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Abstract

The expanding deployment of renewable energy sources
as well as the widespread deployment of smart meters en-
ables and encourages demand management in homes. Like
smart meters, most solar or other renewable deployments
allow homeowners to carefully monitor energy supply and
past energy consumption, however, using this information to
drive demand management is still a manual process. The
overarching goal of our work is to automate the process of
adapting energy demand to meet supply, which requires a
comprehensive understanding of home energy use. Though
home energy measurement systems exist, they are often
intrusive—requiring several physical components and using
often limited resources including energy and bandwidth. In
this work, we present the design of a system for compre-
hensive home energy measurement and analyze the resource
requirements of the basic system. Using data collected from
six deployments, including one in an off-grid home, we then
present two techniques for reducing the resource require-
ments of the system. Our techniques reduce the energy foot-
print of the system as well as the amount of physical infras-
tructure required, making adoption of the system more at-
tractive, particularly to those who live in homes powered by
renewable energy sources.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscella-
neous

General Terms
Human Factors, Measurement
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1 Introduction

The expanding deployment of renewable energy sources
as well as the widespread deployment of smart meters en-
ables and encourages demand management in homes. Like
smart meters, most solar or other renewable deployments al-
low homeowners to carefully monitor energy supply and past
energy consumption. Using this information to drive demand
management, however, is still a manual process; it is up to
the consumer to determine how to reduce demand to meet the
restrictions of the supply. Particularly in the case of renew-
ables, traditional demand management techniques, such as
reducing usage of high-power appliances between the hours
of 7PM and 7AM, is insufficient [1]. One of our research
subjects lives in an off-grid, solar-powered home and reports
that it is an exceptionally cumbersome process to manually
monitor the state of his home’s energy generation and con-
sumption and aggressively reduce energy usage when sup-
ply is low. We propose that automated and adaptive demand
management systems will be the key to broader implementa-
tion of renewables.

The overarching goal of our work is to automate the pro-
cess of adapting energy demand to meet supply. Though
there are many products on the market that enable measure-
ment of energy usage, either at the scale of the entire home
or individual appliances, there is no comprehensive solution
that provides a view of both how much energy a home con-
sumes and how the energy consumption is broken down by
appliance. The challenges of designing such a system in-
clude ensuring that the energy requirements of the system
itself are minimal and that the physical components of the
system are not intrusive. In a home powered by renew-
able sources, where residents eschew using toasters because
of their energy consumption, a measurement system with a
large energy footprint is unlikely to be adopted. Moreover,
in any home a system comprised of several clunky devices
attached to appliances all over the home is intrusive.

In this work, we explore the design, implementation, and



deployment of a system that balances thorough data col-
lection with minimally-intrusive system resource require-
ments and components. We have built our system using off-
the-shelf components that measure both whole-home energy
consumption and energy consumption of several individual
devices in the home. The system has been deployed in six
houses to date, including one off-grid home and one grid-
tied home with renewables. The main contributions of this
work are as follows:

e System Design and Resource Analysis - We overview
the design of our system and present a thorough analy-
sis of its resource usage, including its energy and band-
width requirements.

e Minimization of Energy Consumption - Using data
we have collected from our deployments, we present
a technique to reduce the energy consumption of the
system by minimizing the data collection rate, hence
enabling component duty cycling.

e Minimal Appliance Set Determination - Using an Ad-
ditive Factorial Hidden Markov Model [2], we show
that the minimal set of appliances that must be mon-
itored should include appliances that are sporadically
used, however, appliances with regular usage patterns
can be identified from aggregate data.

2 Motivation

The design of our measurement infrastructure is guided
by the results of a survey that seeks to understand energy
monitoring and usage in green homes—homes fully or par-
tially powered by renewable energy sources. Though our
system is designed for any home, green homes represent the
extreme end of the spectrum. Energy supplied is limited
and demand must be carefully managed. A system designed
for this environment will also suit the needs of a grid-only
user. We published the survey online and, through a press re-
lease, invited users of green homes to participate. We have,
so far, received eight responses from California, Arkansas,
Nebraska, Hawaii, Ontario (Canada), and Massachusetts, in-
cluding four off-grid, and four grid-tied users. Two partici-
pants also donated data they have collected manually in their
homes. There are two salient conclusions that can be drawn
from the user survey.

There is a need for automated or semi-automated energy
monitoring, visualization, and control systems. Survey
participants emphasized both the importance and difficulty
of tracking home energy usage, and all expressed interest in
a real time monitoring, visualization, and control system on
a smartphone device. One of the survey participants stated
“I've kept a home energy spreadsheet for many years. The
spreadsheet allows us to tell where the energy is going and
how much we are using. This simple spreadsheet has been
the most useful energy saving device.”, while another partic-
ipant commented: “Tracking all sources and uses of energy
is a challenge. ”. Though there are smart home automation
systems on the market, anecdotally we have identified cost
as one factor limiting their adoption. Additionally, we infer
that energy consumption of the system is another limiting
factor. One participated noted: “I own a color laser printer

from before I went off grid. This also a massive energy hog,
so I hardly use it.”. Limiting system energy consumption is
a key design goal of our system.

There is a need for automated or semi-automated de-
mand management systems. The households in our sur-
vey often resorted to manual demand management such as
using vacuum cleaners during sunny days, or getting rid of
appliances like toasters or electric heating. One participant
claimed ”No longer operate a separate freezer as system will
not support it. Have a Steca 12v fridge/freezer. Either but
not both ? Would like a freezer ?”. Moreover, another par-
ticipant who uses a diesel generator as an auxiliary power
source claimed that he has to depend on the generator 20%
of the time. We conjecture that better demand management
in terms of prediction and optimization of energy generation
and consumption can lead to more comfortable living.

3 System Design and Evaluation

Based on analysis of our survey results, we have designed
a system that provides comprehensive measurement, visu-
alization, and real time appliance control. In this section
we overview the basic system and performance, and in Sec-
tions 4 and 5 we present optimizations that reduce the intru-
siveness of the system by minimizing system-wide energy
consumption and reducing physical infrastructure required.

3.1 System Architecture
The basic measurement system consists of three key com-
ponents as illustrated in Figure 1.

Home Components: Our client-side measurement system
has several components. We use off-the-shelf Z-Wave [3]
energy meters to track the energy consumption of several de-
vices in each home. Our main client-side software is written
using HomeOS [4] and runs on a low-power, Atom-based
FitPC platform [5]. It uses WiFi to poll a dual-radio gateway
(the Vera2 [6]) that, in turn, polls the individual meters to
collect power readings using the Z-Wave protocol. Addition-
ally, two of our deployments are in homes with solar panels
and we use specialized components to collect data on energy
generation by the panels and consumption by the home. We
also use Z-Wave clamp meters to collect whole-home energy
consumption data in two other deployments. We have chosen
to use plug-n-play meters that are easy to install. The me-
ters also act as switches that can be used to turn on and off
appliances. Finally, our client-side software supports lamp
dimmers and thermostats, and we plan to deploy them in the
future. While custom hardware monitors can be used, we
have opted for the Z-wave based system because of its pop-
ularity and wide adoption in the home automation domain.

Backend Server: We have implemented a standard servlet-
based web service backed by a MySQL database. The server
provides an extensive RESTFul API that allows access to
power draw and energy consumption data for each home.
The API provides secure access to the data collected. We
are currently extending the server to support additional ana-
lytics as well as to implement machine learning techniques
for deriving suggested demand management actions based
on energy generation and consumption patterns.

Smartphone Application and Web Interface: We have
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Figure 1. Overall architecture of our monitoring and visualization system.
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Figure 2. The figure illustrates the energy overhead of our monitor-
ing system compared to the per day energy consumption of an off-grid
home.

used the web API to develop a robust smart phone appli-
cation. Users may access their energy consumption data
through this application. The application provides a detailed
view of power draw and energy consumption of individual
appliances and, where available, the entire home energy con-
sumption and battery levels. In addition, the application pro-
vides a control mechanism that allows users to switch de-
vices on and off through the energy meters. We are extending
the application with thermostat and dimmer controls, as well
as the ability to collect contextual information on user ac-
tivities, location, and schedules. This additional information
will be used to develop a context-driven demand manage-
ment system. We have developed a web interface that acts as
a visualization and control portal for users for energy audit-
ing, tracking energy consumption, and understanding energy
bottlenecks and hotspots in homes.

3.2 Deployment and Benchmarks

Our system has been deployed in six homes in Califor-
nia and Arkansas, including one off-grid solar home and one
grid-tied solar home. We measure between 5 and 10 devices
in each home, including refrigerators, televisions, lighting,
clothes washers, and computers and other electronics, and
data is reported every 30 seconds. In the solar homes, we
collect data on the energy generated by the solar infrastruc-
ture, the energy consumed by the entire home, and residual
battery capacity. For two of the other houses in the study, we

l Home ‘ Type Days of Data | Percentage Downtime
1 off-grid 92 9.4%
2 grid-tied 37 37.1%
3 grid-only 287 3.8%
4 grid-only 267 19.1%
5 grid-only 256 19.4%
6 grid-only 77 12.8%

Table 1. The table shows the number of days of data collected and
system downtime. In addition, two survey participants have donated
686 and 382 days of energy generation and energy consumption data.

collect whole-home energy consumption using a clamp me-
ter attached at the fuse box for the home, and for one home
we have access to whole-home energy consumption data col-
lected by a smart meter. Table 1 shows the duration of data
collected from the six deployments and the percentage of
days that the system did not report data. Our deployments
are ongoing and we will continue to collect data.

System Robustness: To evaluate the robustness of the sys-
tem, we examine the percentage of time for which the FitPC
at a given home fails to report data for all meters in the home.
We note that we have experienced server failures, but be-
cause the client-side software caches data during server out-
ages we do not have gaps in the data. We also note that
it is rare for the FitPC to report data for some meters and
not others because the software that runs on the Vera gate-
way returns the latest power reading for all meters, even if
some have not been recently polled. We have deployed a
workaround for this problem, but do not yet have sufficient
data to report results on individual meter failures. We have
observed, however, that there are a few cases, particularly
in the off-grid home, where meters are in series with a wall
switch. The user uses the wall switch to control the measured
device, for example a lamp, and so the meter does not report
data when the device is off.

Table 1 shows that the total data collection downtime
varies from 9.4%-37%. In Homes #2 and #6, a large fraction
of the failures occurred when the FitPC was unplugged acci-
dentally. Moreover, a fraction of the 19.4% failures in Home
#5 occurred due to an automatic system reboot (Windows
update installation), when the homeowner was traveling.
Though the software components of the system have been ro-
bust, these results demonstrate that end-user hardware main-



tenance accounts for a large portion of failures. Addressing
hardware failures, unfortunately, requires involvement of the
end users, however, we believe that as we deploy additional
system functionality users will monitor the system more fre-
quently, for example to view suggested demand management
actions, and will have more incentive to make sure it is func-
tional.

System Overhead: To understand system resource usage,
we benchmark two metrics: energy consumption and band-
width usage. Because our goal is to intelligently manage
home energy, understanding the energy requirements of the
system itself is paramount. Figure 2 shows the energy con-
sumption of the Z-Wave energy meters, the Vera2 gateway,
and the FitPC when sampling appliances at a uniform rate
of once every second. We use a 70 MHz Tektronix Oscil-
loscope to perform the measurements. The absolute power
consumption of the entire system is close to 46 W for a de-
ployment of 10 meters. This amounts to more than 1,140
Wh of energy consumption per day. This is small overhead
in a grid-only home, however, in the off-grid home in our
deployment, where the per-day power consumption is less
than 2.5 KWh, this is a more than 44% overhead. We also
measured the bandwidth of the system by sniffing packets
on a home router. We found that for a single meter, up-
loading data to the server every second results in an over-
head of 44 Kbits/second, which increases tenfold for our de-
ployments with 10 meters. This is a substantial overhead for
low-speed DSL or 3G connections characteristic in off-grid
deployments.

Discussion: The system described above is designed to col-
lect as much information as possible for each home. Our
initial research subjects have been very generous in allow-
ing us to deploy as many components as necessary, and have
been tolerant of the energy and bandwidth usage of the sys-
tem. We believe, however, that to make the system practical
for broad deployment, especially in off-grid homes, it is nec-
essary to reduce the intrusiveness of the system in terms of
both physical infrastructure and resource usage. In Section 4
we examine the feasibility of reducing the amount of data
collected from the system such that the home system com-
ponents may be duty cycled to reduce energy usage. In Sec-
tion 5 we explore techniques for determining the minimal set
of appliances that must be measured to derive the necessary
information from the system.

4 Minimizing Energy Usage for Measuring
Devices

The aggregated energy consumption of the always-on sys-
tem we describe in Section 3.1 becomes intrusive in an
energy-limited home. Because each individual component
of the system is, in fact, quite power efficient, we propose
that system-wide duty cycling is necessary to reduce its over-
all energy footprint. Ideally, the meters, dual-radio gateway,
and FitPC running the client-side software will remain in a
low-power state when the power draw of the measured de-
vices remains constant. When a device changes power state,
for example a lamp is switched on, the system will wake to
report the state change to the central server. Implementing
system-wide duty cycling requires knowing when to wake

the system to sample the power draw of the measured de-
vices. In this section, we explore the feasibility of using a
Fast Fourier Transform-based approach to deriving sampling
intervals for the devices measured in our deployments.

Algorithm and Sampling Intervals: To derive the sam-
pling interval we compute the Fast Fourier Transform (FFT)
to identify the maximum frequency of the signal given by
the raw power consumption readings. For each device, we
first construct a FFT and determine the band-gap. The band-
gap is the difference between 0 and the maximum frequency
in the frequency spectrum of the device. The sampling fre-
quency is taken as the band-gap*2, per Nyquist’s theorem.
Nyquist’s theorem, however, applies to noiseless signals.
Appliance power data has several elements of noise due to
the measurement circuit, EMI from other appliances, and
other factors, hence, the frequency spectrum contains several
frequency elements with low but non-zero amplitude. To fil-
ter this noise, we only consider frequencies with amplitude
between the maximum amplitude and two orders of magni-
tude below it. For instance, if the maximum power observed
is 1000, we consider all frequencies with power values be-
tween 10 and 1000. Any frequency with power value below
10 is excluded. The derived sampling frequency determines
how often the meters must be sampled, suggesting when the
gateway and data collection components must be duty cy-
cled.

l Device ‘ Sampling Interval (Minutes) ‘
Refrigerator 0,3,5,7
Lamp 15,17, 25, 59, 60, 140, 432, 605, 1080
TV/Media Center 2,14, 30, 45, 127, 144, 180
Laptop 20, 85
Kitchen Island 945
Kitchen Sink 1080
Computer 47, 630
Electronics 432
DVR 20
Monitor 1
Oven 1
Sewing Machine 1
Washing Machine 1,1,3
Microwave 1,1,2
XBox 0

Table 2. Sampling intervals derived using basic algorithm.

To evaluate the FFT algorithm, we use four weeks of data
collected from 5 homes between June 7, 2012 and July 5,
2012. We use the first two weeks as our training set and the
second two weeks as our test set. We construct the FFT over
the training set and derive the sampling intervals shown in
Table 2. The left column describes the device and the right
column shows the sampling interval. Some devices are mea-
sured in several of the homes in our study (e.g., refrigera-
tors), and some homes measure several of the same device
(e.g., lamps). Most of the device names accurately describe
the connected device, though there are a couple worthy of
further explanation. The Media Center is one meter mea-
suring the TV, DVD, Roku media streamer, and PlayStation
2 console. One of the Laptop devices is actually a meter
connected to a power strip that powers the chargers for two
laptops and a printer. Similarly, the Electronics device is a



power strip that powers a modem, access point, low-power
PC, and a printer. The Kitchen Sink and Kitchen Island cor-
respond to lamps in an off-grid home, and the Sewing Ma-
chine measures a computer-aided sewing machine.

We draw several conclusions from the raw sampling in-
tervals derived:

e The profile of a given device class (e.g., lamp) varies
across homes as well as across different instances of the
same type of device within a home. This is not surpris-
ing; some users may watch more TV than others, for
example. This confirms that the approach of calculat-
ing a sampling interval per appliance rather than using
a common interval for the home is warranted.

e For some devices, the period used for training was in-
sufficient. The sampling interval of 2 for a TV caused us
to delve further into the data to discover that the device
was simply not used enough during the training period
for our algorithm to produce meaningful results. This
is a concern for devices that do not have a regular use
pattern, and could even be a result of a user going on
vacation during the period we decide to use to train the
system. This points to the need to modify our algorithm
such that it will retrain itself if a device’s usage changes
significantly.

e This basic approach is inappropriate for some devices
including the monitor, oven, sewing machine, washing
machine, microwave, and XBox. The sampling inter-
vals for these devices are very small, yet most of the
devices are used infrequently. The washing machines,
for example, were used on no more than 3 of 14 days
analyzed. The sampling interval correctly tells us that
when the device is in use the power state is likely to
change very frequently, however sampling at a rapid
rate of every 2 minutes would certainly be wasteful if
the device is only used once per week.

l Device [ Hours Per Day Sampled ‘
Oven 6
‘Washer 12, 12,24
Microwave 6, 18, 24
Sewing Machine 18
Monitor 24

Table 3. Hours per day a device must be sampled according to the
enhanced algorithm.

To accommodate the devices that have infrequent use pat-
terns, we modify the basic algorithm to capture time of day
characteristics. Our goal is to derive 4 sampling intervals for
each device—one for the period from midnight to 6AM, one
for the period from 6AM to noon, and so on. If a device is
not used during a particular time period, it need not be sam-
pled during that period. We separate each of the 14 days of
data in our training set into 4 blocks of 6 hours. We then cre-
ate a signal that is the aggregate of the blocks for the same
time frame. In other words, we create one signal comprised
of midnight to 6AM of day 1 followed by midnight to 6AM
of day 2 and so on. Next we calculate the FFT over each
of the 4 individual signals and derive the sampling interval

as described above. The algorithm produces four sampling
intervals for each device. The oven, for example, has a sam-
pling interval of once per minute between 6PM and midnight
and is not sampled at any other time during the day.

We apply the enhanced algorithm to the devices with
original sampling intervals below 3 minutes, excluding the
anomalous refrigerator and TV devices. Table 3 illustrates
the number of hours per day each device is sampled. The
enhanced algorithm reduces the number of samples per day
over the basic algorithm, in some cases as significantly as
1,080. Though one microwave and one washer are sampled
24 hours per day, the microwave is only sampled once per
hour from midnight to noon and the washer is only sampled
once per hour from 6AM to noon. This demonstrates that, in
many cases, time of day can be effectively used to determine
when a device needs to be measured.

Metrics: To evaluate the FFT-based algorithm we want to
understand whether our sampling interval is too frequent, or
not frequent enough. If it is too frequent, then we will sam-
ple to find that there has been no power state change. If it is
not frequent enough then we will miss power state changes
that happen between samples. In other words, if the interval
is too small then we waste energy by sampling when a de-
vice remains on or off, while if the interval is too large then
we may miss a device turning on and then off again. To eval-
uate our algorithms, we adapt the metric of recall. Recall
tells us how many of the power state changes that appear in
the raw data are captured in our sampled trace. If the dif-
ference in power consumption of a device between sample
s1 and sample s, differs by more than 5 W—a configurable
parameter—we record a power state change. We calculate
the number of power state changes in the raw data set (with
samples every 30 seconds) and in the sampled data set. Re-
call is the number of state changes in the sampled data set
divided by the number of state changes in the raw data set.

Results: In Figures 3 and 4 we illustrate recall using the
basic sampling intervals and the enhanced sampling inter-
vals, respectively. We note that we exclude 6 devices from
one home from our results because the home was unoccu-
pied during the test period. We also exclude several devices
that were not used or were used rarely during the test period.
The bars show the mean recall for all devices in a particular
device class (e.g., lamps) and the confidence intervals show
the minimum and maximum values.

We make several observations from these results. Recall
is high for many of the devices in our data set. Most of the
lamps perform similarly as do most of the fridges. This is
not surprising as one would expect the usage of these devices
to be similar across homes and users. For the fridges, high
recall is likely the result of a very short sampling interval—
frequent sampling ensures that most state changes are cap-
tured. For the lamps, this is likely the result of limited and
regular usage each day, which is accurately captured by the
FFT algorithm. Some of the devices exhibiting low recall
have few state changes in the data set. Other devices exhibit-
ing low recall suffer from the opposite problem. The com-
puters are always on and, in one case, power draw fluctuates
between 38—48 W every few minutes. The TV exhibiting the
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Figure 3.  The figure evaluates the basic sampling algorithm for
various appliances.

poorest performance shows similar behavior. Recall that we
use 5 W as the cutoff to determine that a device has experi-
enced a power state change. We are currently investigating
whether using the power states observed from a particular
device to determine this cutoff is a better choice, particularly
for devices like computers.

The performance of the enhanced algorithm is similar for
all devices, suggesting that they all exhibit time of day char-
acteristics. As noted above, the key benefit of the enhanced
algorithm is that it reduces the number of samples per day
over the basic algorithm in some cases up to 1,080. Further
investigation of the data, however, reveals that in some cases
the enhanced algorithm misses power state changes because
there is a mismatch between the hours the devices are used
during the training period and the hours the devices are used
during the testing period. This points to the need to improve
our training approach.

Discussion: Our results suggest that using a FFT-based al-
gorithm to derive sampling intervals that will enable system-
wide duty cycling while accurately capturing device power
state changes is feasible in most cases. We note several pos-
sible enhancements that will likely improve performance of
many of the low-performing devices, including using the ob-
served power states of the devices in the algorithm, and im-
proving the training procedure. Time of day is a useful con-
textual cue that can be used to improve performance, and
we are exploring other context-based enhancements includ-
ing location of the user (tracked by our mobile phone app).
We have also observed that a single sampling interval is in-
appropriate for some devices, for instance a lamp that is on
for 2 hours and then off for 20 hours should not be sampled
every 2 hours, nor every 20. We are working on a strategy
for addressing this issue. Finally, our goal with this analysis
was to perform an initial feasibility study to determine the
accuracy of this approach. We are working to implement an
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Figure 4. The figure evaluates the enhanced sampling algorithm for
various appliances.

integrated algorithm for duty cycling the system based on the
sampling intervals derived for all devices in a home.

S Monitored Appliance Set Determination

l Device [ TPT, TNT ‘

Refrigerator (off-grid) 79.7%, 80.1%
Sewing Machine (off-grid) | 69.5%, 74.7&
Washer (off-grid) 70.8%, 78.7%

Microwave (grid-only) 2.1%, 1.8%
Refrigerator (grid-only) 59.7%, 60.7%
Washer (grid-only) 18.7%, 69.9%
Oven (grid-only) 19.2% 70.2%

Table 4.
The table illustrates the TPT and TNT values calculated for appliances

using AFHMM [2].

Accurate demand management requires usage profiles for
individual appliances [7], however reducing system intru-
siveness requires minimizing the number of components that
comprise a measurement system. In this section, we explore
the feasibility of using disaggregation techniques to reverse
engineer device usage data, thus reducing the number of en-
ergy meters an end user must install. We argue that there
are two necessary pieces of the system: (1) a meter to col-
lect whole-home, aggregated energy usage, and (2) meters
attached to any device a user wants to control remotely. We
have found remote control of devices, such as lighting and
televisions, via our mobile app is a key feature of our sys-
tem, and to enable remote control we must deploy a switch
that can also act as an energy meter. Our goal, however, is
to minimize measurement of devices such as refrigerators,
which are never directly controlled by the user, and clothes
washers, microwaves, and ovens, which cannot be effectively
controlled remotely.

Algorithm: For our analysis we use an unsupervised
disaggregation technique called Additive Factorial Hidden
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Markov Model (AFHMM) [2]. The model has been shown
to accurately reverse engineer appliance usage from aggre-
gated power consumption data. Each appliance is modeled
as a HMM (Hidden Markov Model) with an ON and OFF
state. We determine the transition probabilities between the
states using two weeks of data from individual appliances.
The initial state occupancy distribution is assumed to be uni-
form over the two states. We perform a disaggregation analy-
sis on appliances that are not directly or remotely controlled
by the user as described above. Our aggregated data is the
sum of the power consumption (collected every 30 seconds)
from these individual appliances. We apply the AFHMM
model with Exact MAP Inference [2] to predict individual
appliance usage from the aggregated data.

Metrics: To evaluate the efficacy of the algorithm, we
use two metrics (1) True Positive Transitions (TPT) =
TP/(TP+FP) where TP is the number of correct OFF to ON
transitions and FP is the number of incorrect OFF to ON
transitions inferred by the algorithm; and (2) True Negative
Transitions (TNT) = TN/(TN+FN) where TN is the number
of correct ON to OFF transitions and FN is the number of in-
correct ON to OFF transitions predicted by the algorithm. If
the transitions in the predicted usage occurs within 2 minutes
of the actual transition, we assume that it is a correct transi-
tion. We are interested in transitions since the usage of an
appliance is determined by when the user turns the appliance
on and off.

Results: Table 4 shows the TPT and TNT values for ap-
pliances in an off-grid and a grid-only home. The technique
performs well for all three devices in the off-grid home, how-
ever in the grid-only home the refrigerator is the only device
that is consistently identified. A closer look at the data re-
veals that the poor-performing devices in the grid-only home
are used sporadically and their power signatures are confused
with the power signatures of other appliances. In the off-grid
home, however, use of devices is more periodic.

We next explore whether the algorithm may be enhanced
by using additional contextual features. We consider corre-
lation of usage across devices and time of day the device is
used. Figure 5 plots the Pearson’s coefficient for pairs of ap-
pliances in the grid-only home. Unlike previous work [8],
we find that the correlation between the usage of appliances
we seek to identify is low, thus we argue that it is not a reli-
able feature for this analysis. Figure 6, however, shows the
fraction of time a microwave is ON at a given time interval
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Figure 6. Times and days when the microwave was used.

during the week. The microwave does show higher usage at
certain times and days, and as future work we are exploring
ways to augment the AFHMM model with time of the day
and week information.

Discussion: Our preliminary analysis shows that disaggre-
gation techniques can be effectively used to identify energy
consumption patterns of devices that are used regularly or
periodically. In some homes, a large number of devices have
a regular usage pattern, thus a measurement system need
only have few physical components to provide a comprehen-
sive view of home energy consumption. For homes that have
devices with more inconsistent usage patterns, we are cur-
rently working to extend our technique to include contextual
features such as time of day.

6 Related Work

Our research builds on previous work on home energy
deployment studies, non intrusive load monitoring, and de-
mand side energy management.

Home Energy Deployment Studies: There are several
ongoing research efforts on deploying energy meters in a
home or commercial building setting [9, 10, 11, 12]. Some
deployments use a single sensor to collect energy consump-
tion data on the total home energy consumption [13, 14, 15],
while others collect data from individual appliances and cir-
cuits [16]. Several studies have tried to collect data on hu-
man occupancy and context such as ambient light and hu-
midity [17]. While most deployments are performed over a
short time period, there are some recent attempts to collect
longitudinal data on energy consumption for disaggregation
analysis and home side demand management systems [9]. In
contrast to existing deployments, our deployment is unique
as it involves three different types of homes from a renew-
able energy perspective — off-grid (completely driven by re-
newables), grid-tied (with renewables), and grid-only (com-
pletely dependent on the grid). Our goal is to understand the
similarities and differences between these homes to develop
better demand management systems that can work across the
spectrum of homes.

Energy Disaggregation: Energy disaggregation from a
non intrusive load monitoring perspective is a well studied
area. Most of the focus in this area is on using a single en-
ergy meter (a clamp meter, for instance) to measure the en-
ergy consumption of an entire home, and then use machine
learning and signal processing techniques to reverse engi-
neer appliance usage profiles in the house [18]. There are



also attempts to use auxiliary techniques such as powerline
noise [18] to detect which appliances are in use. Most studies
rely on supervised machine learning, that uses labeled train-
ing data on appliance profiles to infer appliance usage from
the aggregate energy consumption [19, 7]. Recent attempts
also use generic profiles, and unsupervised learning tech-
niques [8] that does not require any apriori training, to re-
verse engineer appliance usage. Additionally, using context
from other utilities like water or gas consumption has been
used to improve the accuracy of the learning algorithms [20].
Our goal is complimentary to the unsupervised learning tech-
niques. We use a single sensor that collects aggregate energy
consumption of the entire home, energy readings from appli-
ances that users want to control, and unsupervised learning
techniques to determine the minimal set of appliances that
should be monitored, so that accurate usage profiles for all
appliances can be inferred.

Demand Response Systems: The overarching goal of
our project is to develop better demand management sys-
tems for a wide spectrum of homes (with or without renew-
ables). We plan to build on previous work in the grid-only
space [21, 22, 23], such as optimization frameworks that can
flatten peak energy consumption [13] and minimize total en-
ergy consumption of a home. Our demand management sys-
tem would be complementary to existing systems in the off-
grid [24, 1, 25] and grid-tied space [26].

7 Future Work

This paper presents the design and deployment of a home
energy measurement infrastructure and explores two tech-
niques for minimizing the intrusiveness of the system. We
have deployed the system in six homes, including one off-
grid home and one grid-tied home. We are currently working
to integrate and deploy our energy minimization and disag-
gregation techniques. We then plan to extend the system to
provide automated and adaptive demand management sug-
gestions to end users, enabling more efficient energy usage,
particularly in green homes.
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