This discussion will focus on showing that SUBSET-SUM is NP complete. This is given in Theorem 7.56 in your book on page 292.

SUBSET-SUM Problem

The SUBSET-SUM problem is defined on pages 268-269 of your book. Formally, it is defined as:

$$
\text{SUBSET-SUM} = \left\{ (S, t) | S = \{x_1, \ldots, x_k\} \text{ and for some } \{y_1, \ldots, y_l\} \subseteq \{x_1, \ldots, x_k\}, \text{ we have } \sum y_i = t \right\}
$$

Informally, we have a set S of numbers. Given a target number t, we want to know if there is a subset of S which sums to t.

For example, suppose $S_1 = \{1, 15, -2, 44, 101\}$ and $t_1 = 100$. Is $(S_1, t_1) \in \text{SUBSET-SUM}$? Yes, there exists a subset $\{1, -2, 101\}$ such that $1 + (-2) + 101 = 100 = t_1$.

Both the sets $\{x_1, \ldots, x_k\}$ and $\{y_1, \ldots, y_l\}$ are multisets, which allow repetition of elements.

As formulated here, it may not seem like the SUBSET-SUM problem is interesting or important. However, forms of the SUBSET-SUM problem show up in cryptography (and in many other fields). This problem is also related to the knapsack and partition problems. All of these problems have real-world applications (not just theoretical).

Useful Tools

There are several definitions, theorems, and results we will use to show this is true. We start with the definition of **NP-complete**.

Definition 7.34

A language L is NP-complete if it satisfies two conditions:

1. $L \in \text{NP}$
2. Every $A \in \text{NP}$ is polynomial time reducible to L

To show that a language $L \in \text{NP}$, the following definition:

NP is the class of languages that have polynomial time verifiers.

A **polynomial time verifier** is defined on page 265:
Definition 7.18
A verifier for a language A is an algorithm V where

$$A = \{ w | V \text{ accepts } \langle w, c \rangle \text{ for some string } c \}.$$

A polynomial time verifier runs in polynomial time in the length of w.

If you know that (1) L is in NP and (2) A is NP-complete, you can use the following theorem:

Theorem 7.36
If A is NP-complete and $A \leq_p L$ for some $L \in$ NP, then L is NP-complete.

What does it mean for $A \leq_p L$? This brings us to the definition of a **polynomial time mapping reducibility**.

Definition 7.28
A function $f : \Sigma^* \rightarrow \Sigma^*$ is a polynomial time computable function if some polynomial time Turing machine M exists that halts with just $f(w)$ on its tape, when started on any input w.

Definition 7.29
Language A is a polynomial time mapping reducible to language L, written $A \leq_p L$, if a polynomial time computable function $f : \Sigma^* \rightarrow \Sigma^*$ exists, where for every w:

$$w \in A \iff f(w) \in L$$

Finally, we are going to need a language that we already know is NP-complete. The book uses the fact that 3SAT is NP-complete:

Corollary 7.42
3SAT is NP-complete.

The language is defined in your book on page 274 as:

$$3SAT = \{ \langle \phi \rangle | \phi \text{ is a satisfiable 3cnf-formula} \}$$

A **3cnf-formula** (conjunctive normal form-formula) is a Boolean formula that has several or-clauses with 3 literals each connected by and operations. For example:

$$(a \lor \overline{b} \lor \overline{c}) \land \cdots \land (\overline{x} \lor y \lor z)$$

Proof Approach

To show that SUBSET-SUM is NP-complete, we need to:

1. Show that SUBSET-SUM \in NP.
2. Show that 3SAT \leq_p SUBSET-SUM.

When we show the reduction, we’ll need to provide a polynomial time computable function f and show that $\langle \phi \rangle \in 3SAT \iff \langle S, t \rangle \in SUBSET-SUM$.

2
SUBSET-SUM ∈ NP

As pointed out in our “tool box” a language is in NP if it has a polynomial time verifier. Therefore, if we can provide a \(p \)-time verifier for **SUBSET-SUM**, we’ve shown it is in NP.

\[V = \text{“On input } \langle S, t, c \rangle \text{:\n}\]
\[1. \text{ Test whether } c \text{ is a collection of numbers that sum to } t.\n\]
\[2. \text{ Test whether } S \text{ contains all the numbers in } c.\n\]
\[3. \text{ If both tests pass, } \textit{accept}.\n\]
\[4. \text{ Otherwise, } \textit{reject}.\n\]

This is given as the proof for Theorem 7.25 which states **SUBSET-SUM ∈ NP**.

3SAT \leq_p SUBSET-SUM

From this point on, please refer to my handwritten discussion notes from last year.