ECS150 Discussion Section

Sophie Engle
(February 04/06 2004)

= Midterm
¢ Thursday February 19t
¢ Open book, open note
= Homework
¢ Homework 1 solution and grades on website

¢+ Next homework assignment most likely due
Friday February 13t

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 2]

= Discuss interrupt handling in Minix
¢ Hardware interrupts
¢ Software interrupts, System calls

= Resources

¢ Minix book, pages 128 — 140
¢ Minix source

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 3]

Hardware Interrupts

Path Through System
(Example: AT Winchester)

olifizd rlzirdywzirs Paier

AT Winchester

|

IRQ 14

!

Interrupt
Controller CPU
(slave)

* see Interrupt Processing Hardware diagram on page 128

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 5]

pIified Sofeyzirs P

interrupt handler table

mpx386.S
hwint_slave(14)

at wini.c at wini.c
— ¢ 14 handl ¢ L —
w_handler(14) w-handier put_irg_handler
proc.c at_wini.c
interrupt(WINCHESTER) at_winchester_task()

driver.c
driver_task(&wtab)

A

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 6]

EE WEIP2 PIIERE 0,85,

" mpx386.s: hwinit_master(int irq)
¢ hwinit_master(irg) or hwinit_slave(irq)
respond to the actual interrupt
¢ save pushes all registers necessary to restart the
interrupted process
¢ the irq is disabled until the interrupt is handled

+ the controller is reset and the CPU is allowed to]
receive interrupts from other sources

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 7]

EE WEIP2 PIIERE 0,85,

" mpx386.s: hwinit_master(int irq)

¢ the handler specified in the table of low-level
routines is called
-1 (more details later)
¢ interrupts are disabled again after the call
instruction returns
¢ interrupt controller prepared to respond to
interrupting device

¢ interrupts (and irq) are re-enabled

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 8]

EE WEIra PIierd e YWind.e

= at wini.c : w_identify()

¢ called by the driver to find out if device exists
¢ if exists, registers w_handler as the interrupt
handler for irg 14
o put_irg_handler(wn->irqg, w_handler);
oenable_irg(wn->irq);
¢ this is the handler called by hwinit_slave(irq)
when interrupted by the AT Winchester

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 9]

EE WEIra PIierd e YWind.e

= at wini.c : w_handler(int irq)

¢ reads status of drive
¢ calls interrupt(WINCHESTER)

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 10]

EE WEIrs PR oroa,e

" proc.c : interrupt(int task)

¢ converts the interrupt into a message for the task
that handles the interrupting device
~task in this case is at_winchester_task() in at_wini.c

—eventually calls driver_task() located in driver.c

¢+ first checks if an interrupt was already being
serviced (k_reenter)

~1f so, adds current interrupt to queue of held interrupt
—1queue of held interrupts is handled in unhold()

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 11]

EE WEIrs PR oroa,e

" proc.c : interrupt(int task)

¢ next checks If task is waiting for an interrupt
~1task must be ready to receive interrupt

~if not, task is blocked
— function mini_rec checks for blocked interrupts

¢ otherwise, sends message (with interrupt) to task
¢ then schedules task to run

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 12]

Software Interrupts

System Calls

EE WARENMILETIPLS

= System calls
¢ Basically “software interrupts”

¢ Behave similarly to hardware
— Call converted to message, sent to task
- Interrupt originates from software versus hardware

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 14]

= Kernel Code
¢ _s_call in mpx386.s handles software interrupt
(versus hwinit_master() or hwinit_slave())
¢ sys_call in proc.c converts interrupt into message

similarly to interrupt
- if message sending needed, calls mini_send
—if message receiving needed, calls mini_rec

¢ See also sys_task() in system.c

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 15]

