
1

2: Application Layer 1

Socket Programming

2: Application Layer 2

Socket-programming using TCP

Socket: a door between application process and end-
end-transport protocol (UCP or TCP)

TCP service: reliable transfer of bytes from one
process to another

process

TCP with
buffers,
variables

socket

controlled by
application
developer

controlled by
operating

system

host or
server

process

TCP with
buffers,
variables

socket

controlled by
application
developer
controlled by
operating
system

host or
server

internet

2: Application Layer 3

Socket programming with TCP
Client must contact server
❒ server process must first be

running
❒ server must have created

socket (door) that welcomes
client’s contact

Client contacts server by:
❒ creating client-local TCP

socket
❒ specifying IP address, port

number of server process
❒ When client creates socket:

client TCP establishes
connection to server TCP

❒ When contacted by client,
server TCP creates new socket
for server process to
communicate with client
❍ allows server to talk with

multiple clients
❍ source port numbers used

to distinguish clients (more
in Chap 3)

TCP provides reliable, in-order
 transfer of bytes (“pipe”)
between client and server

application viewpoint

2: Application Layer 4

Stream jargon

❒ A stream is a sequence
of characters that flow
into or out of a process.

❒ An input stream is
attached to some input
source for the process,
eg, keyboard or socket.

❒ An output stream is
attached to an output
source, eg, monitor or
socket.

o
u

tT
o

S
e

rv
e

r

to network from network

in
F

ro
m

S
e

rv
e

r

in
F

ro
m

U
s
e

r

keyboard monitor

Process

clientSocket

input

stream

input

stream

output

stream

TCP

socket

Client
process

client TCP
socket

2: Application Layer 5

Socket programming with TCP

Example client-server app:
1) client reads line from

standard input (inFromUser
stream) , sends to server via
socket (outToServer
stream)

2) server reads line from socket
3) server converts line to

uppercase, sends back to
client

4) client reads, prints modified
line from socket
(inFromServer stream)

o
u

tT
o

S
e

rv
e

r

to network from network

in
F

ro
m

S
e

rv
e

r

in
F

ro
m

U
s
e

r

keyboard monitor

Process

clientSocket

input

stream

input

stream

output

stream

TCP

socket

Client
process

client TCP
socket

2: Application Layer 6

Client/server socket interaction: TCP

wait for incoming
connection request
connectionSocket =
welcomeSocket.accept()

create socket,
port=x, for
incoming request:
welcomeSocket =

ServerSocket()

create socket,
connect to hostid, port=x
clientSocket =

Socket()

close
connectionSocket

read reply from
clientSocket

close
clientSocket

Server (running on hostid) Client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

2

2: Application Layer 7

Example: Java client (TCP)
import java.io.*;
import java.net.*;
class TCPClient {

 public static void main(String argv[]) throws Exception
 {
 String sentence;
 String modifiedSentence;

 BufferedReader inFromUser =
 new BufferedReader(new InputStreamReader(System.in));

 Socket clientSocket = new Socket("hostname", 6789);

 DataOutputStream outToServer =
 new DataOutputStream(clientSocket.getOutputStream());

Create
input stream

Create
client socket,

connect to server
Create

output stream
attached to socket

2: Application Layer 8

Example: Java client (TCP), cont.

 BufferedReader inFromServer =
 new BufferedReader(new
 InputStreamReader(clientSocket.getInputStream()));

 sentence = inFromUser.readLine();

 outToServer.writeBytes(sentence + '\n');

 modifiedSentence = inFromServer.readLine();

 System.out.println("FROM SERVER: " + modifiedSentence);

 clientSocket.close();

 }
}

Create
input stream

attached to socket

Send line
to server

Read line
from server

2: Application Layer 9

Example: Java server (TCP)
import java.io.*;
import java.net.*;

class TCPServer {

 public static void main(String argv[]) throws Exception
 {
 String clientSentence;
 String capitalizedSentence;

 ServerSocket welcomeSocket = new ServerSocket(6789);

 while(true) {

 Socket connectionSocket = welcomeSocket.accept();

 BufferedReader inFromClient =
 new BufferedReader(new
 InputStreamReader(connectionSocket.getInputStream()));

Create
welcoming socket

at port 6789
Wait, on welcoming
socket for contact

by client
Create input

stream, attached
to socket

2: Application Layer 10

Example: Java server (TCP), cont

 DataOutputStream outToClient =
 new DataOutputStream(connectionSocket.getOutputStream());

 clientSentence = inFromClient.readLine();

 capitalizedSentence = clientSentence.toUpperCase() + '\n';

 outToClient.writeBytes(capitalizedSentence);
 }
 }
}

Read in line
from socket

Create output
stream, attached

to socket

Write out line
to socket

End of while loop,
loop back and wait for
another client connection

2: Application Layer 11

Socket programming with UDP

UDP: no “connection” between
client and server

❒ no handshaking
❒ sender explicitly attaches

IP address and port of
destination to each packet

❒ server must extract IP
address, port of sender
from received packet

UDP: transmitted data may
be received out of order,
or lost

application viewpoint
UDP provides unreliable transfer
 of groups of bytes (“datagrams”)

 between client and server

2: Application Layer 12

Client/server socket interaction: UDP

close
clientSocket

Server (running on hostid)

read reply from
clientSocket

create socket,
clientSocket =
DatagramSocket()

Client

Create, address (hostid, port=x,
send datagram request
using clientSocket

create socket,
port=x, for
incoming request:
serverSocket =
DatagramSocket()

read request from
serverSocket

write reply to
serverSocket
specifying client
host address,
port number

3

2: Application Layer 13

Example: Java client (UDP)

se
n

d
P

a
ck

e
t

to network from network

re
c
e

iv
e

P
a

c
k
e

t

in
F

ro
m

U
se

r

keyboard monitor

Process

clientSocket

UDP

packet

input

stream

UDP

packet

UDP

socket

Output: sends
packet (TCP sent
“byte stream”)

Input: receives
packet (TCP
received “byte
stream”)

Client
process

client UDP
socket

2: Application Layer 14

Example: Java client (UDP)

import java.io.*;
import java.net.*;

class UDPClient {
 public static void main(String args[]) throws Exception
 {

 BufferedReader inFromUser =
 new BufferedReader(new InputStreamReader(System.in));

 DatagramSocket clientSocket = new DatagramSocket();

 InetAddress IPAddress = InetAddress.getByName("hostname");

 byte[] sendData = new byte[1024];
 byte[] receiveData = new byte[1024];

 String sentence = inFromUser.readLine();
 sendData = sentence.getBytes();

Create
input stream

Create
client socket

Translate
 hostname to IP

address using DNS

2: Application Layer 15

Example: Java client (UDP), cont.

 DatagramPacket sendPacket =
 new DatagramPacket(sendData, sendData.length, IPAddress, 9876);

 clientSocket.send(sendPacket);

 DatagramPacket receivePacket =
 new DatagramPacket(receiveData, receiveData.length);

 clientSocket.receive(receivePacket);

 String modifiedSentence =
 new String(receivePacket.getData());

 System.out.println("FROM SERVER:" + modifiedSentence);
 clientSocket.close();
 }
}

Create datagram
with data-to-send,

length, IP addr, port

Send datagram
to server

Read datagram
from server

2: Application Layer 16

Example: Java server (UDP)

import java.io.*;
import java.net.*;

class UDPServer {
 public static void main(String args[]) throws Exception
 {

 DatagramSocket serverSocket = new DatagramSocket(9876);

 byte[] receiveData = new byte[1024];
 byte[] sendData = new byte[1024];

 while(true)
 {

 DatagramPacket receivePacket =
 new DatagramPacket(receiveData, receiveData.length);
 serverSocket.receive(receivePacket);

Create
datagram socket

at port 9876

Create space for
received datagram

Receive
datagram

2: Application Layer 17

Example: Java server (UDP), cont
 String sentence = new String(receivePacket.getData());

 InetAddress IPAddress = receivePacket.getAddress();

 int port = receivePacket.getPort();

 String capitalizedSentence = sentence.toUpperCase();

 sendData = capitalizedSentence.getBytes();

 DatagramPacket sendPacket =
 new DatagramPacket(sendData, sendData.length, IPAddress,
 port);

 serverSocket.send(sendPacket);
 }
 }
}

Get IP addr
port #, of

sender

Write out
datagram
to socket

End of while loop,
loop back and wait for
another datagram

Create datagram
to send to client

2: Application Layer 18

Building a simple Web server

❒ handles one HTTP
request

❒ accepts the request
❒ parses header
❒ obtains requested file

from server’s file
system

❒ creates HTTP response
message:
❍ header lines + file

❒ sends response to client

❒ after creating server,
you can request file
using a browser (eg IE
explorer)

❒ see text for details

