Automata Theory, Homework Problems

Due September 17, 2003 at 11 am

1. Show that the composition of two injective functions is injective.

2. Show that the inverse of a bijection is a bijection.

3. Suppose \(h : A \to B \) is a bijection, and \(f : A \to A \) is injective, but not surjective. Show that the composite function \(h \circ f \circ h^{-1} : B \to B \) is injective, but not surjective.

4. Suppose \(X \) is a set, and \(U \subseteq X \). Also suppose that \(q : U \to U \) is injective but not surjective. Define \(r : X \to X \) by

\[
r(x) = \begin{cases}
q(x), & x \in U \\
x, & x \in X - U
\end{cases}
\]

Show that \(r \) is injective but not surjective.

5. Extra Credit. Show that any subset \(A \) of \(\mathbb{N} \) is either finite or countably infinite. (Hint: enumerate the elements of \(A \) by finding the smallest element, then the second smallest, etc.)

6. Suppose \(B \subseteq Y \), and \(f : X \to Y \) is a bijection. Find a subset \(A \subseteq X \), and a bijection \(g : A \to B \).