Survey Located At:
http://www.surveymonkey.com/s.asp?u=665323704735
Due **Wednesday** April 25th.
Homework #3

- Due date now on Wednesday at 4:00pm
- 31 questions total
- Covers six sections total
 - 2.3: Functions
 - 2.4: Sequences and Summations
 - 3.4: Integers and Division
 - 3.5: Primes and Greatest Common Divisors
 - 3.6: Integers and Algorithms
 - 3.7: Applications of Number Theory
Show versus Prove

Show:
- Informal
- Explanation
- Diagrams

Prove:
- Formal
- Based on “facts”
- Uses rules of inference
- Many methods:
 - By Construction
 - By Contraposition
 - By Contradiction
 - By Counterexample
Section 2.3 hints and examples.
Function Notation

- $f: A \rightarrow B$
 - Function f has:
 - domain A
 - codomain B
 - For $f(a) = b$:
 - input $a \in A$
 - output $b \in B$
 - One input variable

- $f: A \times B \rightarrow C$
 - Function f has:
 - domain $A \times B$
 - codomain C
 - For $f(a, b) = c$:
 - input $a \in A$
 - input $b \in B$
 - output $c \in C$
 - Two input variables
Function Notation

\[f(m, n) = m + n \]

- Let \(m \in \mathbb{N} \) and \(n \in \mathbb{N} \):
 - \(f(1, 2) = 1 + 2 = 3 \)
 - \(f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \)
- Let \(m \in \mathbb{Z} \) and \(n \in \mathbb{N} \):
 - \(f(-4, 1) = -4 + 1 = -3 \)
 - \(f: \mathbb{Z} \times \mathbb{N} \rightarrow \mathbb{Z} \)
- Let \(m \in \mathbb{Z} \) and \(n \in \mathbb{R} \):
 - \(f(2, 0.15) = 2 + 0.15 = 2.15 \)
 - \(f: \mathbb{Z} \times \mathbb{R} \rightarrow \mathbb{R} \)
A function $f: A \rightarrow B$ is onto iff:

- For every $b \in B$ there is an $a \in A$ with $f(a) = b$
- $\forall b \ \exists a \ (f(a) = b)$
- The codomain is equal to the range
Determine if the function $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ is onto:

- $f(m, n) = m + n$
 - Onto!
 - For every $p \in \mathbb{Z}$ can we find a pair (m, n) such that $m + n = p$?
 - Let $m = 1$, $n = p - 1$.

- $f(m, n) = m^2 + n^2$
 - Not onto
 - There is no pair (m, n) such that $m^2 + n^2 = -1$.
Homework #3

Section 2.4 hints and examples.
Summation

- **Notation:** \(\sum_{j=m}^{n} a_j = a_m + a_{m+1} + \cdots + a_n \)

- **Examples:**

\[
\sum_{k=1}^{5} (k + 1) = (1+1) + (2+1) + (3+1) + (4+1) + (5+1)
\]

\[
= (2) + (3) + (4) + (5) + (6)
\]

\[
= 20
\]

\[
S = \{2,4,6,8\}
\]

\[
\sum_{j \in S} j = 2 + 4 + 6 + 8 = 20
\]

(work out on board)
Double Summation

Example:

\[
\sum_{i=1}^{2} \sum_{j=1}^{3} i + j = \sum_{i=1}^{2} \left(\sum_{j=1}^{3} i + j \right)
\]

\[
= \sum_{i=1}^{2} \left((i + 1) + (i + 2) + (i + 3) \right)
\]

\[
= \sum_{i=1}^{2} (3i + 6)
\]

\[
= (3 \cdot 1 + 6) + (3 \cdot 2 + 6)
\]

\[
= 3 + 6 + 6 + 6
\]

\[
= 21
\]

(work out on board)
Products

- **Notation:** \[\prod_{j=m}^{n} a_j = a_m \times a_{m+1} \times \cdots \times a_n \]

- **Examples:**
 \[\prod_{i=0}^{10} i = 0 \times 1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \times 10 \]
 \[= 0 \]

 \[\prod_{i=1}^{100} (-1)^i = (-1)^1 \times (-1)^2 \times \cdots \times (-1)^{99} \times (-1)^{100} \]
 \[= -1 \times 1 \times \cdots \times -1 \times 1 \]
 \[= 1 \]

(work out on board)
Section 3.4 hints and examples.
Number Theory Motivation

- What does it deal with?
 - Studies properties and relationships of specific classes of numbers
 - Most commonly studied classes of numbers:
 - Positive Integers
 - Primes

- What is this stuff good for?
 - Number theory used in cryptography
 - Basis for RSA public-key system
 - Integers often used in programming
 - Array indices
Proofs with Integer Division

- If $a, b \in \mathbb{Z}$ with $a \neq 0$:
 - $a \mid b$ if there exists a k such that $a \cdot k = b$.

- #7. Show that if $a, b,$ and c are integers with $c \neq 0$, such that $ac \mid bc$, then $a \mid b$.
 - If $ac \mid bc$, then there is an integer k such that:
 $$ack = bc$$
 $$\frac{1}{c} (ack = bc)$$
 $$ak = b$$
 - Therefore, we can state that $a \mid b$.
#21. Show that if:

- \(n \mid m \), where \(n, m \) are positive integers \(> 1 \), and
- \(a \equiv b \pmod{m} \), where \(a \) and \(b \) are integers

Then:

- \(a \equiv b \pmod{n} \)

Since \(n \mid m \), we know there exists an integer \(i \) such that \(n \ i = m \) (by definition 1).
Proofs with Integer Division

#21. Show that if:
- \(n \mid m \), where \(n, m \) are positive integers \(> 1 \), and
- \(a \equiv b \pmod{m} \), where \(a \) and \(b \) are integers

Then:
- \(a \equiv b \pmod{n} \)

Since \(a \equiv b \pmod{m} \), we know that there exists an integer \(a = b + jm \) (by theorem 1).
Proofs with Integer Division

#21. Show that if:

- $n \mid m$, where n, m are positive integers > 1, and
- $a \equiv b \pmod{m}$, where a and b are integers

Then:

- $n \ i = m$
- $a = b + jm$

\[a = b + jm = b + jni = b + (ji)n = b + kn = b \pmod{n} \]
Section 3.5 hints and examples.
Euler ϕ-function

$\phi(n) = \# \text{ of positive integers } \leq n \text{ that are relatively prime to } n$

- $\phi(4)
 - \text{gcd}(4, 4) = 4$
 - $\text{gcd}(3, 4) = 1$
 - $\text{gcd}(2, 4) = 2$
 - $\text{gcd}(1, 4) = 1$
 - $\phi(4) = 2$

- $\phi(10)
 - \text{gcd}(1, 10) = 1$
 - \text{gcd}(3, 10) = 1$
 - \text{gcd}(7, 10) = 1$
 - \text{gcd}(9, 10) = 1$
 - $\phi(10) = 4$
Section 3.6 hints and examples.
Number Conversion Motivation

- **Binary:**
 - Low-level language of computers
 - Easy to represent in electrical systems ("on" versus "off")
 - Can implement Boolean logic

- **Octal:**
 - File permissions in Unix often use an octal representation

- **Decimal:**
 - Number representation used in most modern languages

- **Hexadecimal:**
 - Used by HTML/CSS to represent colors
 - Character codes often represented in hexadecimal
Decimal Expansion

\[
(0101\ 1111)_2 =
\]

\[
0 \times 2^7 + 1 \times 2^6 + 0 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0
\]

digit
Decimal Expansion

\((0101\ 1111)_2 = \)

\[
0 \times 2^7 + 1 \times 2^6 + 0 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0
\]

"base"
binary = base 2
Decimal Expansion

\[
(0101\ 1111)_{2} =
\]

\[
\begin{array}{cccccccc}
0 & 1 & 0 & 1 & 1 & 1 & 1 & 1\\
7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\\
0 \times 2^{7} + 1 \times 2^{6} + 0 \times 2^{5} + 1 \times 2^{4} + 1 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0}\\
\end{array}
\]
Decimal Expansion

\[(0101\ 1111)_{2} = \]

\[
0 \times 2^{7} + 1 \times 2^{6} + 0 \times 2^{5} + 1 \times 2^{4} + 1 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0}
\]

\[
2^{6} + 2^{4} + 2^{3} + 2^{2} + 2^{1} + 2^{0} = 64 + 16 + 8 + 4 + 2 + 1 = 95
\]
Hexadecimal Expansion

\[177130 = (\ ?)_{16} \]

\[177130 \div 16 = 11070.625 \]

\[177130 = 16 \times 11070 + 10 \]

\[11070 = 16 \times 691 + 14 \]
Hexadecimal Expansion

177130 = (?)_{16}

177130 = 16 \times 11070 + 10
11070 = 16 \times 691 + 14
691 = 16 \times 43 + 3
43 = 16 \times 2 + 11
2 = 16 \times 0 + 2

2 B 3 E A
Hexadecimal Expansion

\[177130 = (\ ? \)_{16} \]

\[
\begin{align*}
177130 &= 16 \times 11070 + 10 \\
11070 &= 16 \times 691 + 14 \\
691 &= 16 \times 43 + 3 \\
43 &= 16 \times 2 + 11 \\
2 &= 16 \times 0 + 2
\end{align*}
\]

\[(2B3EA)_{16}\]
Section 3.7 hints and examples.
Examples

- See PDF example for:
 - Euclidean Algorithm
 - Greatest Common Divisor
 - Modular Inverses
Fermat’s Little Theorem

Show that $2^{340} \equiv 1 \pmod{11}$:

- By Fermat’s Little Theorem: $a^{10} \equiv 1 \pmod{11}$
- We can rewrite $2^{340} = (2^{10})^{34}$
- Therefore we get:

$$2^{340} = (2^{10})^{34}$$

$$\equiv (1)^{34} \pmod{11}$$

$$\equiv 1 \pmod{11}$$