Due Wednesday May 2nd
Motivation

Problem Statement:
How do we estimate and compare the runtime of different algorithms?
Motivation

Problem Statement:

How do we estimate and compare the runtime of different algorithms?

- What is the “fastest” sort algorithm?
- Fastest in theory?
- Fastest in practice?
- Fastest for big numbers?
- Fastest for small numbers?
- Fastest on average?
- Fastest possible?
Motivation

Problem Statement:

How do we estimate and compare the runtime of different algorithms?

Solution:

- Measure number of operations as size of input grows
 - Input size: n
 - Number of operations: $f(n)$
- Estimate the runtime class of algorithm
 - Estimate upper bound: $\mathcal{O}(f(n))$
 - Estimate lower bound: $\Omega(f(n))$
Homework 4: Hints

Estimating Number of Operations
Example: Bubble Sort

- **Bubble Sort Algorithm**
 - Method of sorting elements of a set
 - Small numbers “bubble” up to the top
 - Large numbers “sink” to the bottom
 - Visualization
 - www.wanginator.de/studium/applets/bubblesort_en.html
Example: Bubble Sort

Algorithm:

```plaintext
1  procedure bubbleSort( a₁, a₂, ..., aₙ )
2      for i = 0 to n − 1
3          for j = 0 to n − i
4              if aⱼ > aⱼ₊₁ then
5                  swap( aⱼ, aⱼ₊₁ )
```
Example: Bubble Sort

Algorithm:

procedure bubbleSort(a₁, a₂, ..., aₙ)

for i = 0 to n – 1

 for j = 0 to n – i

 if aⱼ > aⱼ₊₁ then

 swap(aⱼ, aⱼ₊₁)

input of n elements
Example: Bubble Sort

Algorithm:

procedure bubbleSort(a_1, a_2, ..., a_n)
for i = 0 to n − 1
 for j = 0 to n − i
 if a_j > a_{j+1} then
 swap(a_j, a_{j+1})

outer loops n times
Example: Bubble Sort

□ Algorithm:

with inner loop $n(n - 1)/2$ times

```
1    procedure bubbleSort( $a_1, a_2, \ldots, a_n$ )
2        for $i = 1$ to $n - 1$
3            for $j = 1$ to $n - i$
4                if $a_j > a_{j+1}$ then
5                    swap( $a_j, a_{j+1}$ )
```
Example: Bubble Sort

Algorithm:

worst case executes every time

1. procedure bubbleSort(a₁, a₂, ..., aₙ)
2. for i = 1 to n − 1
3. for j = 1 to n − i
4. if aⱼ > aⱼ₊₁ then
5. swap(aⱼ, aⱼ₊₁)

(assume swap operation takes constant time)
Example: Bubble Sort

Algorithm:

1. procedure bubbleSort(\(a_1, a_2, \ldots, a_n \))
2. for \(i = 1 \) to \(n - 1 \)
3. for \(j = 1 \) to \(n - i \)
4. if \(a_j > a_{j+1} \) then
5. swap(\(a_j, a_{j+1} \))

makes approximately:

\[
\frac{n(n-1)}{2} = \frac{1}{2}n^2 - \frac{1}{2}n \text{ operations}
\]
Example: Bubble Sort

Notice that n^2:
- Bounds the number of operations
- Provides approximation of operations
Homework 4: Hints

Growth of Functions
Growth of Functions

- **General Idea:**
 - Analyze algorithm
 - Come up with function $f(n)$ which returns the number of operations for an input of size n
 - Approximate number of operations
 - Use $O(n)$ to find a upper bound
 - Use $\Omega(n)$ to find a lower bound
 - Determine class of function
 - Linear $O(1)$
 - Logarithmic $O(\log n)$
 - Polynomial $O(n^k)$
 - Exponential $O(k^n)$
Big-\mathcal{O} Notation

- Upper bound estimate
 - Estimates growth for large inputs
 - Care more about exponents
 - Less about constants

- A function $f(x) \in \mathcal{O}(g(x))$ when:
 - \exists constants (called witnesses) C and k such that:
 - $|f(x)| \leq C |g(x)|$
 - whenever $x > k$
 - i.e. approximately whenever $g(x)$ bounds $f(x)$ without its constants
Show $f(x) = x^2 + 2x + 1$ is $\mathcal{O}(x^2)$.

To show this, you must provide the witnesses!

With a graph, we can see that the following witnesses work:

$C = 4$

$k = 1$
Show \(f(x) = x^2 + 2x + 1 \) is \(\mathcal{O}(x^2) \).

Without a graph, just start approximating:

- The maximum exponent is 2, so should be able to find witnesses \(C \) and \(k \) for \(g(x) = x^2 \).
- Notice when \(x > 1 \) then \(x^2 > x \) and \(2x^2 > 2x \).
- Thus we can write:

 \[
 x^2 + 2x^2 + x^2 > x^2 + 2x + 1 \quad \text{which means...}
 \]

 \[
 4x^2 > x^2 + 2x + 1
 \]

- Therefore we can set \(C = 4 \) and \(k = 1 \).

Is \(f(x) \) also \(\mathcal{O}(x^3) \)?

- Yes, but less useful as an upper bound!
Big-\mathcal{O} Notation

- Finding the big-\mathcal{O} estimate:
 - Don’t need smallest C and k possible.
 - Just find witnesses that are easy to come by!
 - However, want tightest $g(x)$ possible.
 - With polynomial functions, choose a $g(x)$ with the lowest possible exponent.
 - For large x:
 - $1 < \log x < x < x \log x < x^2 < 2^x < x!$
 - (see graph in book)
Big-\mathcal{O} Examples

- Find big-\mathcal{O} for $f(x) = (3^4 - 2x) / (5x - 1)$.

\[f(x) = \frac{3x^4 - 2x}{5x - 1} \]
\[g(x) = x^3 \]
\[C = \frac{3}{4} \]
\[k = 1 \]
Big-\mathcal{O} Examples

△ Find big-\mathcal{O} for $f(x) = \log_{10} (2^x) + 10^{10} x^2$.

$$g(x) = x^2$$

$$C = 2 + 10^{10}$$

$$k = 0$$
Big-Ω and Big-Θ Notation

- **Big-Ω (Omega) Notation**
 - Provides lower bound for large x
 - A function $f(x) \in \Omega(g(x))$ when:
 - $|f(x)| \geq C|g(x)|$ for witnesses C, k whenever $x > k$

- **Big-Θ (Theta) Notation**
 - Provides both upper and lower bound for large x
 - A function $f(x) \in \Theta(g(x))$ when:
 - $f(x) \in \mathcal{O}(g(x))$
 - $f(x) \in \Omega(g(x))$
Big-Ω and Big-Θ Example

□ Show $f(x) = 7x^2 + 1$ is $\Theta(x^2)$.

- Show $f(x)$ is $\mathcal{O}(x^2)$.
 - $7x^2 + 1 \leq 7x^2 + x^2 = 8x^2$ where $x \geq 1$

- Show $f(x)$ is $\Omega(x^2)$.
 - $7x^2 + 1 \geq 7x^2$ where $x \geq 1$

□ Therefore, $f(x)$ is $\Theta(x^2)$.

![Graph showing the comparison between $f(x) = 7x^2 + 1$ and $g(x) = x^2$]