Strings

Strings

» A string is a series of characters

» Characters can be referenced by using
brackets

 The first character is at position 0

mystring = “the”
letter = mystring[2] #letter becomes ‘e’

[mystring |——>Tt[n[e]
[oTile]

length

* The len function returns the length of a string

mystring="bob”

len(mystring) #3

len(“adam”) #4

length=len (mystring

last = mystring[len-1] #retrieves last char

for loops

mystring = "CS is cool!"
for ¢ in mystring:
print c

index=0

while index < len(mystring):
print mystring[index]
index += 1

Exercises

1. Write a for or while loop to print a string
backwards

Slices

+ Select a segment of a string
» Specify [start:end]
— include start but do not include end
— if you do not specify start slice starts from the
beginning
— if you do not specify end slices goes to end

mystring="CS is cool”
print mystring[6:10]
print mystring[2:7]
print mystring[:4]
print mystring[:]

String Comparison/in

+ == tests to see if strings are the same

* >, < compares strings alphabetically

* The in operator tests whether a given character
appears in a given string
— ‘c’in “chocolate” #true
— 'Z’in “chocolate” #false

Immutability

 Strings are immutable
— they cannot be changed

string module

+ Contains useful methods for strings
http://docs.python.org/lib/string-methods.html

* Dot notation allows us to call a method on
a string object

import string
mystring="“adam”
string.find(mystring, “a”) #returns index of first instance found
mystring="CS is cool”
mystring.split() #result [‘CS’

newstring = mystring.replace (“CS

1.

Exercises

Write a program that prompts the user
for two strings and determines the
number of two-character sequences that
appear in both the first and second
strings. Exclude spaces in your
comparison.

“CS is cool” “the old cow” would have two

matches “co” for “cool” and “cow” and “ol”

for “cool” and “old”

