1. Prove that \mathbb{R}^n with the “usual topology” satisfies the axioms for a topological space.

2. Prove that the $\epsilon - \delta$ definition of continuity is equivalent to the open set definition of continuity (i.e., $f : \mathbb{R}^n \to \mathbb{R}^m$ is continuous iff $f^{-1}(V)$ is open for each open subset $V \subseteq \mathbb{R}^m$).

3. Suppose (X, \mathcal{U}) is a topological space and $Y \subseteq X$. Define a family of subsets \mathcal{V} of Y by $V \in \mathcal{V}$ iff there exists a set $U \in \mathcal{U}$ such that $V = U \cap Y$. Prove that \mathcal{V} is a topology on Y. \mathcal{V} is called the relative topology on Y, and unless we state otherwise, you should assume that a subset of a topological space has the relative topology.

4. Using subsets of euclidean spaces, find topological spaces X and Y and a function $f : X \to Y$, such that

 (a) f is continuous but not open.

 (b) f is open but not continuous.

Can you find a function f satisfying 4a or 4b that is both one-to-one and onto?