1. A basis of a topological space X is a family of open subsets B with the property that every open set U in the topological space is a union of elements of B.

 (a) Show that the family of open balls forms a basis for the usual topology on \mathbb{R}^n.
 (b) Show that a function $f : X \to Y$ is continuous iff $f^{-1}(V)$ is open for each V in a basis B for the topology on Y.

2. Suppose X is a finite subset of some euclidean space and it has the relative or subspace topology. If Y is any topological space and $f : X \to Y$ is any function, show that f is continuous.

3. Example 1.7.1 on page 17 of the text. Explain your answer.

4. Example 1.7.2 on page 17 of the text. Explain your answer.

5. Extra Credit. Suppose X is a topological space and A is a closed subset of X. Also suppose that C is a subset of A that is closed in the relative topology on A. Show that C is a closed subset of X.

6. Extra Credit. A topological space X is Hausdorff if for any two points $x, y \in X$, there exist open neighborhoods U of x and V of y such that $U \cap V = \emptyset$.

 (a) Show that \mathbb{R}^n is Hausdorff.
 (b) If X is a Hausdorff space and C is a compact subset of X, show that C must be closed.
 (c) Find an example of a topological space X and a compact subset C that is not closed. In order to receive credit, you must explain why your example is correct.