract Windowing Toolkit (AWT) for the Graphics
class, which provides drawing primitives, as well as for GUI components such as
Button and TextField. With these components it's straightforward to design
graphical forms-entry utilities that corporate-wide users access from a web
browser.

Although applet programmers often develop task-specific implementations of
several methods such as init(), start(), stop() that control the applet
lifecycle in the browser window, a minimal example with init() and paint() is
sufficient here. DogApplet.java implements a simple applet that renders a
graphical barking message:

import java.awt.*;
import java.applet.Applet;
public class DogApplet extends Applet {
 public void init() {
 setBackground(Color.pink);
 }
 public void paint(Graphics g) {
 g.drawString("Woof!", 10, 20);
 }
}

init() set the background to an uncommon color to ensure that its allocated
browser window area is visible. Java-enabled web browsers execute init() only
once, and prior to other methods. paint() uses the Graphics instance, passed as
an argument by the browser environment, to draw a string at coordinates (10, 20)
relative to the applet's window area.

To specify an applet in a web page, you must provide an HTML applet tag that
specifies the class file (code="class-file") and its relative location
(codebase="location"), as well as a width and height request for the applet's
window area relative to other components in the web page. For example, this

Intro to Java

© 1996-2003 jGuru.com. All Rights Reserved. Intro to Java-45

document includes the following applet tag:

<applet code="DogApplet" codebase="classes"
 width=100 height=50>
</applet>

In processing this tag the web browser:

• Loads the DogApplet class file

• Allocates its area in the window

• Instantiates DogApplet

• Executes prescribed methods such as init()

DogApplet appears as follows:

Applets are addressed elsewhere in detail. One reason for mentioning them in this
introduction is to point out that applet development is not trivial, and in many
cases, is not the best solution for simple animations.

It's true that applets can be used for iterating over a series of GIF images to
present a simple animation. Recently, however, with the availability of several
editors for animated GIF images, the latter is often more appropriate for simple
animations. With GIF editors you can easily control common animation
characteristics, whereas with applets you must program this functionality. Of
course, the applet technology provides a more powerful range of programming
facilities for handling complex animations.

Further Reading and References
Complete information on the Java language, including all syntax-related issues
such as operator precedence, literals, and so on is available in The Java Language
Specification, which is included in the following list. The following list of
references includes several of the more popular Java programming books as well as
an academic-oriented, introduction to programming with Java (Java Gently), and
lastly, the online tutorial link at the Sun website:

Intro to Java

Intro to Java-46 © 1996-2003 jGuru.com. All Rights Reserved.

• The Java Language Specification, Gosling, J., Joy, B., and Steele, G. Addison-
Wesley, 1996, ISBN 0-201-63451-1.

• Java in a Nutshell, Flanagan, D. O'Reilly & Associates, 1997, ISBN 1-56592-
262-X.

• Core Java 1.1, Volume I - Fundamentals, Horstmann, C.S. and Cornell, G.
Prentice Hall, 1998, ISBN 0-13-766965-8.

• Core Java 1.1, Volume II - Advanced Features, Horstmann, C.S. and Cornell,
G. Prentice Hall, 1998, ISBN 0-13-766965-8.

• Java Gently, Judy Bishop. Peachpit Press, 1998, ISBN 0-201-34297-9.

• The JavaSoft website (http://java.sun.com/docs/books/tutorial/index.html).

[MML: 1.03]
[Version: $ /JavaIntro/JavaIntro.mml#7 $]

Intro to Java

© 1996-2003 jGuru.com. All Rights Reserved. Intro to Java-47

Appendix:
A COBOL Programmer's View of Java

This section is meant as a learning aid to show the relationships between COBOL
and some of Java's syntax and object-oriented semantics for those COBOL
programmers without C, Pascal, or C++ experience. The assumption is that you
have been through or are going through an object-oriented programming tutorial or
course. The following topics are covered:

• Program organization

• Variable declarations

• Data aggregates (records/objects)

• Arrays

• Scope Overriding and this

• Assignment

• Displaying results

• Calling subprograms/methods

• Symbol visibility

For your convenience, a quick reference guide is provided at the end.

Program organization
A COBOL program is divided up into four divisions:

1. IDENTIFICATION DIVISION. Defines the name of the program

2. ENVIRONMENT DIVISION. Defines computer-specific environment details

3. DATA DIVISION. Defines variables, input/output formats, constants, and
work areas (storage space)

4. PROCEDURE DIVISION. A group of procedures (paragraphs) that do the work
of the program

COBOL programs explicitly separate the data and procedures that operate on the

Intro to Java

Intro to Java-48 © 1996-2003 jGuru.com. All Rights Reserved.

data. Procedures are called methods in Java.

Most COBOL statements are divided up into "area A" (four characters wide
starting from left edge) and "area B" (the rest of the line). All this means is that
the division, section, paragraph, and 01 level data start in A and the executable
statements start in B. Java has no such formatting restrictions that impart
meaning and ignores white-space for the most part. Also, Java is case-sensitive so
that dog and Dog are totally different names.

Java programs are organized by units that correspond to entities in the real world:
objects that encapsulate both the data and the methods to manipulate that data.
Objects with the same characteristics and behavior are described by classes
(storage templates) and correspond roughly to COBOL groups. A Java program is
then primarily just a collection of class definitions such as:

class Vehicle {
 ...
}

class Car extends Vehicle {
 ...
}

class Truck extends Vehicle {
 ...
}

Program execution begins in the main() method of any of the classes in your
program; you specify which class when you launch the program.

Variable declarations
Variables in COBOL are either elementary or group items and correspond loosely
to primitive variables (such as integers, characters, and real numbers) and objects
in Java. COBOL is not strongly typed like Java, however. In COBOL, you
define a "picture" of what can be stored in the variable whereas Java requires a
rigid type to be associated with that data storage element. A "PIC" can be
alphabetic (A), alphanumeric (X), or numeric (9). The commonly-used Java
primitives are boolean, char, String, int, and float.

COBOL uses level numbers on all data items:

• 01 is reserved for group names, which begin in area A

• elementary items begin in area B and use user-defined level values

Intro to Java

© 1996-2003 jGuru.com. All Rights Reserved. Intro to Java-49

You initialize items with a VALUE clause such as:

01 Result PIC 99 VALUE ZEROS.

In Java, there are no level numbers. You must explicitly label something as a
primitive or a class (similar to a "group") definition. You initialize variables with
an assignment operator:

int result = 0;

Data aggregates (records/objects)
Here is a simple group called TheDate:

DATA DIVISION.
WORKING-STORAGE SECTION.
01 TheDate.
 02 CurrentYear PIC 9(4).
 02 CurrentMonth PIC 99.
 02 CurrentDay PIC 99.

You can approximate this group of 3 variables in Java with a class definition:

class TheDate {
 String currentYear;
 String currentMonth;
 String currentDay;
}

The differences are primarily that the COBOL group defines actual storage space
and the exact memory layout ("picture") whereas the Java class definition
describes a template for storage rather than the storage itself. A running Java
program is a collection of objects. Objects with the same characteristics and
behavior are described by the same class. Objects of the same type (class) are
therefore considered instances of that class. To actually allocate storage for an
object, use the new operator:

// make d refer to a TheDate type object.
TheDate d = new TheDate();

A better way to look at the difference between a class and an object is, perhaps,
the difference between a FILE and a RECORD. A record is a collection of fields and a
file is a collection of records. There is only one record definition, but there may be
many records within a file with that same structure. Similarly, for any class
definition, there may be many class instances, objects. The type (class) defines
the structure of the object and the object stores the content.

Intro to Java

Intro to Java-50 © 1996-2003 jGuru.com. All Rights Reserved.

On the other hand, COBOL reads files one record at a time--there is exactly one
record from a file in memory at once (the "record buffer"). In Java, the instances of
a class all exist in memory at once. If you want 3000 TheDate objects, you have
to have enough memory to hold 3000 of these objects.

The following file descriptor entry describes a student file with a record structure
specified in the StudentRecord group.

DATA DIVISION.
FILE SECTION.
FD StudentFile.
01 StudentRecord.
 02 StudentId PIC 9(7).
 02 StudentName.
 03 Surname PIC X(8).
 03 Initials PIC XX.

You can imagine that the records in the file are like "freeze-dried" Java objects;
that is, they are on the disk instead of in memory.

Sometimes you have a COBOL file containing records of different record types.
Because you cannot always establish the record type just by examining its
contents, you normally put a special data item at the start of each record
indicating the record or transation type.

FD TransactionLogFile.
01 StudentRecord.
 02 RecordType PIC X.
 ...

Java has a similar notion for objects. You can ask every object for its type. The
type information refers to the object's class definition, which includes the list of
methods, data fields and so on.

Arrays
COBOL has tables that hold contiguous sequences of elements in memory just
like a file holds contiguous sequences of records. Each element in uniquely
identified by an integer index ("subscript" in COBOL terminology) within the
table. Instead of have 5 name variables called name1, name2, ..., name5 you would
define a table with 5 elements:

 02 NAMES OCCURS 5 TIMES PIC X(15).

The third name variable would correspond to the third element in the table. You
access the elements of a table by specifying the table name followed by the index

Intro to Java

© 1996-2003 jGuru.com. All Rights Reserved. Intro to Java-51

in parentheses:

MOVE 'John' TO names(3).

Table elements are typically accessed in PERFORM "loop" statements:

PERFORM VARYING Idx FROM 1 BY 1
 UNTIL Idx GREATER THAN 5
 DISPLAY names(Idx)
END-PERFORM

Java has arrays that correspond to COBOL tables, however, Java arrays are
themselves objects and are indexed from 0 instead of 1. You must use the new
operator to create space for an array object. Here is the Java code that declares an
array called names containing 5 strings:

// elements names[0]..names[4]
String[] names = new String[5];

To set array elements, use the name followed by square brackets instead of
parentheses:

names[3] = "John";

Java loops are also often used to access arrays. The following loop prints out the
elements within the names array.

for (int i=0; i<=4; i=i+1) { // i=0..4
 System.out.println(names[i]);
}

Scope overrides and this
The notion of the this variable in Java, referring to the target of a message send,
has a few analogs in the COBOL world.

In COBOL, the record buffer associated with a file is sort of a "cursor" or "current
record" buffer that changes as you read through the file. If you walk through a list
of Java objects, sending them each a message, the this variable will refer to each
of the objects in turn just like the moving file cursor.

The ambiguity resolution or scope override ability of the this variable also has an
analog in COBOL. When you have two items in two different tables or files with
the same name, you must use the OF clause to indicate which one you are referring
to such as StudentName OF StudentFile.

Intro to Java

Intro to Java-52 © 1996-2003 jGuru.com. All Rights Reserved.

Executable Statements
Program execution/termination

In COBOL, execution begins at the first procedure in the PROCEDURE DIVISION
and terminates with the statement:

STOP RUN.

In Java, program execution begins in the main() method of the class you tell Java
to start with. For example, here is a class with a main() method that prints
"Hello":

public class Simple {
 public static void main(String[] args) {
 System.out.println("Hello");
 }
}

From the command-line, you would execute this program by saying:

java Simple

Assignment

In strongly-typed languages like Java, assignments are only allowed between
compatible types. Assignment in Java corresponds to the MOVE statement in
COBOL; in other words, MOVE is really a misnomer--COPY would have been more
accurate. Assignment copies from source to destination(s).

You can assign a variable to another variable or a literal to a variable as in :

MOVE AVERAGE-VALUE TO SUM.
MOVE 'John' to NAME.

In Java, you would say:

sum = averageValue;
name = "John";

The assignment statement in Java is very simple compared to COBOL; there is no
truncation or filling of space ala COBOL. The types of the left and right hand
sides must be compatible or they are not allowed.

Displaying results

To display results to the terminal in COBOL, you use the DISPLAY command:

Intro to Java

© 1996-2003 jGuru.com. All Rights Reserved. Intro to Java-53

DISPLAY "AVERAGE: ", AVERAGE.

Java has a similar statement:

System.out.println("AVERAGE: "+average);

To display more than just a string, you build up a comma-separated list of
elements in COBOL:

DISPLAY "AVERAGE: ", AVERAGE WITH NO ADVANCING.

In Java, you build up a string, which is then displayed. The plus operator in Java
concatenates two strings:

System.out.print("AVERAGE: "+average);

Calling subprograms/methods

COBOL has two mechanisms that correspond to method calls in Java: PERFORMing
paragraphs and calling subprograms.

COBOL procedures are like Java methods with no return values nor arguments. In
the following fragment, execution flows from Begin to procedure Blort to
display Hello.

PROCEDURE DIVISION.
Begin.
 PERFORM Blort
 STOP RUN.

Blort.
 DISPLAY "Hello".

In Java, you would have the following:

class Whatever {
 void begin() {
 blort();
 }
 void blort() {
 System.out.println("Hello");
 }
}

In Java, you can think of {...} statement groups as COBOL unnamed
paragraphs. Java for-loops are like PERFORM in-lines.

You cannot pass parameters to a procedure. You need to use subprograms in
COBOL for that. In Java, you can pass parameters to a method or not depending

Intro to Java

Intro to Java-54 © 1996-2003 jGuru.com. All Rights Reserved.

on your needs.

A method call corresponds to CALL of program in COBOL. You can have a single
return value in both Java and COBOL, but you can pass in items that the
subprogram modifies. COBOL subprogram calls pass parameters with the USING
clause and the return value is found in RETURN-CODE:

 CALL 'DISPLAY-COUNT' USING COUNT.
* use RETURN-CODE if you want
 IF RETURN-CODE
 ...
 END-IF

In Java, you use the following syntax:

displayCount(count);

Primitive types in Java such as int can only be passed by value (CONTENT in
COBOL) and all objects are passed by REFERENCE.

The definition of a program with parameters in COBOL requires that you define
the storage in the LINKAGE SECTION and then identify them on the PROCEDURE
DIVISION header:

IDENTIFICATION DIVISION.
PROGRAM-ID DISPLAY-COUNT IS INITIAL.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 AVERAGE PIC 9(8) VALUE 0.
LINKAGE SECTION.
01 COUNT PIC 9(8).
PROCEDURE DIVISION USING COUNT.
Begin.
 DISPLAY "COUNT: ", COUNT
 EXIT PROGRAM.

The variables you define in the WORKING-STORAGE SECTION are initialized each
time you call the subprogram if you use the IS INITIAL on the PROGRAM-ID
statement. This corresponds closely with Java. Here is the Java method equivalent
to the above DisplayCount program:

void displayCount(int count) {
 // set average to zero upon each entry
 int average = 0;
 System.out.println("COUNT: "+count);
}

Please see the quick reference at the end of this document for information on other
executable statements.

Intro to Java

© 1996-2003 jGuru.com. All Rights Reserved. Intro to Java-55

Symbol Visibility
In COBOL, contained subprograms are not visible to other contained subprograms
by default. You must use the IS COMMON PROGRAM clause to make a subprogram
visible to other subprograms:

IDENTIFICATION DIVISION.
PROGRAM-ID. MAIN.
PROCEDURE DIVISION.
 ...
 EXIT PROGRAM.

IDENTIFICATION DIVISION.
PROGRAM-ID. A.
* CAN CALL B
 CALL B.
END-PROGRAM A.

IDENTIFICATION DIVISION.
PROGRAM-ID. B IS COMMON PROGRAM.
* CANNOT CALL A
 CALL A
END-PROGRAM B.
END-PROGRAM MAIN.

Java has data hiding, but it is used to restrict access to methods within a class
from methods outside of the class. Class members labeled as public are visible to
any method in any other class. Class members labeled as private are not visible
to any method in any other class.

Quick Reference
Statements

COBOL Java

MOVE b TO a a=b;

MOVE a TO arrayName(index) arrayName[index]=a;
ADD b TO a a = a+b; or a+=b;

ADD b TO a GIVING c c = a+b;

ADD 1 TO a a++; or a=a+1;

IF conditional
 statements1
ELSE
 statements2
END-IF

if (conditional) {
 statements1
}
else {
 statements2
}

EVALUATE conditional switch (conditional) {

Intro to Java

Intro to Java-56 © 1996-2003 jGuru.com. All Rights Reserved.

WHEN value1
 statements1
WHEN value2
 statements2
WHEN OTHER
 statements3
END-EVALUATE

 case value1:
 statements1
 break;
 case value2:
 statements2
 break;
 default:
 statements3
}

PERFORM TEST BEFORE
 UNTIL conditional
statements
END-PERFORM

while (conditional) {
 statements
}

PERFORM TEST AFTER
 UNTIL conditional
statements
END-PERFORM

do {
 statements
} while (conditional);

PERFORM VARYING a
 FROM start BY
 inc UNTIL conditional
statements
END-PERFORM

for (a=start;
 conditional;
 a+=inc) {
 statements
}

PERFORM routine. routine();

CALL 'DUMMY-FUNCTION'
 USING arguments.

dummyFunction(arguments);

Relational Operators

COBOL Java

a EQUAL TO b a==b for primitive types
a.equals(b) for objects

a NOT EQUAL b a!=b for primitive types
!(a.equals(b)) for objects

a GREATER THAN b a>b for primitive types

a GREATER THAN
 OR EQUAL b a>=b for primitive types

a LESS THAN b a<b for primitive types

a LESS THAN OR EQUAL b a<=b for primitive types

Intro to Java

© 1996-2003 jGuru.com. All Rights Reserved. Intro to Java-57

Boolean Operators

COBOL Java

a AND b a&&b for boolean expressions a,b

a OR b a||b for boolean expressions a,b

[MML: 1.03]
[Version: $ /JavaIntro/COBOL.mml#5 $]

Intro to Java

Intro to Java-58 © 1996-2003 jGuru.com. All Rights Reserved.

This page intentionally left blank

