Optimizing the Performance of a CUDA
Kernel

Peter Pacheco
University of San Francisco
peter@usfca.edu

March 10, 2016


peter@usfca.edu

High-Performance Computing: widespread use of
Graphics Processing Units (GPUs) to improve
performance of conventional CPUs.

This talk: brief introduction to General Purpose
Programming on GPUs (GPGPU).

Focus of talk: programming Nvidia GPUs with CUDA —
Nvidia's API for GPGPU.

Nearly ten years since release of first CUDA SDK.

Thousands of applications developed using CUDA, and
CUDA changed dramatically.

This talk: look at a couple of simple applications,

Purpose: give feel for development of CUDA applications.



General Purpose Computing for GPU's
Nvidia GPUs

CUDA

Example: Vector Addition

Thread Synchronization

CUDA Atomic Functions
Tree-Structured Global Sum
Alternative Tree Structure

Unrolling the Loop



General Purpose Computing for GPU'’s

v

1990's: huge demand for highly realistic computer games

v

Result: huge increase in capabilities of graphics hardware.

v

Early 2000’s: GPUs so powerful programmers tried to use
for general purpose programming.

Result: beginning of GPGPU.

v



v

v

v

v

v

Initially GPGPU extremely challenging:

Programmers “tricked” graphics APIs (Direct3D,
OpenGL) into doing CPU-like operations on processors
designed to manipulate polygons, add shading, etc.
More tractable APIs for GPGPU soon developed.
2003: Stanford Brook API.

Since then several APIs developed:

» ATI: Stream

» Nvidia: CUDA,

» Industry group (led by Apple): OpenCL.
» Nvidia, Portland Group, Cray: OpenACC



What's Happening Now?

» ATI supporting OpenCL

» Nvidia supports CUDA and OpenACC

» CUDA most widely used GPGPU API

» Has a very sophisticated development environment.

» Many more applications coded in CUDA than any other
GPGPU API.

» Main drawback to CUDA: only available for Nvidia GPU's.



Nvidia GPUs

v

Design of GPUs not standardized.

Even Terminology not standardized.

We use CUDA, so talk about Nvidia GPU’s and use
Nvidia's terminology.

v

v

v

Nvidia GPUs: composed of “streaming multiprocessors”
(SM or SMX's — “SM neXt generation").

» Each SM: 8 or more “cores” or “thread processors”



Core: CPU without a control unit.
Single control unit for all cores.
It can issue different instruction to each SM.

First approximation: within single multiprocessor cores
operate in SIMD fashion.

Recall SIMD: Single-Instruction Multiple-Data

SIMD execution: each core executes same instruction as
other cores on its data: or is idle.



if (my_x >= 0)

my_y = my_X;
else
my_.y = —my_X;

» Time 0: All threads execute test.
» Time 1;

» Threads with my_x >= 0 assign my_y = my_x
» Threads with my_x < 0 idle.

» Time 2:

» Threads with my_y < O assigh my_y = -my_x
» Threads with my_x >= 0 idle.



Called thread divergence.

However, threads running on different multiprocessors can
execute different instructions.

Each SM has block of “shared” or “local” memory.
(Nvidia terminology: “shared” = shared among the cores
in a single SM.)

Also “global” or “device” memory shared by all SM’s (in
a single GPU).



Thread Execution Control Unit

Fune

k 1
Maniory

Device Memary



» Specs for a “Quadro 600" GPU

Multiprocessors: 2
Cores per SM: 48
GPU clockspeed: 1.28 GHz
Shared Memory per SM: 48 KB
Global Memory: 1 GB

» Quadro 600 fairly modest GPU.

» Top-of-the-line processor for GPGPU, Tesla K80, ~ 5000
total cores, > 25 SMs.



How to exploit hundreds or thousands of cores?

» Hardware context switch: when thread is idled (e.g.,
waiting for data from global memory), almost no delay in
starting another thread.

» Program: avoid thread divergence. (More later)

» Program: exploit hardware context switch: run many
threads on each SM.



CUDA

CUDA originally “Compute-Unified Device Architecture:”
program both CPU and GPU with CUDA program.

CUDA source stored in “.cu” files.
Source code very similar to C/C++ code.

Many C programs (and some C++ programs) can be
compiled by CUDA compiler and run on CPU.

Note: CUDA not a library — unlike MPI, Pthreads,
OpenMP, and many other API's for parallel computing.

CUDA requires modifications to C/C++ compiler.



CUDA programs start execution in a main function that
runs on CPU or host.

Main function (and other C/C++ functions) execute
C/C++ statements in same way as ordinary C/C++
programs.

Most important difference between CUDA programs and
C/C++ programs: “kernels.”

Kernel: a CUDA function called by program running on
the host, but run on GPU or device.

Typically quite short.



Example: Vector Addition

v

Implement CUDA program that does vector addition on

the device:
void Vec_add(float x[], float y[], float z[],
int n) {

for (int i = 0; 1 < n; i++)
z[i] = x[i] + y[il;
+
Single source file vec_add.cu
Usual C header files: stdio.h, stdlib.h, math.h

Main function: ordinary C main function except for call to
kernel.

v

v

v



v

v

v

Main: allocate storage for vectors on host and device:
malloc on host, CUDA library cudaMalloc on device.

(Recall: host and device separate memory.)
Initialize x, y on host.

Copy x, y to device: use cudaMemcpy



Host Memory

Device Memory




CUDA analog of core “thread”
CUDA analog of SM *“thread block”

Determine: number of threads per block and number of
blocks

Rule of thumb: use many more threads per block than
cores per SM.
More blocks than SMs:

» Plus: SM’s can context switch between threads in
different blocks when a block is synchronizing (more
later)

» Minus: Limits availability of shared or local memory.



Call kernel and wait for it to complete:

Vec_add<<<block_count, threads_per_block>>>
(d_x, d_y, d_z, n);

cudaThreadSynchronize () ;

Notes:

» Number of blocks and threads per block in triple angle
brackets.

» Device memory addresses returned by cudaMalloc
passed to kernel.



v

v

v

v

Copy result, z, from device to host.
Print result

Free memory: free on host, cudaFree on device

Quit



Kernel code

__global__ void Vec_add(float x[], float yl[],
float z[], int n) {
int threads_per_block = blockDim.x;
int my_block = blockldx.x;
int my_thread = threadldx.x;
int i = threads_per_block*my_block + my_thread;

/* block_count*threads_per_block may be >= n */
if (i < n) z[i] = x[i] + y[i];
} /% Vec_add */



Notes:
» Single-program multiple data execution of kernel:

» Call in main starts block_count X
threads_per_block threads on device.

» Threads divided into block_count thread blocks.

» Each thread executes kernel code.

Can have multidimensional blocks.

v

Can have multidimensional collections of blocks or grids.

blockDim, blockIdx, threadIdx initialized during
function invocation.

v

v

i determines component of z for thread running kernel

v



Example: Two blocks of four threads and n = 6.

blockDim.x = 4

blockIdx.x ThreadIdx.x i
0 0 0 =4x0 + 0
1 1 =4x0 + 1
2 2 = 4x0 + 2
3 3 =4x0 + 3
1 0 4 = 4x1 + 0
1 5 =4x1 + 1
2 6 = 4*x1 + 2
3 7 =4%x1 + 3



» Kernel has return type void.

» Cannot pass by reference (either using C pointers, or
C++ reference arguments): addresses on host are
meaningless on device and vice-versa.

» Must “return” results via memory copy.



Performance:

n = 1048576, block count = 2048, threads
per block = 512
Serial: Intel Xeon E5-2609, 2.40GHz

Serial: 4.65e-03 seconds
CUDA: 7.783-04 seconds

CUDA version is almost 6 times faster



Thread Synchronization

» Vector addition easy to code: each thread read and wrote
its own parts of arrays.

» So no need to synchronize the threads: no race
conditions.

» Race condition occurs: two (or more) threads attempt to
access shared data structure and at least one access is a
write.



v

v

v

v

v

Example: x is a shared variable initialized to 2.

Two threads A and B computing private value and add it
to x :

Thread A Thread B
my_y = My_funcQ); my_y = My_func(Q);
X += my_y; X += my_y;

Here, both threads have “private” copy of my_y.
Suppose A assigns my_y = 3 and B assigns my_y = 5.
What's in x after both threads are done?



v

Maybe 10, but maybe 5 or 7.
Why? addition may not be atomic.

When one thread starts executing x += my_y, another
thread can take actions that overlap the addition and
change its result.

Typical implementation of x += my_y:

Load x from memory into regl
Load my_y from memory into reg?2
Add reg2 to regl

Store regl in x

(Note: each thread has its own, private, registers.)



Suppose threads execute:

Time
0:

W N -

What's in x when threads are done?

Thread A
Load x=2 into regl
Load my_y=3 into reg2
Add reg2 to regl
Store regl in x

Thread B
Finish computing my_y
Load x=2 into regl
Load my_y=5 into reg2
Add reg2 to regl
Store regl in x



» Nvidia GPUs have large block of memory (global
memory) shared among all the threads.

» Nvidia GPUs also have a small block of memory (shared
memory) shared among threads in block.

» Problem: control access to shared data structures so no
race conditions?



Several different solutions.
Example. Compute a dot product of two vectors:
float Dot(float x[], float y[], int n) {
float dot = 0;
for (i = 0; 1 < n; i++)
dot += x[il*y[i];
return dot;
}
As in the vector addition one thread for each component
of x, y.
Thread /: compute x[1]*y[1i]
Problem: how to add thread’s product into total?



CUDA Atomic Functions

» To control access to dot product, can use CUDA “atomic
functions”.

» When threads call CUDA’s atomicAdd () function,
CUDA runtime system schedules the executions, so only
one thread executes addition at a time.

» Code very similar to vector addition.

» Host code allocates and initializes arrays on host, device.
» Host calls kernel

» Kernel stores result in “one-element array.”

» Host copies result from device to host.



Kernel:

__global__ void Dev_dot(float x[], float y[], int n,
float* dot_p) {
int threads_per_block = blockDim.x;
int my_block = blockIdx.x;
int my_thread = threadldx.x
int i = threads_per_block*my_block + my_thread;

if (i <n) {
float tmp = x[i]l*y[i];
atomicAdd(dot_p, tmp);

} /*x Dev_dot */



Performance:

n = 1048576, block count = 2048, threads
per block = 512
Serial: 1Intel Xeon E5-2609, 2.40GHz

Serial: 4.05e-03 seconds
CUDA: 1.98e-02 seconds

» Serial just under 5 times faster ...

» Not surprising: atomicAdd probably serializes access to
the dot product.



Tree-Structured Global Sum

» OK. Back to the drawing board.

Example: 8 students, each computes a value.

v

v

How can we add them up?

Give all numbers to one student and that student does all
addition.

v

v

Better alternative: tree structured global sum.



Students are 0, 1,2, ..., 7

3
()




» With shared memory, don’t have to send one “student’s
result to another: receiver can take result.

» Suppose each thread’s product x[i]*y[i] stored in a
temporary, tmp [i].



tmp

s=1

tmp

s=2

tmp

s=4

tmp

l
KEIRDCEIEE
l




Thread i/ will do something like this:

tmp[i] = x[i]*y[il;

for (s = 1; s < thread_count; s *= 2)
if (1 % (2%s) == 0)
tmp[i] += tmp[i+s];

> Issues?

» Race condition(s)?



> Yes.

tmp[i] = x[il*y[il;
for (s = 1; s < thread_count; s *= 2)
if (i % (2%s) == 0)
tmp[i] += tmpl[i+s];
» tmp[i] += +tmp[i+1] can be executed before
tmp[i+1] = x[i+1]*y[i+1];
» tmp[i] += tmp[i+s] in one iteration can be executed
before tmp [i+s] += tmp[(i+s) + s/2] computed in
an earlier iteration.



» Need to synchronize threads with barrier: point in code
that cannot be passed by any thread, until all threads
have reached it.

» When thread reaches barrier, it waits until all threads
have reached barrier before proceeding.

» Good news! CUDA has very fast barrier
__syncthreads ()



Bad news! __syncthreads() is barrier across thread
block.

Only synchronizes threads in one thread block.
Threads in different blocks aren't synchronized

Threads in different blocks can only be synchronized by
returning from kernel and either starting new kernel or
calling cudaThreadSynchronize ().

So within block can do tree-structured “global” sum.

Then host can add up results computed by individual
blocks.



So if z[block] stores results on each block, we have

tmp[loc_i] = x[il=*y[i];
__syncthreads() ;

for (s = 1; s < block_size; s *= 2) {
if (loc_i % (2%s) == 0)
tmp[loc_i] += tmp[loc_i+s];
syncthreads(); // Synchronize *all* threads
// in block

if (loc_i == 0) z[block] = tmp[0];

What happens if __syncthreads is called inside if
statement?



Performance:

n = 1048576, block count = 2048, threads
per block = 512
Serial: 1Intel Xeon E5-2609, 2.40GHz

Serial: 4.03e-03 seconds
CUDA
atomicAdd: 1.98e-02 seconds

Tree structure: 4.00e-03 seconds

Much faster than atomicAdd. Roughly same as CPU ...



Alternative Tree Structure

» Possible problem with dot product: thread divergence.
» Earlier: threads in block execute SIMD fashion

» Conditional branch can require considerably more time
when threads execute different branches.

» The truth: threads in a warp execute SIMD fashion.
» Currently warp has 32 threads.
» Warp is formed from consecutive threads within a block.

» Example: Block has 64 threads. Composed of two warps:
threads 0 — 31, and threads 32 — 63.



v

v

v

v

Recall tree structure

If warp size = 4, every iteration results in thread
divergence.

Structure of tree isn't carved in stone ...

In alternative structure, if warp size = 4, first iteration
doesn't result in divergence.



S=

tmp

2

s=

tmp (1067 [5][1[2]4]1]

s=1

tmp |16 67 [5][1[2][4]1]



Code for alternative structure:

loc_i = thread rank in block;
i = global thread rank;
tmp[loc_i] = x[i]l*y[i];
__syncthreads() ;
for (s = blocksize/2; s > 0; s /= 2) {
if (loc_i < s)
tmp[loc_i] += tmp[loc_i+s];
__syncthreads () ;
}
if (loc_i == 0) z[block] = tmp[0];



» Pop Quiz: block size = 512, warp size = 32

» How many iterations of first tree structure result in
divergence?

» How many iterations of second tree structure result in
divergence?



» 9 of 9 iterations result in divergence using first structure

» 5 of 9 iterations result in divergence using second
structure



Performance:

n = 1048576, block count = 2048, threads
per block = 512
Serial: 1Intel Xeon E5-2609, 2.40GHz

Serial: 4.03e-03 seconds
CUDA
atomicAdd: 1.98e-02 seconds

Tree structure 1: 4.00e-03 seconds
Tree structure 2: 1.94e-03 seconds

More than 10 times faster than atomicAdd and more than
twice as fast as CPU and original tree structure.



Unrolling the Loop

» Within warp, threads operate in lockstep.

» No need to synchronize the threads when they're
operating within one warp:

» This will happen when adding the last 64 elements in list
and only using threads 0-31 of the block.



Suggests: try replacing

for (int s = blocksize/2; s > 0; s /= 2) {
if (loc_t < s)

tmp[loc_i] += tmp[loc_i + s];

syncthreads() ;



With this code:

for (int s
if (loc_i < s)

= blocksize/2;

s >32; 8/

tmp[loc_i] += tmp[loc_i + s];

if (loc_i < 32) {
if (block_size
if (block_size
if (block_size
if (block_size
if (block_size
if (block_size

3

syncthreads() ;

+
I

64) tmp[loc_i]
32) tmp[loc_i] +
16) tmp[loc_i] +
8) tmp[loc_i] +=
4) tmp[loc_i] +=
2) tmp[loc_i] +=

2) {

tmp[loc_i + 32]
tmp [loc_i + 16]
tmp[loc_i + 8];

tmp[loc_i + 4];
tmp[loc_i + 2];
tmp[loc_i + 1];

Does extra work, but no thread divergence, and result in

tmp [0] is correct.



Performance:

n = 1048576, block count = 2048, threads
per block = 512
Serial: Intel Xeon E5-2609, 2.40GHz

Serial: 4.03e-03 seconds
CUDA
atomicAdd: 1.98e-02 seconds

Tree structure 1: 4.00e-03 seconds
Tree structure 2: 1.94e-03 seconds
Unrolled loop: 1.38e-03 seconds



v

v

v

v

Thanks to George Ledin and the Computer Science
Department at Sonoma State for inviting me.

Thanks to Karen Parish for preparing the diagrams.
I'll post the talk and the codes on my webpage

http://cs.usfca.edu/ "peter/ssu_talk
Questions?



	General Purpose Computing for GPU's
	Nvidia GPUs
	CUDA
	Example: Vector Addition
	Thread Synchronization
	CUDA Atomic Functions
	Tree-Structured Global Sum
	Alternative Tree Structure
	Unrolling the Loop

