

 1

Strings

Strings

• A string is a series of characters
• Characters can be referenced by using

brackets
• The first character is at position 0

mystring = “the”
letter = mystring[2] #letter becomes ‘e’

tmystring h e
0 1 2

length
• The len function returns the length of a string

mystring=“bob”

len(mystring) #3

len(“adam”) #4

length=len(mystring)

last = mystring[len-1] #retrieves last char

for loops
mystring = "CS is cool!"

for c in mystring:

 print c

index=0

while index < len(mystring):

print mystring[index]

index += 1

Exercises

1. Write a for or while loop to print a string
backwards

Slices
• Select a segment of a string
• Specify [start:end]

– include start but do not include end
– if you do not specify start slice starts from the

beginning
– if you do not specify end slices goes to end

mystring=“CS is cool”
print mystring[6:10]
print mystring[2:7]
print mystring[:4]
print mystring[:]

 2

String Comparison/in

• == tests to see if strings are the same
• >, < compares strings alphabetically
• The in operator tests whether a given character

appears in a given string
– ‘c’ in “chocolate” #true
– ‘z’ in “chocolate” #false

Immutability

• Strings are immutable
– they cannot be changed

string module

• Contains useful methods for strings
http://docs.python.org/lib/string-methods.html

• Dot notation allows us to call a method on
a string object

import string

mystring=“adam”

string.find(mystring, “a”) #returns index of first instance found

mystring=“CS is cool”

mystring.split() #result [‘CS’,’is’,’cool’]

newstring = mystring.replace(“CS”, “Econ”)

Exercises

1. Write a program that prompts the user
for two strings and determines the
number of two-character sequences that
appear in both the first and second
strings. Exclude spaces in your
comparison.

• “CS is cool” “the old cow” would have two
matches “co” for “cool” and “cow” and “ol”
for “cool” and “old”

