
Energy-aware Mobile Service Overlays: Cooperative Dynamic Power
Management in Distributed Mobile Systems

Balasubramanian Seshasayee, Ripal Nathuji, Karsten Schwan
College of Computing

Georgia Institute of Technology
Atlanta, GA 30032

{bala, rnathuji, schwan}@cc.gatech.edu

Abstract

With their increasingly powerful computational re-
sources and high-speed wireless communications, future
mobile systems will have the ability to run sophisticated ap-
plications on collections of cooperative end devices. Mobil-
ity, however, requires dynamic management of these plat-
forms’ distributed resources, and such management can
also be used to meet application quality requirements and
prolong application lifetimes, the latter by best using avail-
able energy resources. This paper presents energy-aware
Mobile Service Overlays (MSOs), a set of mechanisms and
associated policies for running mobile applications across
multiple, cooperating machines while actively performing
power management to extend system usability lifetimes.
MSO policies manage energy consumption by (i) allocat-
ing application components to available nodes based upon
their current energy capacities and resource availabilities,
(ii) monitoring for, and responding to changes in energy
and resource characteristics, and (iii) dynamically exploit-
ing energy-performance tradeoffs in overprovisioned situ-
ations. Coupled with mobility, such cooperation enables
multiple mobile platforms to bring their joint resources to
bear on complex application tasks, providing significant
benefits to application lifetimes and performance. This pa-
per evaluates MSOs on a MANET computing testbed indi-
cate an extension in system lifetime of upto 10% for an ex-
ample application.

1 Introduction
Distributed applications running on Mobile Adhoc NET-

works (MANETs) are being used in many domains, ranging
from autonomous robotics, to online gaming, to emergency
management. Growth in such applications is encouraged
by the proliferation of handhelds and portables and by sub-
stantial increases in the combined computational power of

the MANET systems on which they run, the latter caused
by the increased computational capabilities of these plat-
forms and the improved connectivity afforded by their pow-
erful and diverse communication devices. Also promoted
by these trends are cooperative approaches to running ap-
plications across sets of participating machines, with early
examples of these including robots that collaboratively un-
dertake a search and rescue mission [12], coordinated ac-
tions of geographically dispersed agents in an emergency
rescue operation [17], distributed surveillance in the battle-
field, distributed gaming, and ubiquitous computing envi-
ronments [18].
Since cooperative mobile applications like those listed

above operate in highly dynamic execution environments,
their effective execution requires them to adapt, online,
to changes in requirements and to dynamically react to
changes in underlying platform resources, including reac-
tions to disruptions caused by node mobility or failure [26]
Sample disruptions occurring in a team of cooperating
robots are (i) the failure of a robot that performs critical pro-
cessing for the team or (ii) the movement of this robot out of
range. The presence of disruptions also implies that central-
ized solutions are not suitable for managing the application
software components distributed amongst nodes. Instead,
decentralized methods offer improved fault resilience and
scalability [27]. Realizing these facts, the research commu-
nity has developed a wide variety of decentralized manage-
ment services, including energy management [20, 18], load
balancing [25], and QoS provisioning [32].
This paper focuses on energy management. In particular,

for MANET applications, we develop cooperative energy
management strategies that enhance their energy profiles,
(i) by decreasing their energy consumption to the extent per-
mitted by current application performance constraints, and
(ii) by extending overall system and application lifetime,
by migrating application services that are critical to the
application away from energy constrained nodes. Specif-

1

ically, concerning (i), for each single platform, we reduce
its energy consumption by using common techniques for
energy management, which are dynamic voltage and fre-
quency scaling (DVFS). The resulting degradation in appli-
cation execution can be reduced by utilizing memory-bound
phases for such scaling [10], or, in our real-time environ-
ments where there is a notion of slack, by increasing execu-
tion times (thereby reducing energy needs) only to the ex-
tent permitted by application deadlines [1]. Similar energy-
performance tradeoffs are available for other devices such
as memory, peripherals (network and disk interfaces), dis-
play, etc. Concerning (ii), we use computational offloading,
whereby portions of the mobile workload are dynamically
offloaded to nodes with better energy resources [25]. The
former set of techniques have a direct effect on energy sav-
ings at distinct nodes, whereas the latter helps in longevity
by sharing energy resources amongst multiple participants.
Energy-aware management is implemented for realis-

tic mobile applications and systems using the lightweight
and efficient Mobile Service Overlays (MSOs) [28]. MSO
middleware provides efficient mechanisms for dynamically
creating, moving, and reconfiguring computational services
across distributed mobile platforms, and in addition, for
monitoring underlying platform conditions. This paper uses
these facilities to develop and demonstrate novel decentral-
ized management protocols that jointly, extend the lifetimes
of distributed MANET applications and systems. These
protocols (i) dynamically distribute and re-distribute appli-
cation components among participating MANET, consid-
ering the overlay routes that satisfy the application’s la-
tency requirements while at the same time, determining the
most energy-efficient allocations, (ii) recover unused por-
tions of resources in an overprovisioned system with lit-
tle or no impact on application performance, and (iii) use
de-centralized online monitoring and reconfiguration to lo-
cally and thereby, with low delay and overhead, respond
to dynamic changes in application requirements and en-
vironment conditions. The management algorithms being
used, specifically the algorithm for dynamic resource recla-
mation, is experimentally demonstrated to track optimality,
with low overhead. MSOs using this algorithm – energy-
aware MSOs – offer notable benefits. On a wireless, multi-
hop ad-hoc network of handheld computing platforms, for
instance, an energy-aware MSO extends system lifetime up
to 10% for a five-node network.
The remainder of this paper is organized as follows: In

Section 2, we explore related research, then describe an
overview of energy-aware MSOs in Section. 3. This is
followed by a description of the energy management tech-
niques used in this MSO in Section 4. Section 5 discusses
current trends in power management. We present selected
elements of the implementation of energy-aware MSOs and
evaluate it experimentally in Section 6. Conclusions and

future work appear in Section 7.

2 Related Work

Prior research on energy conservation in ad-hoc net-
works has mainly focused on energy-aware routing proto-
cols – by improving existing protocols like AODV [24],
by factoring the energy levels of each node in the routing
cost metric [9], or through novel protocols like probabilis-
tic routing [29]. The former classifies nodes into various
classes depending on their energies, and uses this instead of
the hop count, to determine the energy-optimal route. The
latter uses a similar cost metric by aggregating the energy
values of the nodes in each route, then randomly chooses
a route with a probability proportional to the cost metric
along the route. While these approaches are suitable for
network-bound applications and sensor nodes, where the
network interface accounts for a significant portion of the
power budget, for the applications and platforms considered
in our work experimental results that the energy consumed
by the network interface is quite small compared to CPU
energy. Our research, therefore, primarily leverages prior
work on reducing CPU energy consumption, including re-
ducing energy usage by applying dynamic voltage and fre-
quency scaling [11] on multiprocessor systems. [15] uses
dynamic slack reclamation in conjunction with DVFS in
a real-time setting, on a multiprocessor system. A static
schedule is first constructed for periodic tasks, then slack
reclaiming is used to save power, yet satisfy real-time con-
straints. Resource reclaiming in multiprocessor real-time
systems has been dealt with in great detail in [30], where
the authors describe two algorithms to perform online re-
claiming on a static schedule.
Computational offloading has been used extensively for

power-aware load balancing ranging from clusters of work-
stations [25], to embedded devices [31]. The latter performs
computational offloading in conjunction with setting the
CPU frequencies, to minimize energy consumption. Dis-
tributed middleware can be useful to manage computational
entities in such environments. [16] surveys the various mid-
dleware implementations for a mobile environment. Re-
search efforts to include mobile nodes in Grid technology
include [2], which proposes a mobile agent framework to
provide/use Grid services at the mobile nodes, so that dis-
tributed resources from the Grid can be accessed by such
users. DFuse [14] is a cluster of iPAQ handhelds used to
perform multimedia and other data fusion tasks. Magne-
tOS [5] uses a distributed framework to partition a mono-
lithic Java application into its constituent classes for coop-
erative execution on a MANET. Efficient placement of ap-
plication components is carried out by monitoring the data
traffic among nodes, and using distributed algorithms to
shorten the mean path length of data.

2

3 Mobile Service Overlays – System
Overview
Mobile Service Overlays (MSO) [28] is a distributed

middleware system designed to execute mobile and perva-
sive applications. MSO provides mechanisms to dynam-
ically create and manage overlays on a mobile network.
It operates under an event-driven computation model [16],
where data, in the form of events, is exchanged across dis-
tributed computing nodes for processing. MSO models
applications as directed flow graphs whose vertices repre-
sent processing performed on events arriving via directed
edges. Associated with each edge is a format describing
the data passing through the edge. Such a graph-based
representation implicitly captures the data dependencies
among computational entities, and it also simplifies appli-
cation partitioning for a distributed environment. MSO pro-
grams, therefore, consist of code modules running in ver-
tices mapped to overlay nodes, receiving formatted inputs
from and generating outputs to other vertices. Similar to an
event processing system, the flow graph consists of event
sources and sinks.
MSO targets dynamic management of the application

flowgraph in unreliable, distributed mobile environments.
Correspondingly, its design goals include (1) decentralized
resource management and (2) low overhead mechanisms for
(re-)deployment. Consequently, no explicit organization is
enforced among the participating nodes: all MSO nodes
are peers and have identical middleware functionality. Fur-
thermore, to avoid the scalability and reliability issues aris-
ing from centralized or global management, the application
flow graph is partitioned into its constituent and indepen-
dently manageable computational chains. Formally, a chain
is a maximal set of sequential vertices and edges of the flow
graph, with a single entry and a single exit. Events enter the
first vertex of the chain, the head, sequentially pass through
and are operated on at each node in the chain, and finally
exit at the last node, the tail. Many application properties
(e.g., end-to-end delay) can be formulated to depend on the
corresponding local properties of each chain, and different
chains can be managed independently in order to guarantee
such properties. In this fashion, chains compartmentalize
management to be confined to more “local” portions of the
application. Figure 1 shows an example flowgraph decom-
posed into its constituent chains (A→D, D→E, F→G, G→D,
G→I).
Using the partitioning provided by the chain abstraction,

MSO provides multiple low level services to higher layers
for use in cooperative MANETs, as described next.

Deployment Services: Deployment consists of the in-
stantiation of the application flowgraph onto the mobile net-
work. It has two sub-phases: the allocation phase in which
each vertex is assigned to a node in the network, and the ac-

A

B

C

D
E

F
G

H
I

Sinks

Sources

Figure 1. Partitioning the graph into chains

tual construction of the overlay network by creating the ver-
tices at the assigned nodes and the links connecting them.
The chain-based decomposition of the flow graph provides
a convenient abstraction for distributed allocation. Algo-
rithm 1 details this procedure.

Algorithm 1 Allocation
1: ∀ chain c, set dependences(c) to the number of chains
leading to it.

2: if dependences(c) == 0 then
3: Explore the route taken by a packet to the sink node

furthest away, collecting the capacities of all nodes
along the route.

4: end if
5: Allocate nodes to vertices of the chain in proportion
to the fraction of the overall costs contributed by the
vertices (i.e, for chains c1 and c2 such that c1 leads to
c2, if the route from head(c1) to tail(c2) is r, the nodes
in r are assigned to c1 and c2 in proportion to Cost(c1)

Cost(c2)
)

6: Within a chain, perform a greedy assignment of vertices
to nodes.

7: ∀ chain c′ : head(c′) = tail(c), decrement
dependences(c′) and assign head(c′) to the same node
as tail(c).

8: Repeat the above steps until all chains have been as-
signed to nodes.

9: Each node that has a chain head mapped to it constructs
the overlay network along its chain.

In this algorithm, we make use of the decomposition of a
potentially large application flowgraph into chains in order
to distribute the assignment process and provide scalabil-
ity. Indeed, after performing the cost-based partitioning of
nodes for different chains, the chains themselves indepen-
dently determine the best set of participants to use, as re-
ferred to in Step 6, in a greedy fashion. As we will describe
later, a novel contribution of this paper is to integrate energy
awareness into this step, to provide global system lifetime
benefits.
Algorithm 1 implicitly assumes that the sources and

sinks of the flowgraph are already assigned to their nodes.
In realistic systems, source and sink vertices can often be
assigned only to certain nodes (e.g., those that possess sen-
sors/actuators that produce or consume data). We therefore,

3

OVERLAY
NETWORK

Reconfigurable Middleware

Ruleset

Reconfiguration

Objective function

Monitoring

Figure 2. Generic management in MSO

assume the source and sink vertices to be preassigned to
particular nodes. If this is not the case, a distributed process
can be used by which nodes possessing the capabilities re-
quired by the source/sink vertices are chosen according to
their abilities and assigned to nodes before deployment.
Monitoring Services: Each MSO node runs a separate
monitoring thread that is used to maintain metrics like CPU
utilization due to the computation being carried out, the
amount of data transferred from/to the node and the ex-
pected lifetime of the battery. Additionally, monitoring pe-
riodically checks for the liveness of its neighbors (as de-
termined by the routing layer) and for changes in the rout-
ing layer. The metrics monitored are available for use by
the higher layers for reconfiguration triggers and decisions.
Monitored metrics are also available for sharing, as each
monitor exposes its data to other nodes through RPC calls,
and by piggybacking monitoring information along with
events.
Self-Management Services: The generic management
framework in MSO involves (i) monitoring for specific
changes in observed metrics, and (ii) triggering reconfigu-
ration mechanisms at the appropriate granularity to counter
the change, based on a predefined ruleset. As MSO is de-
centralized, any node that observes a change can trigger
a reconfiguration according to predefined rules tailored to-
wards specific objectives (Fig 2). Further, as this is a generic
procedure, it can be applied to different management goals
like load balancing, mobility & fault tolerance, latency min-
imization, etc. The complexity of the ruleset used to trigger
a reconfiguration dictates the control overheads of the deci-
sion process in management. As a result, a simple greedy
ruleset can only target local optima – an acceptable provi-
sion under dynamic conditions.
Reconfiguration Services: Reconfiguration involves
remapping portions of the overlay network to create
a different assignment between vertices in the overlay
and underlying machines. MSO provides capabilities to
perform remapping at various granularities. In response
to changing conditions, reconfiguration is performed at
the appropriate level, while meeting the application’s
performance constraints.

• reconfigure local: Intra-chain remapping, where a sin-
gle assignment (of a vertex to a node) is changed, ei-
ther by an upstream relocation (a vertex B, that follows
another vertex A within a chain (i.e., ..→A→B→..) is
relocated to the same node as A), or a downstream
one. Such a remapping is of low cost and involves
only the participating nodes, hence can be performed
frequently, and finds use in continuous minor reconfig-
urations to optimize the system.

• reconfigure single chain: Chain remapping, where the
existing assignments of vertices in a chain are freed
and a fresh assignment performed. This is more ex-
pensive than intra-chain remapping, and consequently,
used less frequently. Chain remapping is ideal for sit-
uations like load-balancing, handling node failure, etc.
where only a single chain is affected

• reconfigure multiple chains: This refers to all remap-
ping procedures that affect more than a single chain,
or maybe even the entire flowgraph, and hence require
cooperation of a larger set of nodes. Due to its high
cost, this is used least frequently – for instance, when
detecting a node failure during an ongoing reconfigu-
ration.

4 Techniques for Energy Management
Energy management in a dynamic environment is a con-

tinuous process, requiring an energy-aware assignment, fol-
lowed by online monitoring to trigger actions that shift the
system towards optimality. MSO provides three techniques
for energy management, viz., energy-aware allocation, real-
location, and dynamic resource reclaiming.
4.1 Energy Aware Allocation
We revisit allocation (Algorithm 1) here, to introduce en-

ergy awareness into the assignment process. The chain as-
signment procedure is modified to address energy manage-
ment concerns, using the following techniques: (i) mod-
ifying route exploration to include Ad-hoc Route Neigh-
borhoods and (ii) using the Global Lifetime Sustainability
heuristic to determine the best assignment of vertices to
nodes from among the routes in the neighborhood.
Ad-Hoc Route Neighborhoods: In Algorithm 1, the
route explored from the source node to the sink is used to
perform the assignment over each chain. However, the route
thus found is entirely dependent on the ad-hoc routing pro-
tocol employed in the underlying layer. Traditional routing
protocols like AODV, DSR, etc. typically use the route with
the smallest hopcount. However, recent research has ex-
plored a variety of techniques for power management at the
network routing layer, including probabilistic routing [29]
and multipath routing, and even using multiple wireless in-
terfaces [23]. Hence, prior to allocation, no assumptions

4

A−B−D−G
A−B−E−D−G
A−B−C−D−G

Ad−hoc
Neighborhood

of A−−G, hopcount < 5

F

A

B C

D

E
G

Figure 3. Ad-hoc Route Neighborhood

can be made by MSO about the underlying protocol’s be-
havior. As a result, MSO explores all possible routes that
can be taken from the source to the destination (bounded
by a maximum hopcount), and chooses the “best” route
from among those for the assignment. The set of all the
routes discovered in this manner is termed the ad-hoc route
neighborhood of the chain. The end-to-end latency require-
ments of the chain thus limits the maximum hop count for
the route, and consequently, the length of each route in the
ad-hoc neighborhood, as well as the number of routes thus
obtained. Figure 3 illustrates this concept, enumerating the
ad-hoc route neighborhood of routes from node A to D in
the topology, with hopcount strictly less than 5.
We rely on a distributed protocol to find the route neigh-

borhood of a chain, given the latency constraints (maximum
latency and maximum hopcount). The protocol is similar to
that used by AODV for route discovery [24], with two dif-
ferences: (i) the destination node stores all the routes it ob-
tains, and (ii) after the maximum latency period, the source
node queries the destination to directly obtain all the routes
stored. This protocol enumerates all of the routes satisfying
the latency constraints. Since no state is saved in any nodes
(except at the destination), its overhead is low. Further, each
packet not reaching the destination is eventually dropped, as
the monotonically decreasing hopcount reaches zero.
Global Lifetime Sustainability (GLS) Heuristic: The
placement of software components during allocation and
reallocation can directly affect the lifetime of a MANET
scenario. In the simplest case, with two nodes and a sin-
gle component, energy can be depleted fairly and system
lifetime is maximized by migrating the workload to the par-
ticipant with more battery capacity whenever a reallocation
is triggered. When there are multiple components and mul-
tiple nodes, all with varying requirements and energy levels,
optimal decisions cannot be made within reasonable com-
plexity constraints. Instead, we use a heuristic to determine
where to place various components. In particular, we define
a GLS metric for a set of candidate nodes and energy levels
and utilize a heuristic which attempts to maximize this met-
ric and/or minimize potential decreases to it. this Specif-
ically, for this work, we define the GLS metric to be the
product of the remaining energy levels on nodes under con-
sideration when deciding where to place a software compo-
nent. This approach fits well in the scenarios addressed here
since nodes are treated equally and are homogeneous. We

note that the GLS metric can also be used more generally,
to express variations among nodes in heterogeneous envi-
ronments and to tune the allocation policies at runtime. We
will investigate these issues in our future work.
We now describe how the use of the GLS heuristic is

integrated into chain assignment decisions in MSO along
with the use of ad-hoc neighborhoods. At a high level,
from among all the possible routes discovered (ad-hoc route
neighborhood) for each chain, (1) a possible assignment is
determined based upon resource availability and the GLS
heuristic, and (2) a cost is associated with the route and al-
location scheme. The route with the smallest cost is then
chosen for the chain. In particular, we define the cost as the
projected difference in the GLS metric based upon the al-
location over some period of time. The overall approach is
described in Algorithm 2.

Algorithm 2 GLS-based assignment for a chain
1: Given the chain c = v1, v2, ..., vn to be assigned to one
of the routes r1, r2, ..., rm,

2: Set Cost(c) =
∑

vi
Cost(vi)

3: for all rj of length kj do
4: Set l = 1 {Lower bound}
5: for all vi do
6: Find max u s.t. Cost(c) <=

∑kj

p=u Capacity(np) {Upper bound}
7: for p = l to u do
8: SetGLSnow as a function of current battery ca-

pacities {Current GLS}
9: Set GLSt as a function of estimated future bat-

tery capacities after time twhen allocating to np

{GLS after assignment}
10: Set δGLSp = GLSnow − GLSt

11: end for
12: Assign vi to np s.t. δGLSp is minimized, call it

δGLSvi

13: Set l to p {Set new lower bound for remaining ver-
tices and nodes}

14: Set Cost(c) = Cost(c) − Cost(vi)
15: Find max u s.t. Cost(c) <=

∑kj

p=u Capacity(np) {New upper bound}
16: end for
17: end for
18: Determine ∀ route rj , δGLSrj

=
Aggregatevi

(δGLSvi
)

19: Choose route rj s.t. δGLSrj
is minimized

4.2 Energy-Aware Reallocation
Energy-Aware reallocation consists of moving applica-

tion components in response to changing conditions, and
utilizes the monitoring, management, and reconfiguration
services provided by MSO (Algorithm 3).

5

Algorithm 3 Energy-Aware Management
1: Each node n, periodically queries expected lifetime of
all its neighbors

2: while ∃ node n′ s.t. lifetime(n′) − lifetime(n) >
threshold that is predefined do

3: if ∃ vertex v′ housed at n′ s.t. vertex v housed in n,
and either v → v′ or v′ → v then

4: MSO.reconfigure local(v){Perform the up-
stream/downstream relocation on v}

5: else if ∃v housed at n s.t. v is neither the head nor
tail of its chain then

6: MSO.reconfigure chain(v) {Trigger a reallocation
of the chain to which v belongs}

7: else
8: MSO.reconfigure all(v) {v is a chain head; Per-

form a remap on all chains sharing vertex v}
9: end if
10: end while
11: During long periods of idleness, ∀v housed at n : v
is a chain head, check for any changes in the ad-hoc
neighborhood, and remap the chain if a more optimal
neighborhood is found.

4.3 Workload-Aware Dynamic Resource Reclaiming
To conserve energy consumption in overprovisioned

nodes, we design a distributed protocol that explores
energy-performance tradeoffs in a distributed system
through resource reclaiming – i.e., recovering any resource
from the system to the extent that it does not affect the per-
formance, and hence the quality, of the application. Many
such resources, already studied in standalone systems, can
be identified for this purpose, and used in a distributed con-
text. Such resources include peripheral interfaces like stor-
age (via sleep modes), memory (via switching off banks),
and CPU (dynamic voltage/frequency scaling). In this pa-
per, we demonstrate this approach with the CPU-based
techniques.
The primary constraint in implementing single-platform

energy management techniques over a distributed context
lies in determining how actions in one node affect others.
The distributed protocol used to address this in MSO fol-
lows a greedy approach, i.e., each node attempts to reclaim
as much of the resources as it can to minimize energy con-
sumption, then distributes the remaining opportunities to
other nodes. Event sources in MSO associate a deadline for
completely processing each event, and send it along with
the event itself (where this is not available/known, the event
inter-arrival period is used). As the processed event finally
reaches the sink, the slack of the event, i.e., the time dif-
ference between the deadline of the event processing and
the actual time of completion, is computed. A positive
slack value serves as a measure of overprovisioning, in that

Algorithm 4 Slack reclamation
1: repeat
2: if ∃v : ∀v′ and v → v′, v has received slack(v′),

then
3: for all f : f is a CPU frequency do
4: Set slackf (v) = minv′{slackf (v′)} − tf (v) ,

{where tf (v) is the estimated execution time of
the computation of v at frequency f}

5: ∀vp : vp → v and vp is in the same node as v,
send slack(v) to vp

6: end for
7: end if
8: until all the vertices in the node have been considered
9: for all v : v′′ → v, and v′′ is not in this node, do
10: fchoose(v) ← min{f}s.t.slackf (v) ≥ 0
11: end for
12: Set the new frequency, fnew = max{fchoose(v)}
13: ∀v : v′′ → v, and v′′ is not in this node, send

slackfnew
(v) to v′′

unnecessary effort was expended in processing the event.
This presents an opportunity to ‘reclaim’ the slack by scal-
ing down the voltage/frequency in some/all of the CPUs in-
volved in the event processing, and save energy in the pro-
cess. An implicit assumption made here is that the nodes’
clocks are synchronized.
Slack reclaiming starts at the sink node, since only it can

compute the slack value. Starting from this node, each node,
on obtaining the slack values from all its downstream nodes
(a node n1 is downstream to n2 if ∃v1, v2 : v1 is assigned to
n1, v2 to n2, and ∃ a directed edge from v2 to v1), attempts
to scale down its own CPU frequency/voltage so as to max-
imize energy savings. Next, it computes the slack available
to each of its upstream nodes and sends them these values.
Thus, the algorithm proceeds backwards, starting at the sink
node(s), and propagated towards the source(s).
Within each node, Algorithm 4 is used to determine its

best CPU frequency. Figure 4 illustrates this procedure,
with the slacks along the edges represented by Sx’s and
the execution time of the computation at each vertex rep-
resented by tx’s, and shows how the slack is “consumed”
by each node and the remainder passed on to vertices up-
stream.
Algorithm 4 scales linearly with the number of vertices

mapped on that node and the number of frequencies avail-
able. Since this is a greedy algorithm, its focus is to quickly
reclaim any slack made available, hence it seeks only local
optima. As a result, the closer a node is to the sink, the
greater will be its energy savings. Fairer methods for slack
reclamation would require additional coordination among
MSO nodes, thereby introducing additional protocol com-
plexity.

6

PS = S − t(A)A

D B

C

A
S P

S Q

S A

S B

S
C

S D

S C
B

S = S − t(B)
Q

Node

P

Q

Y

Z
DS = S − t(Z)Z
CY

D C BS = min(S , S) − t(D)
C A BS = min(S , S) − t(C)

S = S − t(Y)

Figure 4. Slack propagation within a node

The main assumption in this algorithm is that the ex-
pected execution time at each frequency for the vertices can
be estimated. Research efforts in workload characteriza-
tion can be used to perform such estimates [4]. Even with
accurate application characterization, factors like network
jitter, mobility related effects, or even changing application
needs can cause changes in slack availability. The response
time to such events primarily depends on the frequency at
which slack reclamation is initiated. Additionally, since a
side effect of the greedy algorithm results in concentrating
the bulk of reclaimed slack closer to the sink nodes, this also
enables quick reversion of the reclaimed slack, during such
conditions.

5 Power Tradeoffs and System Implications
In order to effectively manipulate energy usage amongst

distributed nodes, it is essential for MSO to understand the
power and performance tradeoffs of the underlying hard-
ware. In this section, we present results from detailed power
measurements of our evaluation platform which provide the
intuition and tradeoffs that drive the system’s power man-
agement policies.
The hardware environment used in our experiments is

the Intel Sitsang platform, with a PXA255 processor, and
64MB RAM. It runs the Linux-2.4.19 kernel, modified with
Xscale and platform specific patches. Each node also has an
802.11b wireless interface, in ad-hoc mode, in addition to a
10Mbps base-T ethernet interface. All power measurements
are performed using a Tektronix TDS5104B oscilloscope,
Tektronix TCP202 current probes, and Tektronix P6139A
voltage probes.
5.1 Platform Power Trends and DVFS
The Sitsang platform is designed around a PXA255 XS-

cale processor. The processor supports frequency and volt-
age scaling via multiple operating points that vary CPU fre-
quency as well as the frequency to the internal PXA bus,
thereby affecting latency to memory and I/O devices. The
core frequencies available are 400MHz, 300MHz, 200MHz,
150MHz, and 100MHz. Though multiple bus frequencies
are plausible for certain core frequencies, for the purposes
of analysis and experiments in this paper, we always utilize

MAR=0.063 MAR=0.012 MAR=0.001

Po
we

r (
W

)

2.8

3

3.2

3.4

3.6

3.8

4

400 MHz 300 MHz 200 MHz 150 MHz 100 MHz

Figure 5. Sitsang Active Platform Power Con-
sumption

the maximum bus speed possible for a given core speed.
This results in five operating points with core/bus frequen-
cies of 400/200, 300/100, 200/100, 150/50, and 100/50. The
voltages used are 1.3V for 400MHz, 1.1V for 300MHz, and
1.0V for all other frequencies1.
Power analysis uses a tunable synthetic workload that

has characteristics similar to the robotics applications used
in our MSO research [28]. Specifically, for these appli-
cations, we find that a critial variation in their workloads
is memory access behavior. Software components such
as Bayesian classifier are CPU bound, where performance
scales with frequency, whereas image analysis like blob
finding displays increased memory activity due to footprints
larger than the 32K cache size on the PXA255 processor. In
order to provide a fair comparison across this attribute, we
have developed a synthetic workload that can be tuned to
vary memory boundedness while maintaining the amount
of work (i.e. instruction count) performed. This benchmark
is used in subsequent evaluations.
When completely idle, the Sitsang consumes 2.5W-

2.64W depending upon the operating point to which it is
set. A more significant variation can be observed between
the different frequencies when active, as illustrated in Fig-
ure 5. The figure provides power data when the platform is
one hundred percent utilized and executing workloads with
varying memory accesses per instruction (MAR), a param-
eter that in turn affects the cycles per instruction (CPI) re-
quired to execute each application. As expected, we see de-
creasing power consumption as frequency is reduced, with
the difference between 400MHz and 100MHz being as high
as 25%. These system-level trends underscore the possibili-
ties of energy savings available via DVFS. We also observe
from the figure that the system power is not only a func-
tion of frequency, but can also vary significantly based upon
workload characteristics. Indeed, at 400MHz, the power
varies by as much as 11% between the different applica-
tions. This highlights the potential benefits and necessity

1The PXA255 electrical specifications prescribe the operating points
used, along with the 1V minimum requirement.

7

of online monitoring in MSO to dynamically tune energy
management for application specific behavior.
Though it is clear from our results in Figure 5 that re-

ducing the operating point of our platform, when possible
from a performance standpoint, can reduce power consump-
tion, the resulting energy savings are not quite as clear.
For periodic applications, frequency can be reduced when
there is slack without a performance penalty. This reduc-
tion increases the active portion of a period while reduc-
ing the idle period. As recent work has shown, reduc-
ing processor frequency may result in reduced power con-
sumption during active portions of the period, but it can
also increase energy consumption after some point of slack
reclaiming [19, 11]. The existence of these counterintu-
itive trends can be affected further when there are other
power management schemes with which DVFS must coex-
ist [7, 21]. We consider these trends by obtaining the cycle
energy, the combination of the active and idle energy sig-
natures in a period, of the three MAR varying applications
across different CPU utilizations in Figure 6.
Figure 6(a) illustrates the tradeoffs of the different oper-

ating points across utilization behavior for a memory-bound
workload with resultingly high CPI. As the utilization in-
creases, it becomes infeasible to execute at certain frequen-
cies until eventually only the highest operating point can
maintain the performance of the application. Since the ap-
plication is memory-bound, the performance of reduced fre-
quencies can closely match those of higher frequencies, es-
pecially when the bus frequency can be maintained. This is
exibited between the 300/100 and 200/100 operating points
as well as the 150/50 and 100/50 frequencies by the fact
that the respective energy curves end at about the same uti-
lization (i.e., the modes become unusable at similar load).
The reason for this is that the performance of the applica-
tion is driven by bus frequency instead of core frequency
due to the high memory access rate. We can see from the
figure that the optimal operating point is only the smallest
one possible for very low utilizations, after which 200MHz
is optimal even though 150MHz and 100MHz would be op-
tions as well. Similar inflection points can also be observed
for lower MARs in Figures 6(b) and 6(c), though in the lat-
ter the optimal operating point gets pushed even further to
300MHz at high utilizations. These trends show that the
energy optimal operating point can vary based upon work-
load characteristics as well as the utilization required to
execute the workload. It should be noted that even sim-
ply monitoring MAR is not adequate (our own results show
data stalls per cycle should also be monitored), but a full
list of required attributes can be obtained via existing work-
load characterization research [3] and falls outside the scope
of this paper. These results just highlight the need for
application-specific data, and how MSO can benefit from
obtaining this data accurately and dynamically online.

The platform power trends discovered in our experi-
ments directly affect the DVFS-based energy management
in MSOs. First, they show that when utilizing DVFS to dy-
namically tune energy behavior via slack reclaiming of pe-
riodic applications, the middleware must monitor resource
utilization information for software components so that it
can be aware of where the system is located along the uti-
lization curve, thereby determining the minimum operat-
ing point to utilize at a particular node. Second, with on-
line monitoring, MSO can also determine the performance
scalability of an application by determining metrics such as
MAR and the resulting data stalls per cycle. By coupling
this information with platform power characteristics, MSO
can more readily determine application specific inflection
points at runtime than can be done by static policies.

5.2 Offloading and Wireless Communication Over-
heads

In addition to platform energy savings with respect to
utilizing frequency scaling, ourMSO approach also exploits
cooperative systems by offloading computations to take ad-
vantage of remote resources and energy reserves. This type
of offloading has been shown to provide significant system
lifetime benefits in our previous work [22]. Here, we con-
tinue to leverage this type of energy management by con-
sidering the possibility of migrating software components in
MSOs during reallocations. A question that arises, however,
is how the communication energy overheads compare to the
benefits of offloading. To obtain insight into this trade-
off, we stream data between two Sitsang platforms over a
wireless link. We then monitor the system, CPU, and ra-
dio power of one of the systems at different data rates of
UDP/IP. These experiments result in the following findings.
First, we find that the link becomes saturated at 4Mbps.
At this extreme, system power consumption increased by
300mW, while the radio power signature is only elevated by
90mW. The CPU power signature explains this discrepancy,
as we observe that the processor is consuming active power
during 25% of the time due to packet processing overheads.
Therefore, the majority of the power increase can be cap-
tured by simply monitoring system utilization. The reason
for the minimal increase in radio power consumption even
at high link utilizations is that in ad-hoc mode, the radio
cannot be placed into a sleep state. Therefore, it is always
in a promiscuous read mode, the power signature of which
varies little from sending. Since the radio power consump-
tion changes negligibly with use, the overheads of utilizing
it, for the sake of our flowgraphs with little communication
utilization, can be effectively ignored. Due to these results,
in MSO energy management, we only consider the compu-
tational overheads of software components when perform-
ing energy load balancing.

8

 0.9

 0.95

 1

 1.05

 1.1

 0 0.2 0.4 0.6 0.8 1

No
rm

al
ize

d
Cy

cle
 P

ow
er

Utilization at 400MHz

400 MHz
300 MHz
200 MHz
150 MHz
100 MHz

(a) MAR=0.063

 0.9

 0.95

 1

 1.05

 1.1

 0 0.2 0.4 0.6 0.8 1

No
rm

al
ize

d
Cy

cle
 P

ow
er

Utilization at 400MHz

400 MHz
300 MHz
200 MHz
150 MHz
100 MHz

(b) MAR=0.012

 0.9

 0.95

 1

 1.05

 1.1

 0 0.2 0.4 0.6 0.8 1

No
rm

al
ize

d
Cy

cle
 P

ow
er

Utilization at 400MHz

400 MHz
300 MHz
200 MHz
150 MHz
100 MHz

(c) MAR=0.001

Figure 6. Platform Cycle Energy vs. CPU Utilization

6 Experimental Evaluation
6.1 Implementation

The approaches described in this paper are implemented
in the MSO middleware. This middleware is written en-
tirely in C/C++, and it is implemented using an overlay
construction toolkit, termed EVPath [6], a successor of the
ECho event-based publish-subscribe system. EVPath al-
lows the creation of entities called ‘stones’ that operate on
events. Stones can be linked via a variety of network pro-
tocols, including UDP, TCP, etc. EVPath also provides a
SOAP interface using gSOAP [8] to enable remote manage-
ment of stones. In addition, MSO allows its own functions
to be called remotely via gSOAP-based calls. Event data is
described using PBIO, an efficient portable binary format
Kernel AODV [13] is used for ad-hoc routing, but MSO is
independent of the underlying routing protocol.
Experiments are performed with the Sitsang handheld

devices described earlier and with the MobiEmu [33] em-
ulation of mobility on a wireless network. To estimate the
system power consumption at each node, we run a dae-
mon that periodically (at 0.1 second intervals) monitors
CPU usage, then computes the energy consumed based on
the current frequency and with an application dependent
power model. The power model is obtained by power mea-
surements performed using the oscilloscopes on the instru-
mented node.

6.2 Reallocation

Our first set of experiments under reallocation is done
on two Sitsang nodes executing a single application, such
that only one node is running at any time, with the other
node being idle. By monitoring each others’ battery levels,
the nodes can cooperatively run the application so that they
maximize their battery lifetime. The polling frequency for
monitoring, as well as the threshold selected for offloading,
influence the performance, as seen in Fig 7. As we increase
the frequency of reallocation, the difference in energy lev-

Figure 7. Reallocation in Two Nodes

els between the nodes decreases, but this also indicates that
more time was devoted in performing the reallocations than
performing the actual work. The ideal range for our sce-
nario lies at 20-30%, yielding about 16% increase in battery
lifetime, when compared to a single node running the entire
workload.
Next, we study an example on a five node testbed, with

the topology shown in Fig 9. The application flow graph
is chosen to accommodate all three different kinds of event
flow combinations possible, i.e., linear, split, and join flows.
Each node runs an instance of MSO, and begins with a fixed
energy, thus simulating a battery. Using the insights gained
from the previous scenario, we find the ideal threshold for
reallocation decisions to be about 50J, and the frequency of
polling (for monitoring neighbors’ energy levels) is chosen
to be 25 sec. All the application components are CPU inten-
sive, and while two of them run at 80% CPU utilization, the
other three run at 15%. Such a workload is representative
of applications that perform different pipelined processing
on data. Events of size 4KB are sent via a single source at
the rate of 1 per 1.5 seconds. We discuss the benefits of us-
ing MSO along two parameters:- (i) the system lifetime of a
cooperating group and (ii) the parity in the lifetimes of the
nodes forming the group. An example of the first type of re-
quirement is in collaborative tasks that require participation

9

1
3

5

2

4

C

D

E

A

B

Figure 9. Network topology for experiments

of all mobile nodes. The second rule can be useful in en-
forcing a uniform policy for all participants in the task. For
our purposes, we term the lifetime of the first dying entity in
the group as the system lifetime, and quantify lifetime par-
ity by measuring the standard deviation of individual node
lifetimes. We observe the trend of these metrics, as the ini-
tial energy available with the nodes are varied. The energy
values we use here (1kJ-5kJ) represent typical capacities of
batteries used in current generation platforms like the Sit-
sangs. The results are presented in Fig 8, where we compare
our reallocation with a static assignment. The difference in
the lifetimes afforded by these strategies increase, as the
initial energy increases, with the differences being close to
10% at 5kJ. This is a consequence of the fact that the life-
time of the node(s) executing the computationally intensive
components of the application flow graph exhibits a linear
relationship with the initial energy. However, as realloca-
tion shifts the heavy computation among all the nodes, this
effect is mitigated. For the same reason, the lifetime parity
with reallocation shows no particular trend with increasing
initial energy, as opposed to the widening gap in node life-
times observed with a static allocation.

6.3 Dynamic Resource Reclaiming

The next set of experiments evaluate the dynamic re-
source reclaiming algorithm, over a synthetic workload. As
discussed previously, we apply this technique to source-
defined event slack available at the application sink node.
The setup for the experiment consists of five Sitsang nodes
in the same configuration as the previous study. Each vertex
executes a memory-intensive synthetic application.
The application is run at three different scenarios, cor-

responding to having a CPU utilization of 40%, 60% and
80%. This is performed by increasing the duration of ex-
ecution of each event in the application. Events of size 8
KB are sent with a periodicity of 2.5 seconds. The execu-
tion time of each event, when run at 80% utilization and
the highest frequency (400 MHz) is found to be roughly 2
seconds at each node. This is purposefully chosen so as to
exclude noise effects and other sources of error.
The resulting energy consumption of the application, in

the presence of our resource reclaiming algorithm is mea-

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 3000 4000 5000 6000 7000 8000 9000 10000

No
rm

al
ize

d
Li

fe
tim

e

Total Slack Available (ms)

optimal, 40% util
mso, 40% util

optimal, 60% util
mso, 60% util

optimal, 80% util
mso, 80% util

Figure 10. System energy savings with slack
reclaiming

sured. This figure is compared against an optimal choice of
frequencies for each possible slack value, that minimizes
energy consumption. The energy values are normalized
against the default case where all nodes run at the highest
frequency. As shown in Figure 10, the algorithm is found
to closely track the most optimal settings. In some cases,
especially at the top frequencies, our algorithm appears to
outperform even the optimal solution, but this is only be-
cause of missed deadlines, i.e., the algorithm reclaims more
slack than available, thus saving more energy but hurting
performance. This is due to errors in predicting the exe-
cution time at various frequencies, and other sources of er-
ror in event delivery. For the higher utilization workload,
as both the slack available, as well as the execution time
are high, any errors in estimation can cause large deviations
from the optimum frequency settings.
Finally, we evaluate the overheads of various strategies

that can be employed in resource reclaiming. We consider
three strategies in this study: (i) Aggressive, where slack
is polled frequently (every 30 sec), and positive, as well
as negative slacks are immediately propagated throughout
the network, (ii) Conservative, which polls for slack less
frequently (60 sec), and (iii) Opportunistic, where positive
slacks are propagated at a low rate (60s), and negative slacks
at a high rate (30s). The rationale behind opportunistic re-
claiming is to conserve energy without a high overhead,
but react relatively quickly when performance is hurt. The
event traffic was such that all the ranges of slack values were
used in the test, over a period of about 15 minutes.The re-
sults of these strategies are shown in Table 1.
The aggressive strategy is more prone to mispredictions

and overcorrections, than the others, and the conservative
approach can let slack available for shorter periods of time
go unrecovered. The opportunistic strategy strikes a bal-
ance between these extremes, to react quickly during per-
formance critical phases alone. Correspondingly, the num-
ber of slack reclaims also lies between these strategies.

10

(a) System Lifetime (b) Lifetime Parity

Figure 8. Reallocation

Table 1. Slack Reclaiming – Strategies
Strategy Mean

slack
(ms)

Mean
abs(slack)
(ms)

Reclaims

None 1188 1204 0
Aggressive -23 305 1012
Conservative 59 245 528
Opportunistic -45 215 822

7 Conclusions and Future Work
In this paper, we discuss the problem of cooperative

energy management in distributed mobile systems, and
present decentralized techniques for a distributed applica-
tion run in a MANET environment. We perform energy
aware allocation, followed by reallocation in response to
changing energy conditions, and dynamic resource reclaim-
ing in overprovisioned systems. We also evaluate the al-
gorithms on a MANET testbed of handheld computing de-
vices, indicating the feasibility of our approach – the re-
source reclaiming algorithm is found to track the optimal
solution, and our algorithms for reallocation show an in-
crease in battery lifetime of upto 10%. Further, our experi-
ments indicate that the energy consumption of the network
interface in handheld devices like the Sitsang platform form
a tiny portion of the overall power consumption, underscor-
ing the need to focus on other power hungry components of
similar systems.
Future work in this area involves extending MSO to het-

erogeneous networks with asymmetric nodes, by including
mobile phones, laptops and other portable computing de-
vices. We are also currently evaluating MSO with proto-
type robot devices, with the aim of studying the tradeoffs
between quality of service and energy consumption for typ-
ical robotic applications. Studying the interplay between

policy-enabled energy management in mobile devices, and
the resulting quality of service is yet another priority.
References
[1] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez.
Power-aware scheduling for periodic real-time tasks. IEEE
Trans. on Computers, 53(5), May 2004.

[2] D. Bruneo, M. Scarpa, A. Zaia, and A. Puliafito. Communi-
cation paradigms for mobile grid users. In CCGrid, 2003.

[3] M. Calzarossa and G. Serazzi. Workload characterization:
A survey. In Proc. of the IEEE, 1993.

[4] Y. Chou, B. Fahs, and S. Abraham. Microarchitecture opti-
mizations for exploiting memory-level parallelism. In ISCA,
2004.

[5] H. L. et al. Design and implementation of a single system
image operating system for ad hoc networks. In Mobisys,
2005.

[6] http://http://www.cc.gatech.edu/systems/projects/EVPath/.
[7] X. Fan, C. Ellis, and A. Lebeck. The synergy between
power-aware memory systems and processor voltage scal-
ing. In Proc. of the Workshop on Power-Aware Computer
Systems (PACS), December 2003.

[8] http://gsoap2.sourceforge.net/.
[9] N. Gupta and S. Das. Energy-aware on-demand routing for
mobile ad hoc networks. InWorkshop on Distr. Comp., Mo-
bile and Wireless Comp., 2002.

[10] C. Isci and M. Martonosi. Phase characterization for
power: Evaluating control-flow-based and event-counter-
based techniques. In HPCA, February 2006.

[11] R. Jejurikar and R. Gupta. Dynamic voltage scaling for
system-wide energy minimization in real-time embedded
systems. In ISLPED, August 2004.

[12] J. Jennings, G. Whelan, and W. Evans. Cooperative search
and rescue with a team of mobile robots. In ICAR, 1997.

[13] http://w3.antd.nist.gov/wctg/aodv-kernel/.
[14] R. e. a. Kumar. Dfuse: A framework for distributed data

fusion. In ACM Sensys, 2003.
[15] J. Luo and N. Jha. Power-conscious joint scheduling of peri-

odic task graphs and aperiodic tasks in distributed real-time
embedded systems. In ICCAD, 2000.

[16] C. Mascolo, L. Capra, and W. Emmerich. Mobile comput-
ing middleware. Advanced Lectures on Networking, LNCS,
2002.

[17] M. et al.. Mecella. Workpad: an adaptive peer-to-peer soft-
ware infrastructure for supporting collaborative work of hu-
man operators in emergency/disaster scenarios. In IEEE
CTS, May 2006.

[18] A. e. a. Messer. Towards a distributed platform for resource-
constrained devices. In ICDCS, 2002.

11

[19] A. Miyoshi, C. Lefurgy, E. Van Hensbergen, R. Rajamony,
and R. Rajkumar. Critical power slope: Understanding the
runtime effects of frequency scaling. In Supercomputing,
June 2002.

[20] B. e. Mochocki. Network-aware dynamic voltage and fre-
quency scaling. In RTAS, 2007.

[21] R. Nathuji, K. O’Hara, K. Schwan, and T. Balch. Com-
patpm: Enabling energy efficient multimedia workloads for
distributed mobile platforms. InMMCN, 2007.

[22] K. O’Hara, R. Nathuji, H. Raj, K. Schwan, and T. Balch.
Autopower: Toward energy-aware software systems for dis-
tributed mobile robots. In ICRA, 2006.

[23] T. e. a. Pering. Coolspots: Reducing the power consumption
of wireless mobile devices with multiple radio interfaces. In
Mobisys, 2006.

[24] C. Perkins and E. Royer. Ad hoc on-demand distance vector
routing. In Proc. IEEE WMCSA, 1999.

[25] E. Pinheiro, R. Bianchini, E. Carrera, and T. Heath. Dynamic
cluster reconfi guration for power and performance. 2003.

[26] C. Prehofer and C. Bettstetter. Self-organization in commu-
nication networks: principles and design paradigms. IEEE
Communications Magazine, 2005.

[27] A. Rowstron and P. Druschel. Pastry: Scalable, decentral-
ized object location, and routing for large-scale peer-to-peer
systems. InMiddleware, 2001.

[28] B. Seshasayee and K. Schwan. Mobile service overlays: Re-
configurable middleware for manets. InMobiShare, 2006.

[29] R. Shah and J. Rabaey. Energy-aware routing for low energy
ad hoc sensor networks. InWCNC, 2002.

[30] C. Shen, K. Ramamritham, and J. Stankovic. Resource
reclaiming in multiprocessor real-time systems. In IEEE
Trans. Parallel and Distributed Systems, 1993.

[31] R. Xu, D. Zhu, C. Rusu, R. Melhem, and D. Mosse. Energy
efficient policies for embedded clusters. In LCTES, 2005.

[32] J. Xue, P. Stuedi, and G. Alonso. Asap: an adaptive qos
protocol for mobile ad hoc networks. In PIMRC, 2003.

[33] Y. Zhang and W. Li. An integrated environment for testing
mobile ad-hoc networks. InMobiHoc, 2002.

12

