
Optimizing the Performance of a CUDA

Kernel

Peter Pacheco
University of San Francisco

peter@usfca.edu

March 10, 2016

peter@usfca.edu


I High-Performance Computing: widespread use of
Graphics Processing Units (GPUs) to improve
performance of conventional CPUs.

I This talk: brief introduction to General Purpose
Programming on GPUs (GPGPU).

I Focus of talk: programming Nvidia GPUs with CUDA —
Nvidia’s API for GPGPU.

I Nearly ten years since release of first CUDA SDK.

I Thousands of applications developed using CUDA, and
CUDA changed dramatically.

I This talk: look at a couple of simple applications,

I Purpose: give feel for development of CUDA applications.



General Purpose Computing for GPU’s

Nvidia GPUs

CUDA

Example: Vector Addition

Thread Synchronization

CUDA Atomic Functions

Tree-Structured Global Sum

Alternative Tree Structure

Unrolling the Loop



General Purpose Computing for GPU’s

I 1990’s: huge demand for highly realistic computer games

I Result: huge increase in capabilities of graphics hardware.

I Early 2000’s: GPUs so powerful programmers tried to use
for general purpose programming.

I Result: beginning of GPGPU.



I Initially GPGPU extremely challenging:

I Programmers “tricked” graphics APIs (Direct3D,
OpenGL) into doing CPU-like operations on processors
designed to manipulate polygons, add shading, etc.

I More tractable APIs for GPGPU soon developed.

I 2003: Stanford Brook API.

I Since then several APIs developed:
I ATI: Stream
I Nvidia: CUDA,
I Industry group (led by Apple): OpenCL.
I Nvidia, Portland Group, Cray: OpenACC



What’s Happening Now?

I ATI supporting OpenCL

I Nvidia supports CUDA and OpenACC

I CUDA most widely used GPGPU API

I Has a very sophisticated development environment.

I Many more applications coded in CUDA than any other
GPGPU API.

I Main drawback to CUDA: only available for Nvidia GPU’s.



Nvidia GPUs

I Design of GPUs not standardized.

I Even Terminology not standardized.

I We use CUDA, so talk about Nvidia GPU’s and use
Nvidia’s terminology.

I Nvidia GPUs: composed of “streaming multiprocessors”
(SM or SMX’s — “SM neXt generation”).

I Each SM: 8 or more “cores” or “thread processors”



I Core: CPU without a control unit.

I Single control unit for all cores.

I It can issue different instruction to each SM.

I First approximation: within single multiprocessor cores
operate in SIMD fashion.

I Recall SIMD: Single-Instruction Multiple-Data

I SIMD execution: each core executes same instruction as
other cores on its data; or is idle.



if (my_x >= 0)

my_y = my_x;

else

my_y = -my_x;

I Time 0: All threads execute test.

I Time 1:
I Threads with my_x >= 0 assign my_y = my_x
I Threads with my_x < 0 idle.

I Time 2:
I Threads with my_y < 0 assign my_y = -my_x
I Threads with my_x >= 0 idle.



I Called thread divergence.

I However, threads running on different multiprocessors can
execute different instructions.

I Each SM has block of “shared” or “local” memory.
(Nvidia terminology: “shared” = shared among the cores
in a single SM.)

I Also “global” or “device” memory shared by all SM’s (in
a single GPU).





I Specs for a “Quadro 600” GPU

Multiprocessors: 2

Cores per SM: 48

GPU clockspeed: 1.28 GHz

Shared Memory per SM: 48 KB

Global Memory: 1 GB

I Quadro 600 fairly modest GPU.

I Top-of-the-line processor for GPGPU, Tesla K80, ∼ 5000
total cores, > 25 SMs.



How to exploit hundreds or thousands of cores?

I Hardware context switch: when thread is idled (e.g.,
waiting for data from global memory), almost no delay in
starting another thread.

I Program: avoid thread divergence. (More later)

I Program: exploit hardware context switch: run many
threads on each SM.



CUDA

I CUDA originally “Compute-Unified Device Architecture:”
program both CPU and GPU with CUDA program.

I CUDA source stored in “.cu” files.

I Source code very similar to C/C++ code.

I Many C programs (and some C++ programs) can be
compiled by CUDA compiler and run on CPU.

I Note: CUDA not a library — unlike MPI, Pthreads,
OpenMP, and many other API’s for parallel computing.

I CUDA requires modifications to C/C++ compiler.



I CUDA programs start execution in a main function that
runs on CPU or host.

I Main function (and other C/C++ functions) execute
C/C++ statements in same way as ordinary C/C++
programs.

I Most important difference between CUDA programs and
C/C++ programs: “kernels.”

I Kernel: a CUDA function called by program running on
the host, but run on GPU or device.

I Typically quite short.



Example: Vector Addition

I Implement CUDA program that does vector addition on
the device:

void Vec_add(float x[], float y[], float z[],

int n) {

for (int i = 0; i < n; i++)

z[i] = x[i] + y[i];

}

I Single source file vec_add.cu

I Usual C header files: stdio.h, stdlib.h, math.h

I Main function: ordinary C main function except for call to
kernel.



I Main: allocate storage for vectors on host and device:
malloc on host, CUDA library cudaMalloc on device.

I (Recall: host and device separate memory.)

I Initialize x, y on host.

I Copy x, y to device: use cudaMemcpy





I CUDA analog of core “thread”

I CUDA analog of SM “thread block”

I Determine: number of threads per block and number of
blocks

I Rule of thumb: use many more threads per block than
cores per SM.

I More blocks than SMs:
I Plus: SM’s can context switch between threads in

different blocks when a block is synchronizing (more
later)

I Minus: Limits availability of shared or local memory.



Call kernel and wait for it to complete:

Vec_add<<<block_count, threads_per_block>>>

(d_x, d_y, d_z, n);

cudaThreadSynchronize();

Notes:

I Number of blocks and threads per block in triple angle
brackets.

I Device memory addresses returned by cudaMalloc

passed to kernel.



I Copy result, z, from device to host.

I Print result

I Free memory: free on host, cudaFree on device

I Quit



Kernel code:

__global__ void Vec_add(float x[], float y[],

float z[], int n) {

int threads_per_block = blockDim.x;

int my_block = blockIdx.x;

int my_thread = threadIdx.x;

int i = threads_per_block*my_block + my_thread;

/* block_count*threads_per_block may be >= n */

if (i < n) z[i] = x[i] + y[i];

} /* Vec_add */



Notes:

I Single-program multiple data execution of kernel:
I Call in main starts block_count ×
threads_per_block threads on device.

I Threads divided into block_count thread blocks.
I Each thread executes kernel code.

I Can have multidimensional blocks.

I Can have multidimensional collections of blocks or grids.

I blockDim, blockIdx, threadIdx initialized during
function invocation.

I i determines component of z for thread running kernel



Example: Two blocks of four threads and n = 6.

blockDim.x = 4

blockIdx.x ThreadIdx.x i

0 0 0 = 4*0 + 0

1 1 = 4*0 + 1

2 2 = 4*0 + 2

3 3 = 4*0 + 3

1 0 4 = 4*1 + 0

1 5 = 4*1 + 1

2 6 = 4*1 + 2

3 7 = 4*1 + 3



I Kernel has return type void.

I Cannot pass by reference (either using C pointers, or
C++ reference arguments): addresses on host are
meaningless on device and vice-versa.

I Must “return” results via memory copy.



Performance:

n = 1048576, block count = 2048, threads

per block = 512

Serial: Intel Xeon E5-2609, 2.40GHz

Serial: 4.65e-03 seconds

CUDA: 7.783-04 seconds

CUDA version is almost 6 times faster



Thread Synchronization

I Vector addition easy to code: each thread read and wrote
its own parts of arrays.

I So no need to synchronize the threads: no race
conditions.

I Race condition occurs: two (or more) threads attempt to
access shared data structure and at least one access is a
write.



I Example: x is a shared variable initialized to 2.

I Two threads A and B computing private value and add it
to x :

Thread A Thread B

my_y = My_func(); my_y = My_func();

x += my_y; x += my_y;

I Here, both threads have “private” copy of my_y.

I Suppose A assigns my_y = 3 and B assigns my_y = 5.

I What’s in x after both threads are done?



I Maybe 10, but maybe 5 or 7.

I Why? addition may not be atomic.

I When one thread starts executing x += my_y, another
thread can take actions that overlap the addition and
change its result.

I Typical implementation of x += my_y:

Load x from memory into reg1

Load my_y from memory into reg2

Add reg2 to reg1

Store reg1 in x

I (Note: each thread has its own, private, registers.)



Suppose threads execute:

Time Thread A Thread B

0: Load x=2 into reg1 Finish computing my_y

1: Load my_y=3 into reg2 Load x=2 into reg1

2: Add reg2 to reg1 Load my_y=5 into reg2

3. Store reg1 in x Add reg2 to reg1

4. ... Store reg1 in x

What’s in x when threads are done?



I Nvidia GPUs have large block of memory (global
memory) shared among all the threads.

I Nvidia GPUs also have a small block of memory (shared
memory) shared among threads in block.

I Problem: control access to shared data structures so no
race conditions?



I Several different solutions.

I Example. Compute a dot product of two vectors:

float Dot(float x[], float y[], int n) {

float dot = 0;

for (i = 0; i < n; i++)

dot += x[i]*y[i];

return dot;

}

I As in the vector addition one thread for each component
of x, y.

I Thread i : compute x[i]*y[i]

I Problem: how to add thread’s product into total?



CUDA Atomic Functions

I To control access to dot product, can use CUDA “atomic
functions”.

I When threads call CUDA’s atomicAdd() function,
CUDA runtime system schedules the executions, so only
one thread executes addition at a time.

I Code very similar to vector addition.

I Host code allocates and initializes arrays on host, device.

I Host calls kernel

I Kernel stores result in “one-element array.”

I Host copies result from device to host.



Kernel:

__global__ void Dev_dot(float x[], float y[], int n,

float* dot_p) {

int threads_per_block = blockDim.x;

int my_block = blockIdx.x;

int my_thread = threadIdx.x

int i = threads_per_block*my_block + my_thread;

if (i < n) {

float tmp = x[i]*y[i];

atomicAdd(dot_p, tmp);

}

} /* Dev_dot */



Performance:

n = 1048576, block count = 2048, threads

per block = 512

Serial: Intel Xeon E5-2609, 2.40GHz

Serial: 4.05e-03 seconds

CUDA: 1.98e-02 seconds

I Serial just under 5 times faster ...

I Not surprising: atomicAdd probably serializes access to
the dot product.



Tree-Structured Global Sum

I OK. Back to the drawing board.

I Example: 8 students, each computes a value.

I How can we add them up?

I Give all numbers to one student and that student does all
addition.

I Better alternative: tree structured global sum.



Students are 0, 1, 2, . . . , 7

Processes

5 2 −1

−4 −5

−3 6 5 −7 2

0 1

7

3

9

6

11

2 3 4 5 6 7

f03-06-9780123742605.eps



I With shared memory, don’t have to send one “student’s”
result to another: receiver can take result.

I Suppose each thread’s product x[i]*y[i] stored in a
temporary, tmp[i].





Thread i will do something like this:

tmp[i] = x[i]*y[i];

for (s = 1; s < thread_count; s *= 2)

if (i % (2*s) == 0)

tmp[i] += tmp[i+s];

I Issues?

I Race condition(s)?



I Yes.

tmp[i] = x[i]*y[i];

for (s = 1; s < thread_count; s *= 2)

if (i % (2*s) == 0)

tmp[i] += tmp[i+s];

I tmp[i] += tmp[i+1] can be executed before
tmp[i+1] = x[i+1]*y[i+1];

I tmp[i] += tmp[i+s] in one iteration can be executed
before tmp[i+s] += tmp[(i+s) + s/2] computed in
an earlier iteration.



I Need to synchronize threads with barrier: point in code
that cannot be passed by any thread, until all threads
have reached it.

I When thread reaches barrier, it waits until all threads
have reached barrier before proceeding.

I Good news! CUDA has very fast barrier
__syncthreads()



I Bad news! __syncthreads() is barrier across thread
block.

I Only synchronizes threads in one thread block.

I Threads in different blocks aren’t synchronized

I Threads in different blocks can only be synchronized by
returning from kernel and either starting new kernel or
calling cudaThreadSynchronize().

I So within block can do tree-structured “global” sum.

I Then host can add up results computed by individual
blocks.



So if z[block] stores results on each block, we have

tmp[loc_i] = x[i]*y[i];

__syncthreads();

for (s = 1; s < block_size; s *= 2) {

if (loc_i % (2*s) == 0)

tmp[loc_i] += tmp[loc_i+s];

__syncthreads(); // Synchronize *all* threads

// in block

}

if (loc_i == 0) z[block] = tmp[0];

What happens if __syncthreads is called inside if

statement?



Performance:

n = 1048576, block count = 2048, threads

per block = 512

Serial: Intel Xeon E5-2609, 2.40GHz

Serial: 4.03e-03 seconds

CUDA

atomicAdd: 1.98e-02 seconds

Tree structure: 4.00e-03 seconds

Much faster than atomicAdd. Roughly same as CPU . . .



Alternative Tree Structure

I Possible problem with dot product: thread divergence.

I Earlier: threads in block execute SIMD fashion

I Conditional branch can require considerably more time
when threads execute different branches.

I The truth: threads in a warp execute SIMD fashion.

I Currently warp has 32 threads.

I Warp is formed from consecutive threads within a block.

I Example: Block has 64 threads. Composed of two warps:
threads 0 – 31, and threads 32 – 63.



I Recall tree structure

I If warp size = 4, every iteration results in thread
divergence.

I Structure of tree isn’t carved in stone . . .

I In alternative structure, if warp size = 4, first iteration
doesn’t result in divergence.



TV

18" TV

4" CAN-TYP.

14'-83
4"

9
'-1

7 8
"



Code for alternative structure:

loc_i = thread rank in block;

i = global thread rank;

tmp[loc_i] = x[i]*y[i];

__syncthreads();

for (s = blocksize/2; s > 0; s /= 2) {

if (loc_i < s)

tmp[loc_i] += tmp[loc_i+s];

__syncthreads();

}

if (loc_i == 0) z[block] = tmp[0];



I Pop Quiz: block size = 512, warp size = 32

I How many iterations of first tree structure result in
divergence?

I How many iterations of second tree structure result in
divergence?



I 9 of 9 iterations result in divergence using first structure

I 5 of 9 iterations result in divergence using second
structure



Performance:

n = 1048576, block count = 2048, threads

per block = 512

Serial: Intel Xeon E5-2609, 2.40GHz

Serial: 4.03e-03 seconds

CUDA

atomicAdd: 1.98e-02 seconds

Tree structure 1: 4.00e-03 seconds

Tree structure 2: 1.94e-03 seconds

More than 10 times faster than atomicAdd and more than
twice as fast as CPU and original tree structure.



Unrolling the Loop

I Within warp, threads operate in lockstep.

I No need to synchronize the threads when they’re
operating within one warp:

I This will happen when adding the last 64 elements in list
and only using threads 0–31 of the block.



Suggests: try replacing

for (int s = blocksize/2; s > 0; s /= 2) {

if (loc_t < s)

tmp[loc_i] += tmp[loc_i + s];

__syncthreads();

}



With this code:

for (int s = blocksize/2; s > 32; s /= 2) {

if (loc_i < s)

tmp[loc_i] += tmp[loc_i + s];

__syncthreads();

}

if (loc_i < 32) {

if (block_size >= 64) tmp[loc_i] += tmp[loc_i + 32];

if (block_size >= 32) tmp[loc_i] += tmp[loc_i + 16];

if (block_size >= 16) tmp[loc_i] += tmp[loc_i + 8];

if (block_size >= 8) tmp[loc_i] += tmp[loc_i + 4];

if (block_size >= 4) tmp[loc_i] += tmp[loc_i + 2];

if (block_size >= 2) tmp[loc_i] += tmp[loc_i + 1];

}

Does extra work, but no thread divergence, and result in
tmp[0] is correct.



Performance:

n = 1048576, block count = 2048, threads

per block = 512

Serial: Intel Xeon E5-2609, 2.40GHz

Serial: 4.03e-03 seconds

CUDA

atomicAdd: 1.98e-02 seconds

Tree structure 1: 4.00e-03 seconds

Tree structure 2: 1.94e-03 seconds

Unrolled loop: 1.38e-03 seconds



I Thanks to George Ledin and the Computer Science
Department at Sonoma State for inviting me.

I Thanks to Karen Parish for preparing the diagrams.

I I’ll post the talk and the codes on my webpage

http://cs.usfca.edu/~peter/ssu_talk

I Questions?


	General Purpose Computing for GPU's
	Nvidia GPUs
	CUDA
	Example: Vector Addition
	Thread Synchronization
	CUDA Atomic Functions
	Tree-Structured Global Sum
	Alternative Tree Structure
	Unrolling the Loop

