Transport Overview and UDP

Transport Layer 3-1

Goals

0 Understand transport services
O Multiplexing and Demultiplexing
O Reliable data transfer
O Flow control
O Congestion control

0 TCP and UDP

Transport Layer 3-2

Transport services and protocols

3 provide Jogical communication
between app processes
running on different hosts

T transport protocols run in
end systems

O send side: breaks app
messages into segments,
passes to network layer

O rev side: reassembles
segments into messages,
passes to app layer

T more than one transport
protocol available to apps

o Internet: TCP and UDP Transport Layer 3-3

Transport vs. network layer

. N r
7 network layer: logical Household anology:
Lo 12 kids sending letters to 12
communication kids
between hosts 3 processes = kids
3 transport layer: O app messages = letters in

logical communication envelopes
7 hosts = houses

between processes
T transport protocol = Ann

O relies on, enhances, and Bill

i
network layer services T network-layer protocol =

postal service

Transport Layer 3-4

Internet transport-layer protocols

7 reliable, in-order
delivery (TCP)
O congestion control
o flow control
O connection setup
7 unreliable, unordered
delivery: UDP
O no-frills extension of
“best-effort” IP

7 services not available:

O delay guarantees
O bandwidth guarantees Transport Layer 35

Multiplexing/demultiplexing

Multiplexing at send host:
gathering data from multiple
sockets, enveloping data with
header (later used for

Demultiplexing at rcv host:
delivering received segments
to correct socket

[= socket Q = process

transport transport transport
network network network
link link link
physical physical physical
host 1 host 2 host 3

Transport Layer 3-6

How demultiplexing works

3 host receives IP datagrams

> each datagram has source 32 bits >
IP address, destination IP
address

source port #l dest port #

> each datagram carries 1
transport-layer segment

other header fields

> each segment has source,

destination port number application
(recall: well-known port data
numbers for specific (message)

applications)

O host uses IP addresses &
port numbers to direct
segment to appropriate
socket

TCP/UDP segment format

Transport Layer 37

Connectionless demultiplexing

3 Create sockets with port
numbers:

DatagramSocket mySocketl = new
DatagramSocket (99111) ;

DatagramSocket mySocket2 = new
DatagramSocket (99222) ;

3 UDP socket identified by
two-tuple:

(dest IP address, dest port number)

7 When host receives
UDP segment:

> checks destination port
number in segment

> directs UDP segment to
socket with that port
number
7 IP datagrams with
different source IP
addresses and/or
source port numbers

directed to same socket
Transport Layer 3-8

Connectionless demux (cont)

DatagramSocket serverSocket = new DatagramSocket (6428);

SP: 6428 SP: 6428
DP: 9157 DP: 5775

|| sP: 9157 SP: 5775

client DP: 6428 server DP: 6428 Client

IP:A IP: C P8

SP provides “return address”

Transport Layer 39

Connection-oriented demux

7 TCP socket identified
by 4-tuple:
> source IP address
> source port number
> dest IP address
> dest port number
7 recv host uses all four
values to direct
segment to appropriate
socket

7 Server host may

support many
simultaneous TCP
sockets:

> each socket identified by
its own 4-tuple

7 Web servers have

different sockets for
each connecting client

> non-persistent HTTP will
have different socket for
each requesty, o Layer 310

Connection-oriented demux

(cont)

SP: 5775
DP: 80
S-IP: B
D-IP:C
e
| sP: 9157 SP: 9157
client | BP0 server P& | Client
IP: A = . -1P: IP:B
D-IP:C P: C D-IP:C

Transport Layer 3-11

Connection-oriented demux:

Threaded Web Server

2 = &
SP: 5775
DP: 80
S-IP: B
D-IP:C
e
T sP: 9157 SP: 9157
client | BP0 server P& | Client
IP: A = . -1P: IP:B
D-IP:C P: C D-IP:C

Transport Layer 312

UDP: User Datagram Protocol [RFC 768]

3 “no frills," "bare bones"
Internet transport protocol
7 “best effort” service, UDP
segments may be:
> lost
> delivered out of order to
app
O connectionless:
> no handshaking between
UDP sender, receiver
> each UDP segment
handled independently of
others

Transport Layer 3-13

UDP: more

T often used for streaming 32 bit
multimedia apps L
5 loss tolerant Length, in__|Source port #| dest port #
> heck
) rate sensitive bytes of UDP ength checksum
segment,
o other UDP uses including
5 DNS header
> SNMP Application
7 reliable transfer over data
UDP: add reliability at (message)

application layer
> application-specific UDP segment format
error recovery!

Transport Layer 3-14

UDP checksum

Goal: detect “errors” (e.g., flipped bits) in

transmitted segment

Sender:

O treat segment contents
as sequence of 16-bit
integers

3 checksum: addition (1's
complement sum) of
segment contents

7 sender puts checksum
value into UDP checksum
field

Receiver:
3 compute checksum of
received segment
7 check if computed checksum
equals checksum field value:
> NO - error detected
> YES - no error detected.
But maybe errors
nonetheless? More later

Transport Layer 3-15

Internet Checksum Example

7 Note

© When adding numbers, a carryout from the
most significant bit needs to be added to the
result

3 Example: add two 16-bit integers

1110011001100110
1101010101010101
Wrupuround(\1/‘1n111nl11.’\111{\11
sum
checksum 101 1101110111100

10001000100 @udiat 316

