ECS120 INTRODUCTION TO THE THEORY OF COMPUTATION
FALL QUARTER 2007

Homework 5 Help
Due Monday November 05, 2007

Problem 5.1

Find a decision procedure which determines if a given CFG (with alphabet {a,b}) accepts at
least one string which contains exactly 4 b’s. You can assume that you have procedures that can
convert PDAs into CFGs and CFGs into PDAs.

A decision procedure is an algorithm/procedure that provides a yes or no answer for a decision
problem. The input to this decision procedure is a context-free grammar G, and should output as
follows:

AcCeEPT4B(G) = { yea If G accepts a string with exactly 4 b's

no otherwise

Keep in mind that G may accept an infinite number of strings. Decision procedures must be
bounded. If a procedure may loop infinitely, there may be some cases where it would never output
an answer.

Hint: Can you create a language that only accepts strings with exactly 4 b’s?

Problem 5.2

Prove the following about context-free languages:
(a) Prove that context-free languages are closed under the * operation (Kleene closure).

(b) Assume that you know that L = {a"b"c"|n > 0} is not context-free. Prove that
context-free languages are not closed under intersection.

(¢) Assuming the same as in (b) above, show that CFLs are not closed under complement.

To show that an operation is closed under context-free languages, assume you have a grammar G
and show how to build a new grammar G’ such that L(G") = L(G)*. Try to include an argument
that G’ does actually represent L(G)*.

To show that an operation is not closed under context-free languages (part b and c), use proof
by counterexample. Find two context-free languages L1 and Lo such that the operation results in
the language L. (For example, find languages such that L; N Ly = L.) Since L is not context-free
(given), then the operation is not closed under context-free languages.

Hint: Can you rewrite L1 N Ly using complements?

Problem 5.3

Let D ={ay|z,y € {0,1}* and |z| = |y| but x # y }. Show that D is a context-free language.
(Sipser Problem 2.23)

This is a star-problem in your book, so expect it to be difficult.

The definition on page 101 states “Any language that can be generated by some context-free
grammar is called a context-free language.” Theorem 2.20 on page 115 states “A language is
context free if and only if some pushdown automaton recognizes it.” You’ll be able to do this
problem similar to ones on regular languages, except this time with CFGs and PDAs instead of
DFAs and NFAs.

Problem 5.4

Convert the following CFG into an equivalent CFG in Chomsky normal form, using the procedure
given in Theorem 2.9.

A — BAB|B|e

B — 00]e
(Sipser Problem 2.14)

See the discussion notes or your book for the procedure. Follow it exactly!

Problem 5.5

Show that the complement of the language L = {a™b™|n > 0} is context-free by designing a
push-down automaton that recognizes it.

You might want to start by creating a PDA P such that L(P) = L:

@ JFLAP : (Homework 5 Problem 5,ff) A =B

File Input Test Conmvert Help
[Editor | Multiple Run |
Input | Result
Z Accept
“|lab Accept
“|laabb Accept
“|laaaaaabbbbbb |Accept
| ; :
ila Reject
b Reject
‘|ba Reject
“|bbaa Reject
“|laaabb Reject
:|aabbb Reject

Will switching the accept and non-accept states give us a PDA P’ such that L(P') = L?

| 4| JFLAP : (Homework 5 Problem 5cjff) E=SEE
File Input Test Convert Help]|
[Editor [Multiple Run
Input | Result
: Accept
“|ab Accept
“|aabb Accept
“|aaaaaabbbbbb Accept
a,g;a h,a e :|a Accept
[Reject
i|ba Reject
“|bbaa Reject |]
“|aaabb Accept
“|aabbb Reject
—

Not even close!

For a DFA M, we can easily find L(M) by switching the accept and non-accept states in M.
However, we can’t do this for an NFA. Why is that? Nondeterminism complicates taking the
“complement” of an automaton. Is it possible to create a deterministic PDA? Will we be able to
complement that easier?

	Problem 5.1
	Problem 5.2
	Problem 5.3
	Problem 5.4
	Problem 5.5

