MiINIX MEMORY MANAGER

ECS150 Operating Systems
Winter 2004

Introduction

This document provides useful notes on the MINIX Memory Manager (MM). It was prepared (rather
hastily) by Sophie Engle (sjengle@ucdavis.edu) for ECS150 Operating Systems, Winter 2004. All
information was taken from the source code and from the course book!. (In fact, it is basically a
rehash of section 4.7 and the source code comments.) The layout of this document is as follows:

Section Description

File List Provides a list of files in /usr/src/mm/ along with descriptions
Message Passing Discusses how messages are passed to and from MM

Memory Allocation Describes how free space is managed

Fork In-Depth Looks at what MM does when a fork system call is made

Exec In-Depth Looks at what MM does when an exec system call is made

Section 1: File List

All files for the memory manager are located in /usr/src/mm/ in MINIX. Below are descriptions
of each file (19 total), organized by type.

Header Files

File Name

Description

mm.h

const.h

glo.h

type.h

proto.h

mproc.h

param.h

This is the master header file for MM. It basically just includes all the files
that most MM programs will need to function.

This file contains all the constants used MM. For example, PAGE_SIZE (the
number of bytes per page) is defined in this file.

This file contains all the global variables used by MM. For example, a message
sent to MM is actually stored in the global variable mm_in.

This file contains any type definitions local to MM. (The file is actually empty,
and is only included for consistency with the kernel and the file system.)

This file contains all the function prototypes local to MM.

The memory manager keeps its own process table (for storage of information
required by MM). The MM process table is defined in this file, along with any
related constants.

This file defines the messages fields used by MM. For example, pid is found
at mm_in.m1_il.

!Tanenbaum, Andrew S., and Albert S. Woodhull. Operating Systems: Design and Implementation. 2nd ed.
Upper Saddle River: Prentice Hall, 1997.

(1]

Program Files

File Name

Description

main.c
alloc.c

table.c

break.c
exec.c

forkexit.c

getset.c

misc.c

signal.c

trace.c
utility.c

putk.c

This is the main MM program.
This file handles allocating and freeing memory.

This file indicates what functions to call for various system calls. (It also
indicates which system calls the MM handles.) For example, do_fork is called
when MM handles the fork system call.

This file includes the code necessary for MM to handle the break system call.
This file includes the code necessary for MM to handle the exec system call.

This file includes the code necessary for MM to handle the fork or exit system
call.

This file includes the code necessary for MM to get and set pids, uids and gids.

This file includes the code necessary for MM to handle the reboot and srvctl
system calls.

This file includes the code necessary for MM to handle system calls regarding
signals (like sigaction or pause.

This file includes the code necessary for MM to handle the ptrace system call.
This file contains some utility functions used by MM.

This file allows MM to occasionally print messages.

Section 2: Message Passing

MINIX uses message passing to communicate between layers. The Memory Manager (MM) is located
in the server level (see below).

user leveal server level kernel level hardware
g [P a [e
m m
process | 4 msg g msg msg 5
in i =

*simplification

For a process to make a system call, it must send a message to the server level. Specifically, a user
process must send a message to either MM or FS. The servers may then send any necessary messages

to the kernel level.

Not surprisingly, MM runs in an infinite loop receiving and processing messages. This can be seen

in main.c:

16636 while(TRUE) {

16638 get_work(); /* wait for an MM system call */
16655 reply(...);
16656 }

The get_work () function in main. c simply does a receive from any source, to the message mm_in:

16663 PRIVATE void get_work()

16664 {
16664 if (receive(ANY, &mm_in) != OK)
16670 }

Remember that receive will block until a message is actually received. Also, since the message
mm_in is a global variable (declared in glo.h), any program in MM can access this message. The
next step is to figure out what system call was made and what work must be done.

Each system call is assigned a number (in /usr/include/minix/callnr.h), and this number is
placed in the m_type field of the message. Therefore, MM just has to look at mm_in.m_type to
determine what system call was made.

To determine what has to be done for each system call, MM refers to call_vec in table.c. The call
vector call_vec looks like:

16515 _PROTOTYPE (int (call_vec[NCALLS]), (void)) = {
16516 no_sys, /* 0 = unused */

16517 do_mm_exit, /* 1 = exit */

16518 do_fork, /* 2 = fork */

16519 no_sys, /* 3 = read */

16594 };

Therefore, fork is assigned to number 2, and MM performs do_fork when a fork system call is
made. However, when a read system call is made, MM does nothing (no_sys).

So MM performs whatever is necessary based on call vec [mm_in.m type]. When done, reply(...)
is called. This is also a function defined in main.c, which basically places the results in the message
mm_out and sends it back to the caller:

16676 PUBLIC void reply(...)

16681 {
16697 if (send(proc_nr, &mm_out) != 0K)
16598 }

And that is how MM handles message passing!

Section 3: Memory Allocation

One of the most important tasks handled by MM is management of free space. Since MINIX does not
support paging nor swapping, memory management is rather simple (compared to other operating
systems). See section 4.7 in the book for an in-depth discussion, but basically MM maintains a list of
“holes” or free space sorted by memory address. The actual data structure is located in alloc.c:

18820 #define NR_HOLES 128 /* max # entries in hole table */

18823 PRIVATE struct hole {

18824 phys_clicks h_base; /* where does the hole begin? */
18825 phys_clicks h_len; /* how big is the hole? */
18826 struct hole *h_next; /* pointer to next entry on the list */

18827 } hole[NR_HOLES];

18830 PRIVATE struct hole *hole_head; /* pointer to first hole */

So basically line 18827 defines an hole array of size NR_HOLES. Each hole keeps the beginning of
the hole, how large the hole is, and a pointer to the next hole or free space. The first hole is given
by hole_head. You can see how this list of holes is iterated through in the function alloc_mem:

18853 hp = hole_head;
18854 while(hp != NIL_HOLE) {

18869 prev_ptr = hp;

18870 hp = hp->h_next;
18871 }

This loop is used by alloc_mem to find the first open hole large enough for the request. The rest
of the functions in alloc.c manipulate this linked list depending on whether memory is being
allocated or deallocated. If you looked at how MINIX manipulates the ready queue for scheduling,
you’ll see many of the same pointer manipulations.

Section 4: Fork In-Depth

What happens when a fork system call is made? First, MM receives a message with m_type = 2.
Since call _vec[2] = do_fork, the flow goes to do_fork in forkexit.c.

First, do_fork checks to make sure there is enough space in the process table. If there is enough
space, it calls alloc_mem to allocate memory for the child process:

16832 PUBLIC int do_fork()

16833 {
16846 if (procs_in_use == NR_PROCS) return(EAGAIN);
16855 if ((child_base = alloc_mem(prog_clicks)) == NO_MEM)

It is important to note that code sharing or shared text will be used (p359). This means that the

[4]

child process will share the same memory for the instructions, since it shares the same instructions
as the parent. Therefore space is only allocated for the child’s data and stack (which will be the
same size as the parent’s data and stack). The next step is to give the child a copy of the parent’s
data values (see line 16858).

After copying the parent’s data, a slot is found in mproc:

16864 for (rmc = &mproc[0]; rmc < &mproc[NR_PROCS]; rmc++)
16865 if ((rmc->mp_flags & IN_USE) == 0) break;

Once the loop breaks, rmc will point to an open slot in the MM process table. A little lost? Confused
about mproc? Well, the memory manager must maintain its own process table, mproc, for every
process. You can see the exact information stored in the file mproc.c. The next chunk of code in
do_fork just involves filling in the proper information for each field in mproc.

The next step is to find an open pid for the new process:

16825 PRIVATE pid_t next_pid = INIT_PID+1; /* next pid to be assigned */

16832 PUBLIC int do_fork()

16833 {
16885 do {
16886 t =0; /* t =0 means pid still free */
16887 next_pid = (next_pid < 3000 ? next_pid + 1 : INIT_PID + 1);
16888 for (rmp = &mproc[0]; rmp < &mproc[NR_PROCS]; rmp++)
16889 if (rmp->mp_pid == next_pid ||
rmp->mp_procgrp == next_pid) {
16890 t=1;
16891 break;
16892 b
16893 rmc->mp_pid = next_pid; /* assign pid to child */
16894 } while (%);

Basically, the loop first increments next_pid. Then, it checks the entire mproc process table to see
if that pid is in use. If it is in use, t gets set to 1 and the loop starts over again. If the pid is not
in use, t will remain 0, and the loop will exit after assigning next_pid to the child process.

Finally, do_fork has completed the bulk of its work. It then sends messages to the kernel and to
FS so that they can perform whatever is necessary to complete the fork system call. (For example,
the kernel adds the child process to the process table, and FS lets the child inherit the parent’s file
descriptors.)

The last thing that happens is do_fork wakes up the child and returns the child pid to the parent
process:

16832 PUBLIC int do_fork()
16833 {

16904 reply(child_nr, 0, O, NIL_PTR);
16905 return(next_pid);
16906 +

Section 5: Exec In-Depth

Sorry everyone! I ran out of time to type this one out. —~

Basically, you have to understand that memory must be allocated when an exec system call is
made. It differs from fork since shared text can not be used and permissions have to be checked.
The book gives a pretty good description on pages 368-371, and the source code is well-commented.

