1. Verify the claims in 3.15.5X:

(a) The set of all faces of an \(n \)-simplex \(s_n \) is a simplicial complex of dimension \(n \).

(b) The set of all proper faces of an \(n \)-simplex \(s_n \) is an \((n - 1) \)-dimensional simplicial complex.

2. 3.17.1X. Suppose \(K_1 \) and \(K_2 \) are subcomplexes of the simplicial complex \(K \).

(a) Then \(K_1 \cup K_2 \) is a subcomplex of \(K \).

(b) Then \(K_1 \cap K_2 \) is a subcomplex of \(K \).

(c) Is \(K_1 \setminus K_2 \) a subcomplex? If your answer is “yes,” prove it. If your answer is “no,” give a counterexample.

3. Suppose \(K \) is a simplicial complex such that \(|K| \subseteq \mathbb{R}^N \). Show that \(|K| \) is a closed subset of \(\mathbb{R}^N \). You can assume that any \(n \)-simplex is compact.