
ECS120 Introduction to the Theory of Computation
Fall Quarter 2007

Discussion 7 Notes
Wednesday November 14, 2007

Decision Procedures

A decision procedure is a procedure that provides a yes or no answer for a decision problem.
A decider is a Turing machine that halts on all inputs. (It always accepts or rejects a string.)
Therefore, we can re-formulate our decision procedures as deciders.

Consider the procedure for deciding if L(G) = ∅ for a context-free grammar G. The general idea
behind this is to:

1. Mark all the terminal symbols.

2. Until there is nothing more to mark:

(a) If the right-hand side (RHS) is completely marked, mark the left-hand side (LHS).

(b) Mark every occurrence of that LHS.

3. If the start symbol is marked, then output YES. Otherwise output NO.

Consider the grammar G for a ∗ b∗:

S → A|B|AB
A → aA|ε
B → bB|ε

To create a Turing machine to decide this, we need to somehow input our grammar to the Turing
machine as a string. We can create a string from the formal description of the grammar. For the
grammar above, our input tape might look like this:

S A B # a b ε # S A # S B # S A B # (continued on next line...)

A a A # A ε # B b B # B ε # · · ·

We know that the first symbol is the start symbol, followed by variables. After the first # we have
our alphabet symbols. Following the next # we have rules where the first symbol is the left hand
side, and all the symbols until the next # make up the right hand side. We know we are done with
rules once we reach the first blank.

This allows us to feed our grammar to a Turing machine. In general we use the 〈 〉 notation to
represent the string encoding of some object. So for this case, we want to give 〈G 〉 to our Turing
machine M .

1

Our decider M will then work as follows:

M = “On input 〈G 〉:

1. Skip to the rules and mark each terminal found. (We know what are terminals from
the start of the tape.)

2. Until no new variables are marked, for each rule do the following:

(a) If every symbol from the RHS of our rule is marked, mark the LHS.
(b) Scan all the rules and mark every occurrence of the LHS.

3. If the start variable is marked, accept. Otherwise, reject.”

For example, after the first step our tape looks like:

S A B # a b ε # S A # S B # S A B # (continued on next line...)

A ȧ A # A ε̇ # B ḃ B # B ε̇ # · · ·

Again, the devil is in the details. For example, how do we know if no new variables have been
marked? We can set aside another cell on our tape. Before we start our scan, write a 0 in this field.
If we mark a symbol, write a 1 in this cell. If there is still a 0 in the cell, then no new symbols have
been marked.

Closure Properties

Show that the collection of decidable languages is closed under union.

Sipser Problem 3.15 (a)

We want to show that if L1 and L2 are decidable, then L1 ∪ L2 = L3 is decidable.

Let L1 and L2 be decidable languages, and M1 and M2 be the Turing machines that decide them.
Let build M ′ as follows:

M ′ = “On input w:
1. Run M1 on w. If it accepts, output accept.
2. Run M2 on w. If it accepts, output accept.
3. Otherwise, output reject.”

Now, we want to argue that L(M ′) = L1 ∪ L2. To do this we must show that L(M ′) accepts only
those strings that are in L1 ∪ L2. By the definition of union, we know that w ∈ L1 ∪ L2 iff w ∈ L1

or w ∈ L2.

If w ∈ L(M ′), then w is accepted by M1 in step 1 or M2 in step 2. Therefore w ∈ L1 or w ∈ L2,
which by definition means w ∈ L1 ∪ L2.

2

If w ∈ L1 ∪ L2, then it is accepted by either M1 or M2. If it is accepted by M1, it is accepted by
M ′ in step 1. If it is accepted by M2, it is accepted by M ′ in step 2. Therefore, w ∈ L(M ′).

Show that the collection of Turing-recognizable languages is closed under union.

Sipser Problem 3.16 (a)

What is wrong with using the same proof? In this case, M1 and M2 are acceptors and may never
halt. Consider the case where M1 loops on w but M2 accepts w. Then M ′ should accept w.
However, if we use the same machine M ′, we will get stuck on step 1 and loop forever. This means
M ′ will never accept w!

Instead we use a technique called dovetailing, is similar to the concept of multithreading. We run
M1 on the first symbol of w, and then switch to M2. We run M2 on the first symbol of w, and then
switch back to M1. We pick off where we started on M1, and run M1 on the second symbol of w.
This continues to repeat until either M1 or M2 accept or reject.

The new machine M ′′ looks like:

M ′′ = “On input w:
1. Run M1 and M2 alternatively on w step by step (dovetail).
2. If either M1 or M2 accept, output accept.
3. If both M1 and M2 halt and reject, output reject.”

If one of M1 or M2 loops, the other will still have a chance to run. Therefore, if either M1 or M2

accept, then M ′′ will accept. If they both halt and reject, then M ′′ will halt and reject. If they
both loop, then M ′′ will also loop (making it an acceptor).

I’ll leave a more complete argument that L(M ′′) = L1 ∪ L2 for you to try out.

Decidability Proofs

Show that the following language is decidable:

INFINITEDFA = { 〈 A 〉 | A is a DFA and L(A) is an infinite language }

Sipser Problem 4.9

To understand the algorithm for this one, there is some setup that is required.

First, notice that a DFA which accepts infinitely many strings must accept arbitrarily long strings.
(If a DFA accepted only strings of length n or less, the language would be finite.)

Second, review the proof on page 79 of your book. Let p be the number of states in A. Consider
a string s where |s| = n ≥ p. The sequence of states A enters while processing s is n + 1 (since
it enters the start state before processing a symbol). However, n + 1 ≥ p + 1. By the pigeonhole

3

principle, A must revist at least one state in the sequence. This indiates there is a loop, and tada...
we can split s into three parts at satisfies the pumping lemma. (See the book for more detail.) As
such, if A accepts s, then it accepts infinitely many strings since s may be pumped.

However, we have a problem. We can’t test infinitely many strings s! How will we know when to
stop testing strings?

Consider the language L = { s | s ∈ Σ∗ and |s| ≥ p }, which is the language of all strings of length
p or more. This language is regular (it is essentially Σp Σ∗). Therefore we can create a DFA, B,
where L(B) = L.

Now, what can we say about the intersection L(A) ∩ L(B)? If it is empty, then A never accepts a
string s where |s| ≥ p. However, if it is nonempty, then A accepts such a string and is infinite.

Therefore, we create the TM M which decides INFINITEDFA as follows:

M = “On input 〈A 〉 where A is a DFA:
1. Let p be the number of states in A.
2. Construct a DFA B that accepts all strings of length p or more.
3. Construct a DFA C such that L(C) = L(A) ∩ L(B).
4. Test if L(C) = ∅ (use EDFA from book).
5. If L(C) is empty, output reject.
6. Otherwise, output accept.”

4

	Decision Procedures
	Closure Properties
	Decidability Proofs

