Topics for the First Midterm

CS 315-01

Spring, 2015

The following topics may be covered on the first midterm.

• Chapter 1

 – Why knowledge of computer architecture is important for software developers.

 – Interpretations of performance: execution time, throughput, power consumption.

 – Hardware components: I/O, memory, datapath, control

 – Relation between high-level language, assembly language, and machine language.

 – Compiler, assembler.

 – Instruction set architecture

 – Application binary interface

 – Performance is the reciprocal of execution time, or execution time per program.

 – Wall clock vs CPU time.

 – Clock frequency vs. clock period.

 – The classic cpu performance equation:

\[
CPU \text{ time} = \frac{\text{Instruction Count} \times \text{CPI}}{\text{Clock Frequency}}.
\]
- IPC and CPI
- Growth in processor performance since the 1980's. Its relation to power consumption. Why designers switched to multicore architectures.
- Consequences of parallelism for performance improvements
 - Moore’s law
 - Amdahl’s law
 - Relation between power consumption and CPU utilization.

- Chapter 2
 - MIPS registers and conventions for their usage.
 - MIPS memory layout: stack, heap, static data, program text.
 - Manipulation of stack pointer, return address.
 - MIPS core instructions
 - Basic use of Mars/Spim simulators
 - Instructions vs pseudoinstructions
 - Use of syscall
 - .text, .globl, .data, .asciiz
 - Branches and loops in MIPS
 - Function calls/returns in MIPS
 - Recursion
 - Words vs. bytes
 - Allocating memory on the stack
 - Program break, sbrk system call, allocating memory on the heap
 - Reading the green sheet
 - Representation of unsigned numbers: binary, octal, hexadecimal, decimal.
 - Converting between representations.
 - Representation of signed numbers: sign-magnitude, one’s complement, two’s complement
- Range of n-bit two’s complement integers.
- R-format instructions
- I-format instructions
- Storing large immediates in a register with \texttt{lui} and \texttt{ori}.
- Zero-extended vs Sign-extended immediates.
- J-format instructions
- Immediates in branch and jump instructions count words rather than bytes.
- Calculation of addresses in branch instructions (PC-relative addressing) and jump instructions.
- Dealing with branches and jumps to “distant” destinations.