TCp

Transport Layer 31

TCP: Overview rres: 793, 1122, 1323, 2018, 2581

3 point-to-point: 3 full duplex data:
> bi-directional data flow in
same connection

> MSS: maximum segment
size

> one sender, one receiver

3 reliable, in-order byte
steam:

> no “message boundaries” 3 connection-oriented:

3 pipelined: > handshaking (exchange of

> TCP congestion and flow control msgs) init's sender,
control set window size receiver state before data

exchange

0 send & receive buffers

a flow controlled:

> sender will not overwhelm
receiver

Transport Layer 32

TCP segment structure

32 bits -
URG: urgent data .
(generally not used) source port # | dest port # ;;us;r;gs
ACK: ACK # sequence number of data
id [——acknowledgement number |
valid ot o (not segments!)
PSH: push data now mJ UAP[RISIF| Receive window
(generally not used) Mm Urg data pnter i\?r?l:/?ﬁing
— . .
RST, SYN, FIN: Optjghs (variable length) to accept

connection estab
(setup, teardown

commands) application
Internet data
checksum (variable length)
(as in UDP)

Transport Layer 33

TCP seq. #'s and ACKs
Seq. #'s: @ Host A Hosz@

byte stream “number”
of first byte in User Se

g4,
segment's data types 2 ACK=79. data < ¢
ACKs: < host ACKs

seq # of next byte receipt of

=C
expected from other ACKERS: gat2 'C', echoes
side sea T back 'C’
cumulative ACK

piggybacking host ACKs
receipt Se

: i I -of- 943,
“ :orzerrez'gv"e‘;"tnd s out-of of echoed Wx‘
’c
> A: TCP spec doesn't

say, - up to implementor

time
simple telnet scenario L

Transport Layer 34

TCP Round Trip Time and Timeout

Q: how to set TCP Q: how to estimate RTT?

timeout value? 7 SampleRTT: measured fime
7 longer than RTT from segment transmission until

> but RTT varies ACK receipt
7 too short: premature > ignore retransmissions
timeout 7 SampleRTT will vary, want

> unnecessary estimated RTT "smoother

retransmissions > average several recent
measurements, not just

7 too long: slow reaction
current SampleRTT

to segment loss

Transport Layer 35

Example RTT estimation:

RTT: gala.cs.umass.edu to fantasla.eurecom.fr

s 8 2 ®» ® 8 2 8 & 71 om s @ ® 6
time (saconnds)

[~—SompeRTT = Esimaa RTT

Transport Layer 36




TCP reliable data transfer

TCP creates rdt
service on top of IP's
unreliable service

Pipelined segments
Cumulative acks

7 Retransmissions are
triggered by:
> timeout events

> duplicate acks

3 Initially consider

simplified TCP sender:

> ignore duplicate acks

3 TCP uses single

refransmission timer
> ignore flow control,
congestion control

Transport Layer 37

TCP sender events:

data rcvd from app:

timeout:

7 Create segment with
seq #

7 seq # is byte-stream
number of first data
byte in segment

7 start timer if not
already running (think
of timer as for oldest
unacked segment)

7 expiration interval:
TimeOutInterval

O retransmit segment
that caused timeout

o restart timer
Ack revd:

3 If acknowledges
previously unacked
segments
> update what is known
to be acked
> start timer if there
are outstanding
segments ~ TransportLayer 38

NextSegNum = InitialSeqNum
SendBase = InitialSeqNum

TCpP

loop (forever) {

smallest sequence number
start timer

switch(event) d
event: data received from application above ser.‘—er‘
create TCP segment with sequence number NextSeqNum H L
if (timer currently not running) sim I |f ied
start timer
pass segment to |P .
NextSeqNum = NextSeqNum + length(data) gesmmngm- % last
+ SendBase-1: las
event: timer timeout cumulatively
retransmit not-yet-acknowledged segment with acKed byte

Example:
+ SendBase-1=71;

event: ACK received, with ACK field value of y y= 73, so the revr

if (y > SendBase) {

SendBase =y wants 73+ ;
if (there are currently not-yet-acknowledged segments) y?> SendBase, so
, start timer that new data is

acked

} /* end of loop forever */

Transport Layer 39

TCP: retransmission scenarios

Eorost 4 Host D

Segsg

W‘
400

X

loss

Segeg,
2 8 bytes data

AR

<«— timeout—>

SendBase
=100

time .
lost ACK scenario

@Hosf A

f
S
£
£
&
&
§
Sendbase %
=100 5
SendBase §
=120 *
&
&
§
SendBase |
=120 premature timeout
time

Transport Layer 310

TCP retransmission scenarios (more)
B st a Host & | D

Seg=
9292, 8 by 1, e

A0
Sea=100, 5 [

S daty

I
5
g
S X4
loss
SendBase A;\c\‘/

=120

time
Cumulative ACK scenario

Transport Layer 3-11

TCP ACK generation [RFc 1122, RFC 2581]

Event at Receiver

TCP Receiver action

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Immediately send single cumulative
ACK, ACKing both in-order segments

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Arrival of segment that
partially or completely fills gap

Immediate send ACK, provided that
segment startsat lower end of gap

Transport Layer 312




Fast Retransmit

3 Time-out period
often relatively long:
> long delay before
resending lost packet
7 Detect lost segments
via duplicate ACKs.
> Sender often sends

many segments back-to-
back

> If segment is lost,
there will likely be
many duplicate ACKs.

0 If sender receives 3
ACKs for the same
data, it supposes that
segment after ACKed
data was lost:

> fast retransmit: resend
segment before timer
expires

Transport Layer 3-13

TCP Flow Control

7 receive side of TCP
connection has a
receive buffer:

f— RevWindow —4

data from TCcP application
™ spare room data > orocess
in buffer

———— RovBuffer ————

T app process may be
slow at reading from
buffer

flow control
sender won't overflow
receiver's buffer by
transmitting too much,

7 speed-matching
service: matching the
send rate to the
receiving app’s drain
rate

Transport Layer 3-14

TCP Flow control

: how it works

#—RevWindow —4

data from TCcP application
™ spare room data > orocess

in buffer
———— RovBuffer ————

(Suppose TCP receiver
discards out-of-order
segments)

7 spare room in buffer

RcvWindow

RcvBuffer-[LastByteRcvd
LastByteRead]

3 Rcvr advertises spare
room by including value
of RevWindow in
segments

7 Sender limits unACKed
data to ReviWindow

> guarantees receive
buffer doesn't overflow

Transport Layer 3-15

TCP Connection Management

Recall: TCP sender, receiver establish “connection”
before exchanging data segments

I initialize TCP variables:
O seq. #s

O buffers, flow control info (e.g. ReviWindow)

O client: connection initiator
Socket clientSocket = new
number") ;

3 server: contacted by client

Socket i ket = wel

Socket ("hostname", "port

cket.accept() ;

Transport Layer 3-16

TCP Connection Management

Three way handshake:

Step 1: client host sends TCP SYN segment to server

> specifies initial seq #
> no data

Step 2: server host receives SYN, replies with SYNACK

segment

> server allocates buffers

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close() ;

close

Step 1: client end system
sends TCP FIN control
segment to server

Step 2: server receives

@ client server@

Fin

AOK
close
N

Ack

> specifies server initial seq. #
Step 3: client receives SYNACK, replies with ACK segment,
which may contain data

Transport Layer 317

FIN, replies with ACK.
Closes connection, sends
FIN.

2 timed wait

close

Transport Layer 3-18




TCP Connection Management (cont.)

Step 3: client receives
FIN, replies with ACK.

> Enters “timed wait" -
will respond with ACK
to received FINs

Step 4: server, receives
ACK. Connection closed.

Note: with small
modification, can handle
simultaneous FINs.

closing

close

@ client

2 timed wait

server@

FIN
cK .
£ closing
N
Ack
closed

Transport Layer 319




