
Web Application Internationalization
and Localization in Action

Terence Parr
University of San Francisco

parrt@cs.usfca.edu

ABSTRACT
A template engine that strictly enforces model-view separa-
tion has been shown to be at least as expressive as a context
free grammar allowing the engine to, for example, easily
generate any file describable by an XML DTD [7]. When
faced with supporting internationalized web applications,
however, template engine designers have backed off from
enforcing strict separation, allowing unrestricted embedded
code segments because it was unclear how localization could
otherwise occur. The consequence, unfortunately, is that
each reference to a localized data value, such as a date or
monetary value, replicates essentially the same snippet of
code thousands of times across hundreds of templates for
a large site. The potential for cut-and-paste induced bugs
and the duplication of code proves a maintenance nightmare.
Moreover, page designers are ill-equipped to deal with code
fragments. But the difficult question remains: How can
localization be done without allowing unrestricted embed-
ded code segments that open the door to model-view entan-
glement? The answer is simply to automate the localiza-
tion of data values, thus, avoiding code duplication, making
it easier on the developer and designer, and reducing op-
portunities for the introduction of bugs–all-the-while main-
taining the sanctity of strict model-view separation. This
paper describes how the ST (StringTemplate) template en-
gine strictly enforces model-view separation while handily
supporting internationalized web application architectures.
Demonstrations of page text localization, locale-specific site
designs, and automatic data localization are provided.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—
Domain-specific architectures, Patterns, Languages; D.1.1
[Programming Techniques]: Applicative (Functional) Pro-
gramming

Keywords
Internationalization, Localization, Template engines, Web
applications, Model-View-Controller

1. INTRODUCTION
One of the most challenging issues facing web application

developers is preventing duplication of business logic (the

Copyright is held by the author/owner(s).
ICWE’06, July 11-14, 2006, Palo Alto, California, USA.
ACM 1-59593-352-2/06/0007.

model) and presentation elements (the view). Preserving the
principle of single-point-of-change is an absolute necessity
for maintaining large web applications. Yet pressure exists
in normal development to cut-and-paste logic and HTML
templates, rather than properly factoring them, to get a job
done quickly before a deadline. Cut-and-paste is particu-
larly deadly when using presentation layers like Java server
pages (JSP) and Active Server Pages (ASP) or any other
Turing complete template engine because such presentation
layers encourage entanglement of model and view–embedded
expressions are unrestricted code fragments. Any copying of
a presentation element then necessarily duplicates any em-
bedded logic as well.

Localization, adapting an application for a particular lo-
cale, further increases pressure to duplicate program ele-
ments because proper infrastructure (internationalization)
has not been generally available to factor out the presen-
tation text from the HTML layout tags in a template file.
Often developers will duplicate all the HTML template files,
with a complete set of files for each supported language.
Changing the look of the site afterwards means changing
n ∗ f files for n languages and f files. If language require-
ments actually force different designs for certain pages, the
unchanged pages should still not be replicated just to yield
the complete set of pages.

Localizing entities like dates and integers per locale fur-
ther complicates the situation by requiring different formats
for some of the dynamically generated data values even when
the presentation text strings remain the same. “10/01/06”
means “October 1, 2006” in the US but “January 10, 2006”
in the UK even though the surrounding presentation lan-
guage is the same. Rendering entities in different formats
provides an excuse for developers to embed the same code
repeatedly in their templates to invoke the appropriate for-
matter invocation code, again breaking the single-point-of-
change principle. Instead, entities should be clearly identi-
fied as dates, integers, or monetary values and then auto-
matically rendered according to locale.

One final problem related to localization involves the tech-
nical sophistication of the page designers and language trans-
lators. Even graphics designers find it difficult sometimes
to deal with highly-factored or otherwise complicated tem-
plates. Translators typically have no technical background
and wading through HTML looking for text to translate
can lead to errors and, worse, inadvertent changes to the
formatting or embedded expressions. Both designers and
translators will have difficulty with anything beyond the
simplest data reference expressions. This is another rea-

son that the text presentation strings should be separated
from the HTML formatting and that localized template data
references should not be arbitrary code fragments.

Supporting localization for dynamic web pages means then
that an internationalized architecture must:

1. treat text as a resource, separate from the HTML, that
is easily accessible to a translator

2. allow groups of templates to be treated as a unit to
support different page designs for different locales

3. automatically render entities, such as numeric and mon-
etary values, according to locale

StringTemplate (or ST as it is abbreviated), the subject
of this paper, is a Java-based template engine (with ports
to C# and Python) that strongly encourages developers
to avoid HTML and code duplication during localization
by providing a simple, flexible, and powerful infrastructure
satisfying these requirements. This engine also strictly en-
forces model-view separation [7], which requires that all logic
and computations be done in the model rather than repli-
cated around the templates in fragments. The techniques
described here work well in practice for real sites. For ex-
ample, SchoolLoop.com uses ST to flip between English and
Spanish with a single click. Exactly one template exists per
page and all strings are pulled from a database.

This paper illustrates simple mechanisms for separating
language specific text strings from page designs (section
2), supporting locale-sensitive site designs through template
groups and group inheritance (section 3), and for automat-
ically rendering data values according to locale (section 4).

2. LOCALIZING PAGE TEXT
An internationalized web application must treat text and

image names (for images with embedded text) as dynami-
cally generated data just like it treats actual data elements
like monetary values so that translators can work in isola-
tion from the web application and HTML page templates.
On this most developers agree. Google’s “Language Con-
sole”, that has been used to provide the requisite Klingon
locale among others, is a prime example. Differences arise,
however, in how templates refer to these strings.

For the most part, developer trade articles [8][5] recom-
mend a disciplined approach to inserting localized strings
such as the following JSP snippet

<title><%=session.getValue("title")%></title>

where embedded Java code (not listed) inserts strings into
the session variables. Here is the equivalent JSTL (JSP
Standard Tag Library) solution:

<title><fmt:message key="title"/></title>

The Velocity template engine [10] allows a tidier solution

<title>$strings.get("title")</title>

where strings is an object in the model implementing the
Map interface. ST has a similar, though more direct syntax
for accessing strings in a Map:

<title>$strings.title$</title>

All of these solutions can pull strings from property files,
resource bundles, data bases, and so on. The simplest way
to switch strings tables per locale is to encode the locale in
a properties filename, language.properties, and then load
the appropriate file according to Locale’s getLanguage()

method. Property files are simple key-value pairs. For ex-
ample, an English property file, en.properties would have

title=Welcome to my test page

whereas a fr.properties file would have

title=Bienvenue à ma page de test

The page name can be encoded in the property name or
a new property file can be used for each page in order to
handle strings for multiple pages.

To demonstrate how a site can use ST to separate and edit
strings, consider SchoolLoop.com’s administration view of a
teacher’s course managment page shown in Figure 1. The
“+” buttons indicate all the strings that the designer or
translator can edit live on the site. Each supported lan-
guage (currently English and Spanish) has a collection of
strings stored in a database and cached in memory as an
object implementing the Map interface. References within
the templates look like the following.

$strings.teacher_office_todo_title$

where strings is the attribute name associated with the
cache object.

Clicking on a “+” button brings up the string edit view
as shown in Figure 2. The designer or translator may alter
the text string and refer to attributes, defined by the page
controller, such as ins name and first name.

On the surface, just about all template engines appear
to provide a satisfactory solution, but in practice any imple-
mentation built with an unrestricted template engine quickly
degrades into a fully entangled model and view. In other
words, more and more code will creep into the template
files causing code duplication and other maintenance prob-
lems. Because ST strictly enforces model-view separation,
developers are forced to keep the two concerns separated.
Unless restricted, a template can readily alter the model,
thus, making the template part of the model. For example,
the developer could inadvertently remove instead of get the
title, which might arise from an overzealous string search
and replace operation or even from a designer’s lack of pro-
gramming skill:

<title>$strings.remove("title")</title>

Any subsequent pages would generate null or blank titles.
Designers do not understand program “state” nor code and
expecting them to deal with unrestricted template expres-
sions is unrealistic and makes an application vulnerable to
the introduction of random bugs.

Another relevant weakness of other template engines is
that the various translated strings are just that: strings
not templates. ST evaluates all expressions lazily implying
that expressions within templates are not evaluated until
the entire page has been constructed. Other template en-
gine would have to invoke themselves explicitly and recur-
sively on the incoming strings to evaluate them as templates,

Figure 1: SchoolLoop.com’s Admin View

Figure 2: SchoolLoop.com’s Edit String View

increasing template complexity and again forcing code repli-
cation across all templates. Without lazy evaluation, it is
unclear an engine could process expressions embedded in
translated strings without computing the values too early.
ST, in contrast, naturally deals with the following property
strings:

title=Welcome to $username$’s test page

and

title=Bienvenue sur la page de test de $username$

References to $strings.title$ would evaluate the em-
bedded $username$ expressions at the last possible moment,
after the page controller had injected all data values (called
attributes) for the surrounding template. Templates inherit
all attribute values from their enclosing templates. After
the title template is inserted, it has access to all page at-
tributes. This mechanism assumes that the object imple-
menting the Map interface called strings instantiates the
title properties as ST objects not String objects.

By providing an internationalized architecture as described
in this section, translators may create strings for various lan-
guages without forcing replication of code or HTML page
templates. In some cases, however, the locale is so different
that merely changing the text strings is insufficient–locales
may require their own full or partial site designs.

3. SITE DESIGN PER LOCALE
Web applications easily deal with multiple site designs,

albeit often by simply copying the directory full of template
files and altering to suit. But what if the site design is almost
identical and you just need to alter a few page design such
as for a premium and non-premium version of the same site?
Germane to this discussion, how can you provide multiple
designs for a single page to deal with various locales without
duplicating your entire site for each locale? For example, if
the text direction changes to right-to-left from left-to-right,
the page layout might have to change.

ST supports template group inheritance so that templates
not found in one group may be inherited from a supergroup.
Just as in object-oriented programming where new objects
may be defined as they differ from existing objects, new
template groups may be defined as they differ from exist-
ing template groups. In this way locales requiring special
designs do not force the replication of unaltered templates.
Only those pages that are different need be specified.

A simple example illustrates the mechanics. An object
called StringTemplateGroup represents a group of templates
stored in a particular directory. The following code fragment
creates a group rooted at “/var/data/templates/language”
where language would be en, fr, etc...

Locale locale = Locale.getDefault();

String language = locale.getLanguage();

String root = "/var/data/templates/";

StringTemplateGroup templates =

new StringTemplateGroup(language, root+language);

The page controller responsible for generating a page ul-
timately invokes the getInstanceOf() method to get an in-
stance of a template from a group:

StringTemplate testPageST =

templates.getInstanceOf("test");

testPageST.setAttribute("username", ...);

...

and then invokes testPageST.toString() to render the tem-
plate to plain text for transmission to the user’s browser.

ST’s group inheritance mechanism is dynamic in that new
group hierarchies may be defined at run-time. Defining a
template subgroup involves creating a new directory to hold
subgroup templates, creating a new StringTemplateGroup

instance attached to that directory, and finally setting the
new group’s supergroup to an existing group.

For example, if the test page design for the French locale
requires a new design, but all the other page designs stay
the same, the developer would create a new directory called
“fr” and place the new page design template inside with
the same template file name as before. The following code
fragment creates a subgroup that inherits all templates from
the English group except for the test page, which would
be overridden in the French group. No template or code
duplication would occur.

StringTemplateGroup english =

new StringTemplateGroup("en", root+"en");

StringTemplateGroup french =

new StringTemplateGroup("fr", root+"fr");

french.setSuperGroup(english);

...

// set according to locale; I explicitly set here

StringTemplate templates = french;

Later references to templates.getInstanceOf("test") load
templates from the appropriate group depending on which
group templates pointed to. Changing site design per locale
then is simply a matter of flipping a pointer.

One final detail is worth mentioning, that of file charac-
ter encoding. Presentation files will most likely need differ-
ent character encodings than ASCII, such as ISO-8859-1 or
UTF-8. Developers set the template character encoding for
a StringTemplateGroup via a simple method before tem-
plate instances are loaded from disk; e.g.,

french.setFileCharEncoding("ISO8859_1");

ST supports internationalization through simple mech-
anisms for separating text strings from HTML templates
and by allowing new groups of templates to be defined as
they differ from previous groups. Both of these mechanism
prevent unnecessary template and code duplication, but do
not solve the final and most challenging problem of locale-
sensitive data formatting.

4. LOCALIZATION OF DATA VALUES
Many different data values in an application need to be

formatted according to locale such as numbers, dates, mone-
tary values, and percentages. Some applications use a brute
force approach by directly invoking formatting objects that
are sensitive to locale in expressions embedded within tem-
plates. Here is an example using a Velocity DateTool object
stored in a variable called date:

Sold on $date.format(’medium’,$myDate).

This is rather verbose considering many date references
will have the same format and, more importantly, this snip-
pet will be difficult for designers to deal with. Even at the
most basic level, an issue will be: When does the expres-
sion stop and HTML begin again? Using �StringTemplate
the designer would simply reference $myDate$ where the “$”
characters clearly bracket every expression and defers locale
issues to ST.

The formatting of integer values makes this matter even
more clear. A simple reference to a data value of type
Integer such as n yields the string computed from invok-
ing Integer’s toString() method rather than a localized
string in most template engines. FreeMarker [3] does allow
the developer to set a global number format, but beyond the
common types there is no general mechanism for specifying
formatting for arbitrary types.

ST introduces an extremely simple and general mecha-
nism to format arbitrary data values, one that does not re-
quire designers to alter templates when internationalizing an
application nor requires them to be programmers. The goal
is to allow both single-language sites and internationalized
sites to use n and $myDate$ instead of code fragments.

This solution relies on ST’s restricted interface between
model and view. In a web application based upon ST, the
page controller pulls data from the model and injects at-
tributes into templates, which render objects to string via
the toString() method. The only code execution initiated
by a template is the implicit invocation of toString() meth-
ods during evaluation. For example, the following code frag-
ment sets the n attribute for an instance of the test tem-
plate.

StringTemplate testPageST =

templates.getInstanceOf("test");

testPageST.setAttribute("n", new Integer(3));

References to n in a template are evaluated by calling
toString() on the Integer object associated with n in the
attribute table for that template.

The collection of all toString() methods can be viewed as
the renderer component of a design pattern more complete
than MVC: MVCR (model-view-controller-renderer) [7]. A
template knows to format n as a locale-sensitive number if
an attribute renderer for the Integer class type exists. The
developer may register renderers per template group or per
template instance. If a template does not have a renderer
for a type, the associated group is consulted. If no renderer
is registered for the group, its supergroup is consulted. A
renderer is any object that satisfies the AttributeRenderer

interface:

public interface AttributeRenderer {

public String toString(Object o);

}

Here is a simple example of a renderer that formats inte-
gers according to locale.

public class IntegerRenderer

implements AttributeRenderer

{

public String toString(Object o) {

Integer value = (Integer)o;

NumberFormat nf =

NumberFormat.getIntegerInstance();

return nf.format(value.intValue());

}

}

After the developer has registered the renderer with a
group:

templates.registerRenderer(

Integer.class,

new IntegerRenderer());

any template instances created from that group will format
Integer objects via IntegerRenderer’s toString() method.

What if, as a special case, a number must be formatted
in binary (“101”) rather than decimal (“5”)? In this case,
the easiest thing to do is to wrap the Integer attribute in
an object whose toString() method does the appropriate
conversion to binary digits:

Integer bits = 5;

StringTemplate st = templates.getInstanceOf("test");

// $mask$ will render in binary

st.setAttribute("mask", new BinaryWrapper(bits));

The controller must, in a sense, “paint” the object with a
new coat of paint for this special case, but it is better than
asking the nonprogrammer designer to write:

$numbers.binaryFormat($mask)

In the view of ST, the programmer provides the set all
possible data values and the designer chooses from among
them just like a library provides an API for programmers.
This seemingly rigid strategy is necessary not only to enforce
strict separation of model and view but also to deal with the
realities of a designer’s skill set.

What happens when the designer needs dates to be some-
times long and sometimes short format? This case is also
easily handled without resorting to unrestricted code in the
template and without burdening the programmer with the
extra code needed to wrap all date attributes. The Date

class can be subclassed to provide property methods such
as getMedium() so that templates may reference $myDate$

to get the default rendering and $myDate.medium$ to get
a medium format. For any given type, the developer may
automatically provide augmented properties without hav-
ing to manually create instances of a Date subclass. The
setAttribute() method of the ST class can be overridden
to trap and automatically wrap objects of a particular type
to provide new properties:

class MyStringTemplate extends StringTemplate {

public void setAttribute(String name, Object v) {

if (v instanceof Date) {

v = new DateWrapper(v); // adds medium, ...

}

super.setAttribute(name, v);

}

}

To create MyStringTemplate objects rather than the de-
fault, the template group factory createStringTemplate()

method is overridden. All attribute references to objects of
type Date will support the added properties automatically
without burdening the application programmer and without
expecting the designer to be a programmer.

Date d = db.getUserLastLogin(id);

// d is automatically wrapped by setAttribute

// designer references $lastLogin$ or

// $lastLogin.medium$, ...

st.setAttribute("lastLogin", d);

This strategy also works nicely for Integers so that n,
$n.binary$, and $n.currency$ are available to designers.

In summary, localizing data values for a dynamic web
site should involve changes in the plumbing rather than
additions of code in the template. Moreover, most of this
plumbing can be automated to reduce the load on program-
mers. Attribute references should be simple like name or
name.property because that is what designers understand
and also because it prevents identical code snippets from
being replicated thousands of times across hundreds of tem-
plates. The MVCR pattern, espoused by ST, is completely
general and is easily understood by the average programmer.

5. RELATED WORK
A few engines are making progress towards automatically

dealing with the localization of data values. FreeMarker [3]
can automatically format numeric and time related values
by locale. MonoRail [6] has “filters” that appear to auto-
matically format dates. Both tools do not appear to allow
general type-to-renderer mappings. Other tools require the
programmer to write a code fragment for each localized data
reference.

Most engines provide a mechanism to pull out text strings
for translation, but do not provide formalisms such as tem-
plate groups to deal with multiple site look-and-feels. The
template groups of ST appears unique in their ability to nat-
urally flip between template groups and to support partial
designs that derive from other designs via group inheritance
and template polymorphism.

After reviewing a draft of this paper, German developer
Kay Roepke related his experiences building two interna-
tionalized web sites: mobile.de (an eBay company special-
izing in new and used vehicle sales) and openBC.com (an
online professional networking management site for Europe
and Asia). At mobile.de, the developers built a company-
specific system very similar to ST that had very restricted
template expressions. Ultimately, this system proved to be
a performance problem mostly due to its Perl-based imple-
mentation. To avoid such performance problems in his next
position at openBC.com, a simpler, but faster system was
used. Unfortunately, the second system did not automati-
cally handle localized data–data was formatted in the con-
troller and pushed into the templates.

Roepke corroborates the suppositions and conclusions of
this paper:

I concur with your conclusion, that the funda-
mental problem is the support for expressions
within templates. This quickly leads to two things:

1. unmaintainable applications due to lack of
single-point-of-change in code

2. most syntactic [template expression] conven-
tions either make the use of dedicated HTML
editors impossible or are unintelligible to
the average designer. I have seen horrible
things happen to templates which have been
in the hands of designers and/or translators.

A literature search reveals little activity from academics
concerning internationalization and localization (particularly
of web applications), probably because it is a question of en-
gineering not pure research. The available papers tend to
describe the general requirements and strategies for build-
ing multi-lingual applications [11] or the very need for in-
ternationalization [1]. Some focus primarily on the design
methodology [9].

6. CONCLUSIONS
With few exceptions such as XMLC [2], engine designers

have unrealistic expectations of programmer discipline. All
provide Turing complete unrestricted embedded template
languages thereby repeating the mistakes of JSP except with
a new programming language to learn. New designs or par-
tial designs often require replication of the embedded code
fragments and, therefore, code changes require modifications
to all versions of the same page.

Designers are not programmers and have trouble under-
standing how a table is generated with a for-loop and just
generally have issues finding and properly altering HTML
entangled with code. From my experience building sites
such as jGuru.com and antlr.org, it is clear designers can
deal with only the simplest template expressions. To collab-
orate and to work in parallel, designers must have templates
with restricted expressions.

Internationalized architectures make matters worse. Ref-
erences to “strings.get("title")” used to separate text
strings from HTML are not suitable for designers. Even the
JSTL tags like

<fmt:message key="title"/>

are a problem because most designer cannot competently
build HTML by hand, meaning these tags are definitely too
much. One can question how engine designers expect the
majority of page designers to work with their templates.

ST’s distinguishes itself by strictly enforcing model-view
separation via template expressions that are restricted syn-
tactically and semantically. Other engines have rejected
such draconian measures for fear of emasculating template
power. The ability to specify locale-specific data value for-
mats is one such area of concern. The primary contribution
of this paper is to show that not only can a restricted tem-
plate engine support internationalized architectures, but it
can do so automatically thereby reducing the burden on de-
velopers and HTML designers alike.

Oddly enough, sticking to the principle of strict separa-
tion requires a solution to localizing data values that is sim-
pler, more flexible, and more powerful than existing solu-
tions. Other engines are Turing complete and can mimic
ST’s strategy, which I implore them to do, but they cannot
overcome the fundamental weakness of not enforcing model-
view separation. That weakness leads to code creeping into
templates ultimately leading to code and HTML replication
and also to HTML templates with which designers cannot
work.

ST is available under the BSD license from
http://www.stringtemplate.org.

7. ACKNOWLEDGMENTS
I would like to thank Anton Keks for suggesting the type

to renderer object mapping and Thomas Aigner for pointing
out the character encoding problem and workable solution.

8. REFERENCES
[1] How We Made the Web Site International and

Accessible: A Case Study. Maria Gabriela Alvarez,
Leonard R. Kasday, and Steven Todd 4th Conference
on Human Factors & the Web. June 1998.

[2] Enhydra. XMLC.
http://xmlc.enhydra.org/project/aboutProject/index.html

[3] FreeMarker. http://freemarker.sourceforge.net.

[4] JSP. http://java.sun.com/products/jsp.

[5] Sing Li. Create internationalize JSP applications.
http://www-128.ibm.com/developerworks/java/library/j-jspapp

March 2005.

[6] MonoRail
http://www.castleproject.org/index.php/MonoRail

[7] Terence Parr. Enforcing Strict Model-View Separation
in Template Engines. In WWW2004 Conference
Proceedings p. 224, May 17-20 2004, New York City.

[8] Govind Seshadri. Internationalize JSP-based Websites.
http://www.javaworld.com/jw-03-2000/jw-03-ssj-jsp.html,
March 2000.

[9] De Troyer, O. and Casteleyn, S. (2004). Designing
localized web sites. In 5th International Conference on
Web Information Systems Engineering (WISE 2004),
volume 3306, pages 547558. Springer.

[10] Velocity.
http://jakarta.apache.org/velocity/index.html

[11] A Framework for the Support of Multilingual
Computing Environments, Yip Chi Technical report
TR-97-02 University of Hong Kong.

