
ECS120 Introduction to the Theory of Computation
Fall Quarter 2007

Discussion 9 Notes
Wednesday November 28, 2007

The Emptiness Problem Revisited

The emptiness problem, ETM = { 〈M 〉 |M is a TM and L(M) = ∅ }, is undecidable.

We showed an informal proof of this during last discussion:

Informally, we assume R is a decider for ETM. Then we build S to decide ATM by building the
Turing machine M1 and feeding it to R. Finally, S outputs the opposite result of R.

In fact, what we have done here is reduce the problem of ATM to the complement of ETM. More
formally, we are showing that if ATM ≤m ETM and ATM is undecidable, then ETM is undecidable
(corollary 5.23 on page 208).

Lets do this reduction more formally now, and give a computable function that shows ATM ≤m ETM.

First, we need to figure out what the input and output of our function needs to be. Since elements
of ATM are in the form 〈M, w〉, this will be the input of our function. Since the elements of ETM

are in the form 〈M〉, this will be the output of our function. This gives:

F = “On input 〈M, w〉:
1. . . .

2. Output 〈M ′〉.”

Second, we need to figure out what we want to actually show. Remember, for mapping reducibility
we need the relationship where 〈M, w〉 ∈ ATM ⇔ 〈M ′〉 ∈ ETM, or equivalently, 〈M,w〉 ∈ ATM ⇔
〈M ′〉 6∈ ETM (definition 5.20 on page 207). This means, we want to construct a Turing machine M ′

such that when M accepts w, M ′ is not empty. This gives:

1

F = “On input 〈M, w〉:
1. Construct M ′ as follows:

M ′ = “On input ??:

− If M accepts w . . . (accept something).
− If M does not accept w . . . (accept nothing).”

2. Output 〈M ′〉.”

We are getting closer. However, we still have some gaps to fill in. First, lets think about M ′ some
more. Our aim is to build a Turing machine M ′ such that L(M ′) 6= ∅ if M accepts w and L(M ′) = ∅
if M rejects w. We only care about the language of this Turing machine, not the simulation of
it. Also, this Turing machine is created for a specific M and w pair. However, it may accept input
like any other Turing machine. Therefore we have:

F = “On input 〈M, w〉:
1. Construct M ′ as follows:

M ′ = “On input x:

− If M accepts w . . . (accept something).
− If M does not accept w . . . (accept nothing).”

2. Output 〈M ′〉.”

Now we must decide what to do with the input of M ′. Remember, we want L(M ′) to be empty
when M rejects w. So lets start by rejecting all input not equal to w:

F = “On input 〈M, w〉:
1. Construct M ′ as follows:

M ′ = “On input x:

(a) If x 6= w, reject.
− If M accepts w . . . (accept something).”

2. Output 〈M ′〉.”

Finally, if x = w we want to accept only if M accepts w. We determine this by simulating M on
w. If M accepts w, we must accept x:

F = “On input 〈M, w〉:
1. Construct M ′ as follows:

M ′ = “On input x:

(a) If x 6= w, reject.
(b) If x = w, simulate M on w.
(c) If M accepts w, accept.

2. Output 〈M ′〉.”

This gives us our Turing-computable function F . However, we are not quite done. We need to
show that 〈M,w〉 ∈ ATM ⇔ 〈M ′〉 6∈ ETM holds.

2

Notice that if 〈M,w〉 ∈ ATM, then M ′ will accept a single string x = w. Therefore, L(M ′) 6= ∅.
This gives 〈M, w〉 ∈ ATM ⇒ 〈M ′〉 6∈ ETM.

If 〈M ′〉 6∈ ETM, then we know L(M ′) 6= ∅. The only string M ′ will ever accept is x = w, and this
happens only when M accepts w. Therefore, we have 〈M ′〉 6∈ ETM ⇒ 〈M,w〉 ∈ ATM.

Showing that 〈M,w〉 ∈ ATM ⇔ 〈M ′〉 6∈ ETM holds may not take a lot of work, but is necessary in
showing that ATM ≤m ETM.

So now, we have proven that ETM is undecidable. What about ETM? (Think about Theorem 4.22
on page 181.)

The Equivalence Problem

The equivalence problem, EQTM = { 〈M1, M2 〉 |M1 and M2 are TMs and L(M1) = L(M2) }, is
undecidable. We will show this by showing that ETM ≤m EQTM and using Corollary 5.23.

First, we need to figure out what the input and output of our function needs to be. Since elements
of ETM are in the form 〈M〉, this will be the input of our function. Since the elements of EQTM

are in the form 〈M1, M2〉, this will be the output of our function. This gives:

F = “On input 〈M〉:
1. . . .

2. Output 〈M,M ′〉.”

Second, we need to figure out what we want to actually show. We want the situation where if L(M)
is empty, then L(M) = L(M ′). Since L(M) is empty, we have L(M) = L(M ′) only when L(M ′) is
also empty. Therefore, we get:

F = “On input 〈M〉:
1. Construct M ′ as follows:

M ′ = “On input x: reject.”

2. Output 〈M,M ′〉.

Now, we must show that 〈M〉 ∈ ETM ⇔ 〈M,M ′〉 ∈ EQTM holds.

If L(M) is empty, then L(M) = L(M ′) since L(M ′) is empty. This gives 〈M〉 ∈ ETM ⇒ 〈M, M ′〉 ∈
EQTM. If L(M) = L(M ′), then L(M) is empty since L(M ′) is empty. This gives 〈M,M ′〉 ∈
EQTM ⇒ 〈M〉 ∈ ETM.

Again, these statements seem apparent, but are necessary in completing our proof.

3

Guide To Classifying Languages

Claim: L is decidable.

There are three methods you may use to prove this is true. The easiest is to use definition 3.6
(page 142). This states that a language is decidable if some Turing machine decides it. Therefore,
you may provide a decider Turing machine M such that L(M) = L to prove L is decidable.

Alternatively, you may use theorem 4.22 (page 181). This states that a language is decidable iff
it is Turing-recognizable and co-Turing recognizable. If you show that L is both recognizable and
co-recognizable, you prove that L is decidable. How to prove a language is Turing-recognizable or
co-Turing-recognizable is covered in the following sections.

Finally, you may use theorem 5.22 (page 208). This states that if A ≤m B and B is decidable,
then A is decidable. If you show that L ≤m D where D is already proven to be decidable, then you
prove that L is also decidable.

Claim: L is Turing-recognizable (or acceptable).

The easiest method is to use definition 3.5 (page 142). This states that a language is Turing-
recognizable if some Turing machine recognizes it. Therefore, you may provide a Turing machine
M such that L(M) = L to prove L is recognizable.

You may also use theorem 3.21 (page 153). This states that a language is Turing-recognizable if
and only if some enumerator enumerates it. Therefore, if you provide an enumerator M such that
L(M) = L, then you prove L is Turing-recognizable.

We also know that every decidable language is Turing-recognizable (page 142). Therefore, if you
already know L is decidable, then you know L is also Turing-recognizable.

Finally, you may use theorem 5.28 (page 209). This states that if A ≤m B and B is Turing-
recognizable, then A is Turing-recognizable. If you show that L ≤m R where R is recognizable, you
prove that L is also Turing-recognizable.

However, if you want to prove that L is just Turing-recognizable and not also decidable, you must
prove that L is undecidable. How to do this is given in the following sections.

Claim: L is co-Turing-recognizable.

This is done by showing that the complement of L is Turing-recognizable. Use the methods from
above to show this.

4

Claim: L is undecidable.

You may use theorem 4.22 (page 181). This states that a language is decidable iff it is Turing-
recognizable and co-Turing recognizable. Therefore, if L is not Turing-recognizable or co-Turing
recognizable, then L is not decidable. How to show this is provided in the following sections.

Finally, you may use corollary 5.23 (page 208). This states that if A ≤m B and A is undecidable,
then B is undecidable. Therefore, you must show that U ≤m L for some undecidable language U .

Claim: L is not Turing-recognizable.

You may again use theorem 4.22 (page 181). This states that a language is decidable iff it is
Turing-recognizable and co-Turing recognizable. Therefore, if you know that L is undecidable and
L is recognizable, then L may not also be recognizable. This method was used on corollary 4.23
(page 182).

Finally, you may use corollary 5.29 (page 210). This states that if A ≤m B and A is not Turing-
recognizable, then B is not Turing-recognizable. Therefore, you must show that S ≤m L for some
language S which is not Turing-recognizable.

Claim: L is not co-Turing-recognizable.

This is done by showing that the complement of L is not Turing-recognizable. For example, you
could use theorem 4.22 and show that L is undecidable and recognizable, meaning L must not also
be recognizable.

Summary

I’ve tried to summarize all the methods we have covered in the following table. Please let me know
if anything is missing!

5

Claim: Method: Thm: Pg:

L is decidable. Give a decider M such that L(M) = L. 3.6 142

Show L is recognizable and co-recognizable. 4.22 181

Show L ≤m B for a decidable language B. 5.22 208

L is recognizable. Give a Turing machine M such that L(M) = L. 3.5 142

Give an enumerator M such that L(M) = L. 3.21 153

Show L ≤m B for a recognizable language B. 5.28 209

L is co-recognizable. Show that L is recognizable. − 181

L is undecidable. Show L is not recognizable. 4.22 181

Show L is not co-recognizable. 4.22 181

Show A ≤m L for some A which is undecidable. 5.23 208

L is not recognizable. Show L is undecidable & co-recognizable. 4.22 181

Show A ≤m L for some A which isn’t recognizable. 5.29 210

L is not co-recognizable. Show L is undecidable & recognizable. 4.22 181

Show that L is not recognizable. 5.29 210

6

	The Emptiness Problem Revisited
	The Equivalence Problem
	Guide To Classifying Languages
	Claim: Decidable
	Claim: Acceptable
	Claim: co-Acceptable
	Claim: Undecidable
	Claim: Not Acceptable
	Claim: Not co-Acceptable
	Summary

