Homework 3
Grading and Solution Notes
Graded Problems

• Problem 1 (10 possible)
 ▫ 4 points for part (a)
 ▫ 4 points for part (b)
 ▫ 2 points for part (c)

• Problem 3 (15 possible)
 ▫ 5 points for part (a) and (b)
 ▫ 5 points for part (c)
 ▫ 5 points for part (d)

• Problem 4 (10 possible)
Problem 1 (a)

- Unreduced NFA for \((0 \cup 1)^*000(0 \cup 1)^*\)

concatenation removed
the final state here
Problem 1 (b)

- Unreduced NFA for \(((00)^*(11)) \cup 01)^*\)
Problem 3 (c)

• Show that the language $ECHO(A)$ is regular.

 ▫ Assume A is expressed as a DFA M.
 • Otherwise, convert the NFA or regex to a DFA.

 ▫ Create a new DFA or NFA $M' = \{ Q', \Sigma, \delta', q_0, F \}$
 • Q' and δ' defined as...

 • Give the actual components of the new DFA!
 • “Show” still means you have to be formal!
Problem 3 (c)

- $Q' = Q \cup Q \times \Sigma$

$q = \{ a, b \}$

$q = \{ a, b, \{a,0\}, \{a,1\}, \{b,0\}, \{b,1\} \}$
Problem 3 (c)

\[\delta'(q, \sigma) = \{ q, \sigma \} \text{ for } q \in Q \]
Problem 3 (c)

- \(\delta'(\{q, \sigma\}, \gamma) = \delta(q, \sigma) \) if \(\sigma = \gamma \)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ a, 0 }</td>
<td>a</td>
<td>\Ø</td>
</tr>
<tr>
<td>{ a, 1 }</td>
<td>\Ø</td>
<td>b</td>
</tr>
<tr>
<td>{ b, 0 }</td>
<td>a</td>
<td>\Ø</td>
</tr>
<tr>
<td>{ b, 1 }</td>
<td>\Ø</td>
<td>b</td>
</tr>
</tbody>
</table>
Problem 3 (d)

• Show the language $NOEXTEND(A)$ is regular.

 ▫ Assume A is expressed as a DFA M.
 • Otherwise, convert the NFA or regex to a DFA.

 ▫ Create a new DFA $M' = \{ Q, \Sigma, \delta, q_0, F' \}$
 • $F' = \{ q \in F \mid \text{there is no nonempty path from } q \text{ to another final state } f \in F \}.$
Problem 3 (d)

- Example:
 - $A = \{ a, aab \}$
 - $\text{NoExtend}(A) = \{ aab \}$
Problem 3 (d)

- Example:
 - $A = \{ a, aab \}$
 - $\text{NoExtend}(A) = \{ aab \}$
Problem 3 (d)

• Example:
 - $A = \{ a, aab \}$
 - $\text{NoExtend}(A) = \{ aab \}$

no path from q_3 to q_1
Problem 3 (d)

• Example:
 ▫ $A = \{ a, aab \}$
 ▫ $\text{NOEXTEND}(A) = \{ aab \}$
Problem 3 (d)

• Show the language $\text{NOEXTEND}(A)$ is regular.

 ▫ Also need to show that $L(M') = \text{NOEXTEND}(A)$.
 • Show $L(M') \subseteq \text{NOEXTEND}(A)$.
 • Argue that if $x \in L(M')$, then $x \in \text{NOEXTEND}(A)$.

 • Show $\text{NOEXTEND}(A) \subseteq L(M')$.
 • Argue that if $x \in \text{NOEXTEND}(A)$, then $x \in L(M')$.
Problem 4

• Give a decision procedure for \text{ISPREFIX}(A, u).
 ▫ The input is A, u.
 ▫ The input is not w.
 • There could be an infinite number of strings $w \in A$.