UNIVERSITY of CALIFORNIA
Santa Barbara

Enabling Content-Driven Applications in Resource-Constrained
Environments

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy
in
Computer Science
by

Sami Nicole Rollins

Committee in charge:

Professor Kevin C. Almeroth, Chair
Professor Divyakant Agrawal
Professor Peter Cappello

June 2003

The dissertation of Sami Nicole Rollins is approved:

Divyakant Agrawal

Peter Cappello

Kevin C. Almeroth, Chair

June 2003

Enabling Content-Driven Applications in Resource-Constrained

Environments

Copyright 2003
by

Sami Nicole Rollins

il

to my niece and nephew

Stephanie and Aaron Ellison

v

Acknowledgements

First, I would like to thank my advisor Kevin Almeroth for his guidance
and support. He has given me the freedom to explore new ideas but has always
helped me to visualize where those ideas would lead.

I would also like to thank Divy Agrawal and Peter Cappello for their sup-
port over the past five years. They have helped me to complete this process
and achieve my objectives.

Next, I would like to thank the various mentors who have helped me along
the way: Dejan Milojicic, Neel Sundaresan, Ellen Spertus, and Barbara Li
Santi. They have all provided invaluable encouragement and have helped me
to become a better researcher and computer scientist.

I would like to thank my brother, Joe Rollins, for his encouragement and
his example. If it weren’t for him, I am certain that I would not be where I
am today.

I would also like to thank my parents, Nina and Joe Rollins. They have
always believed in me, encouraged me, and supported my decisions.

Finally, I would like to thank my partner in life, Karlo Berket. My last two
years as a graduate student have tested me in many ways. Karlo has helped
to keep me grounded and helped me to prioritize the pieces of my life. His
support and encouragement have given me the resolve to complete my degree

and realize my career goals.

Thank you.

Curriculum Vitae
Sami Nicole Rollins

Personal

Name Sami Nicole Rollins

Email srollins@cs.ucsb.edu

Education

1998-2003 Ph.D. in Computer Science,
University of California, Santa Barbara.
Dissertation: Enabling Content-Driven Applications in
Resource-Constrained Environments

1998-2000 M.S. in Computer Science,
University of California, Santa Barbara.
Thesis Topic: Audio XmL: Aural Interaction with XML
Documents

1995-1998 B.A. in Computer Science, Mills College.

Research Experience

2002 - 2003 Research Assistant — UC Santa Barbara
Summer 2001 Intern — Hewlett Packard Laboratories

2000 - 2001 Research Assistant — UC Santa Barbara
1999 - 2000 Intern — IBM Almaden Research Center
Summer 1998 Intern — IBM Almaden Research Center

Teaching Experience

Fall 2002 Teaching Assistant — UC Santa Barbara

Introduction to Computer Communication Networks

vi

Summer 2002 Instructor — UC Santa Barbara
Introduction to Programming in Java

Spring 2000 Teaching Assistant — UC Santa Barbara
Programming Methods

1996 — 1998 Teaching Assistant — Mills College

Introductory Programming in C++ and Java

Journal Publications:

S. Rollins and N. Sundaresan, “AVoN Calling: AXL for Voice-enabled Web
Navigation”, Computer Networks, Volume 33, Issues 1-6, pages 533-551, June
2000.

M. Neary, S. Brydon, P. Kmiec, S. Rollins, and P. Cappello, “Javelin++4-: Scal-
ability Issues in Global Computing”, Concurrency: Practice and Experience,

vol. 12, pages 727-753, 2000.

Conference Publications:
J. Humfrey, S. Rollins, K. Almeroth, and B. Bimber, ” Managing Complexity
in a Networked Learning Environment ”, in Proceedings of the World Confer-

ence on Educational Multimedia, Hypermedia, and Telecommunications (ED
MEDIA 2003), Honolulu, Hawaii, USA, June 2003.

K. Almeroth, S. Rollins, Z. Shen, and B. Bimber, ”Creating a Demarcation
Point Between Content Production and Encoding in a Digital Classroom ”, in
Proceedings of the World Conference on Educational Multimedia, Hypermedia,
and Telecommunications (ED MEDIA 2003), Honolulu, Hawaii, USA, June
2003.

S. Rollins and K. Almeroth, “Pixie: A Jukebox Architecture to Support Effi-
cient Peer Content Exchange”, in Proceedings of ACM Multimedia, Juan Les

vil

Pins, France, December, 2002.

S. Rollins, R. Chalmers, J. Blanquer, and K. Almeroth, “The Active Informa-
tion System (AIS): A Model for Developing Scalable Web Services”, in Pro-
ceedings of Internet and Multimedia Systems and Applications (IMSA 2002),
Kauai, HI, August 2002.

S. Rollins and K. Almeroth, “Seminal: Additive Semantic Content for Multi-
media Streams”, in Proceedings of Internet and Multimedia Systems and Ap-

plications (IMSA 2002), Kauai, HI, August 2002.

S. Rollins and K. Almeroth, “Deploying an Infrastructure for Technologically
Enhanced Learning”, in Proceedings of the World Conference on Educational
Multimedia, Hypermedia, and Telecommunications (ED MEDIA 2002), Den-
ver, Colorado, USA, June 2002.

S. Rollins and N. Sundaresan, “A Framework for Creating Customized Multi-
Modal Interfaces for XML Documents”, in Proceedings of the IEEE Interna-
tional Conference on Multimedia and Expo (ICME 2000), New York City, NY,
July 2000.

S. Rollins and N. Sundaresan, “AVoN Calling: AXL for Voice-enabled Web
Navigation”, in Proceedings of the 9th International World Wide Web Confer-
ence (WWW9 2000), Amsterdam, Netherlands, May 2000.

M. Neary, S. Brydon, P. Kmiec, S. Rollins, and P. Cappello, “Javelin++:
Scalability Issues in Global Computing”, in Proceedings of the ACM 1999

Java Grande Conference, pages 171 - 180, San Francisco, California, June

12-14, 1999.

viil

Workshop Publications and Presentations:

S. Rollins, K. Almeroth, D. Milojic¢i¢, and K. Nagaraja, “Power-Aware Data
Management for Small Devices”, Workshop on Wireless Mobile Multimedia

(WoWMoM 2002), Atlanta, GA, USA, September, 2002.

S. Rollins and K. Almeroth, “A Model for Distributed Collaboration in a
Distance Learning Application”, Poster Presentation, Workshop on Networked

Group Communication (NGC 2000), Palo Alto, CA, USA, November, 2000.

Non-refereed Publications:

S. Rollins and K. Almeroth, “Lessons Learned Deploying a Digital Classroom”,
December, 2002.

S. Rollins and K. Almeroth, “Evaluating Performance Tradeoffs in a One-to-

Many Peer Content Distribution Architecture”, November 2002.

D. Milojici¢, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard,
S. Rollins, and Z, Xu, “Peer-to-Peer Computing”, HP Labs Technical Report
HPL-2002-57, March, 2002.

Professional Activities and Service:

Co-Editor — Peer-to-Peer subtopic area of IEEE Distributed Systems Online
http://dsonline.computer.org/os/related/p2p/index.htm (Fall 2001 —

present)

Co-Web Chair — IFIP/IEEE International Conference on Management of Mul-

timedia Networks and Services 2002

Founder and organizer of quarterly lunch for female graduate students and

faculty (Winter, Spring 2002)

X

Graduate student representative — Graduate Admissions Committee (2000 —

2001)

Volunteer — Expanding Your Horizons in Science and Math Conference (Spring

1997)

Student experiment volunteer, workshop on Teaching and Learning Object
Design in the First Academic Year (OOPSLA 1996)

Honors and Awards:

Nomination for Best Student Paper — ACM Multimedia 2002

Outstanding Paper Award - ED MEDIA World Conference on Educational

Multimedia, Hypermedia, and Telecommunications 2002

Travel Scholarship — Grace Hopper Celebration of Women in Computing 2002

Doctoral Scholars Fellowship — UC Santa Barbara (Fall 1998 — Spring 2002)

Member — Phi Beta Kappa

Arthur Vining Davis Scholarship — Mills College (Fall 1995 - Spring 1998)

Abstract

Enabling Content-Driven Applications in Resource-Constrained

Environments
by

Sami Nicole Rollins

The vision of pervasive computing is quickly becoming a reality. Unfortu-
nately, the range of applications supported by devices such as personal digital
assistants (PDAs), digital watches, and iPod-like devices remains somewhat
limited. Many current efforts promise to support services such as web brows-
ing, personal file management, and peer content exchange on these devices.
However, supporting these kinds of content-driven applications in the next-
generation computing environment promises to be a challenge. Most perva-
sive devices are constrained with respect to resources such as bandwidth, pro-
cessing power, disk space, energy supply, and even display capabilities. These
constraints often render traditional technical solutions insufficient for support-
ing functionality such as content location, delivery, and display. In order to
evolve current applications to meet the changing demands and limitations of
next-generation computing environments, these challenges must be addressed.

The goal of this dissertation is to develop system-level techniques to over-
come resource constraints that restrict the use of pervasive devices for content-
driven applications such as web browsing and peer content exchange. In par-
ticular, we focus on enabling three subfunctions of content-driven applications:
content access, content management, and content exchange. First, we describe
a technique to enable content access on devices with limited display capabil-
ities. Second, we describe a technique to enable management of personal
content in a power-constrained environment. Finally, we describe a technique

that enables new services and improved performance in peer-style content ex-

xi

change networks. This set of techniques represents a stepping stone in the
evolution from the current computing environment to the next-generation,

pervasive computing environment.

xii

Contents

List of Figures

List of Tables

1

3

Introduction

1.1 Content-Driven Applications

1.2 Evolving Computing Environments
1.2.1 Enabling New Applications

1.3 New Challenges for Evolving Computing Environments

1.4 Scopeof Work
1.4.1 Organization

The Next-Generation Classroom

2.1 Defining a Content-Driven Application in a Digital Classroom

2.2 Classroom Support for Functional Objectives
221 Access
2.2.2 Management Lo
223 Exchange L.

Related Work

3.1 Capability and Content Access.
3.1.1 Interfaces for Pervasive Devices
3.1.2 Speech-based Interfaces.
3.1.3 Summary

xiil

xvii

XX

© N O ot W NN -

10

3.2 Capability and Content Management 20

3.2.1 Data Prefetching 22
3.2.2 Device Cooperation 23
3.2.3 Power Conservation 24
3.24 Summary . .. o. ... L L e 25
3.3 Capability and Content Exchange 26
3.3.1 Peer Discovery and Group Management 28
3.3.2 Data Location 000, 29
3.3.3 Reliable and Efficient Content Delivery 30
3.3.4 Summary Ll 31
3.4 Contributions o oL 31
Enabling Content Access Via Non-Traditional Displays 33
4.1 Motivationo 33
4.1.1 The eXtensible Markup Language 36
4.2 Design of a Tool to Support Automatic Generation of XML-
based Interfaceso 38
4.2.1 The MakerFactory 40
422 AXL . ..o 43
4.2.3 Link Traversal Support 46
4.3 Implementation of a System for Navigating and Editing XML
Data 49
4.3.1 The MakerFactory 49
4.3.2 'The MakerFactory Renderer o7
4.4 An Auditory Component for XML Navigation and Modification 62
44.1 A Schema-Driven Interface 65
4.4.2 The ABL Rule Language 66
4.5 Evaluation Using a Study of User Experience. 71
4.5.1 Design of the User Tasks 71
4.5.2 Subject Profiles L. 74
4.5.3 Observations 74

xiv

4.6 Discussion 78

Content Management 79
5.1 Motivationo 79
5.1.1 Target Applications 80
5.1.2 Device Limitations 82
5.2 An Architecture for Supporting Content Management 83
5.2.1 Architectural Overview and Components 83
5.2.2 Example Implementations 86

5.3 Implementing a Scheme for Power-Aware Content Management 87
5.3.1 Implementation Goals and Components 88

5.4 Evaluating the Tradeoffs of Power-Aware Content Management 92

5.4.1 Simulation Overview 93
5.4.2 Metricso 95
543 Setup 96
544 Results. o o 0oL 101
5.4.5 Observations 109
5.5 Discussiono e 111

Using Push and Batching to Enable Efficient Content Location

and Distribution 112
6.1 Motivationo 112
6.2 The Jukebox Paradigm 113
6.2.1 The AIS Model 114
6.2.2 Applying the AIS 116
6.3 An Architecture for Request Aggregation and Batched Content
Distribution in Peer Networks 117
6.3.1 Pizie Overview 117
6.3.2 Pizie Architecture 119
6.4 Reliability and Fault Handling 122
6.4.1 Reliable Data Delivery 122

XV

6.4.2 Serving Peer Fault Handling

6.5 Evaluating Improved Data Location
6.5.1 Metrics
6.5.2 Setup
6.5.3 Results. Lol

6.5.4 Summary

6.6 Evaluating the Overhead of

Schedule Maintenance
6.6.1 Metrics
6.6.2 Setup
6.63 Results. 0.

6.6.4 Summary

6.7 Evaluating Improved Resource Usage using Simulation

6.7.1 Metrics .
6.7.2 Setup . .
6.7.3 Results . .

6.7.4 Summary

6.8 Discussion
7 Concluding Remarks

Bibliography

xvi

160

162

List of Figures

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
9.3
5.4
9.5
5.6

2.7
2.8

2.9

6.1
6.2

An overview of the system design. 40
The MakerFactory code-generation phase. 41
The MakerFactory Renderer. 42
The AXL code-generation phase. 45
The AXL Rendering phase. 46
The AXL engine state transition diagram. 64
A tree representation of a travel document. 73
An overview of our model foruse. 81
An architectural overview. oL 84
Usable duration for varied storage using Zipf access pattern. . 101

Usable duration for varied storage using uniform access pattern. 102
Usable duration for varied access time using Zipf access pattern. 106
Usable duration for varied number of items using Zipf access

pattern. oL 107
Usable duration for varied bandwidth using Zipf access pattern. 108
Usable duration for varied idle power consumption using Zipf

access pattern. oL Lo 109

Usable duration for varied number of devices using Zipf access

pattern. 110
The architecture of a generic AIS. 115
Overlapping requests are aggregated at the serving peer. . . . 118

xvil

6.3
6.4
6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17

6.18

6.19

6.20

6.21

6.22

Architecture of a Pizie peer.

Number of items found over time for varied requests per second.

Number of items aggregated over time for varied requests per
second. L L e
Number of items aggregated over time for varied serving peers.
Number of items found over time for varied distribution times.
Number of items aggregated over time for varied distribution

tImes. e e e s

Total size of schedule and number of distinct items in schedule.

Total size of schedule over time for varied serving peers.
Number of search messages processed in a centralized scheme.
Number of search messages processed in a flooding scheme. . .
Number of search messages processed in a document routing
scheme.
Number of updateSchedule messages processed at each node per
minute. L L
Number of updateSchedule messages processed at each node per
minute.
Search and search plus overhead in a small network.
Search and search plus overhead in a large network.
Search and search plus overhead as the number of serving peers
VATIES. . v v e e e e e e e e e e e
Number of requests experiencing each wait time at 40 requests
persecond.l
Number of requests serviced with each distribution at 40 re-
quests persecond.
Comparison of the number of requests experiencing each wait
time at 40 and 90 requests per second.
Comparison of the number of requests serviced with each dis-

tribution at 40 and 90 requests per second.

xviii

119
130

131

131

132

133

134

135

138

138

139

140

141

143

144

145

148

148

151

6.23
6.24

6.25

6.26

6.27

6.28

6.29
6.30

Wait time for each request serviced with load surge.
Number of requests experiencing each wait time for content with
3800-4300 second distribution time.
Number of requests serviced with each distribution for content
with 3800-4300 second distribution time.
Cumulative distribution of wait times using AGG 1.
Cumulative distribution of wait times using FCFS.
Cumulative distribution of wait times using AGG 1 and FCFS
schemes.
Cumulative distribution of aggregation per distribution.
Total number of requests serviced as the number of serving peers

VATICS. & v o o e e e e e e e e e s

Xix

153

153
154
155

155
157

List of Tables

4.1
4.2

5.1
5.2
9.3

6.1

The XLink Specification Attributes.
Command Set Used to Direct the AXL Engine.

Energy consumption characteristics of devices simulated.
Energy consumption characteristics of devices simulated.
Misses and wasted migrations for varied storage using Zipf ac-

cess pattern.o Lo oL L

Results of varying min/max distribution time.

XX

64

96
99

129

Chapter 1
Introduction

Over the past several years, computing technology has become faster, more
powerful, and smaller. Moreover, networking technology has become faster,
more powerful, and wireless. Devices such as laptop computers, personal dig-
ital assistants (PDAs), and digital watches that can seamlessly connect to
the Internet, or to other devices, are becoming more commonplace. However,
applications for this kind of technology are not advancing as quickly as the
technology itself. There is a call to evolve current applications and to develop
new applications to take advantage of new technology as well as overcome the
new technological challenges that next-generation devices introduce.

In this chapter, we introduce a class of application we define as content-
driven. We explore how new computing devices enable new, next-generation
computing environments, and how new environments can affect content-driven
applications. Next, we explore the challenges that must be addressed in order
to enable content-driven applications in next-generation computing environ-
ments. Finally, we identify the scope of this work and outline the organization

of the remainder of this dissertation.

1.1 Content-Driven Applications

This dissertation defines a content-driven application as an application with
the fundamental motivation of bringing together users and information. With
the proliferation of personal computers and networking technology, these kinds
of applications are figuring more prominently in the everyday lives of end users.
An example application is web-based news. Users may visit websites like CNN
and MSNBC many times a day to keep abreast of late breaking news stories.
Other example applications include email and web-based radio.

This definition of content-driven is quite broad in scope. However, to fur-
ther refine the definition of a content-driven application, we specify three fun-

damental functions that are supported by the applications we target:

Content Access. Content access defines how an end-user views or otherwise
consumes information. A user accessing web-based news is likely to rely on
a web browser to parse HTML code and present a combination of visual text
and graphics on a computer screen. As other forms of media, such as live
video, have become more popular, users rely on content-specific software to
provide access to information in a content-specific way. For example, an audio

and/or visual file may launch a viewer such as QuickTime.

Content Management. Content management defines how information is
best stored and managed by the the information source or content provider
(e.g., CNN). The definition of “best” can vary from application to application.
However, typically the goal of an effective content management scheme is to
ensure that content is stored such that it can be quickly and easily accessed
by the end user. A website such as CNN might employ techniques such as
replicating content on multiple servers and/or placing content on servers that

are located closer to the end user.

Content Exchange. Content exchange involves the actual transfer of con-
tent from the information source to the end user. Certainly, intelligent content
management can help to alleviate some of the burden on the content exchange
scheme. However, content exchange is primarily concerned with two tasks: (1)
location of the desired information and (2) delivery of information across the
network. In the web news application, a user might use a search engine to
locate a particular story of interest. Once the user finds the story, the content
is typically delivered across the network using HTTP over a reliable unicast
protocol such as TCP. In the web news example, this function could also be
considered content distribution. However, content exchange is a generalization
of content distribution and assumes that a participant many not necessarily
only act as either a content provider or end user, but perhaps both.

In general, it can be very challenging to support access, management, and
exchange of content. For an application such as news, an ever growing user
population and an ever increasing content base make it difficult to efficiently
and effectively satisfy all user requests. However, for many common web and
Internet-based applications, the challenges that arise in providing these func-
tions have been relatively well studied and usable solutions have been devel-
oped [6, 13, 20, 23, 80].

1.2 Evolving Computing Environments

Over the past several years, computing environments have begun to evolve.
Next-generation computing environments promise to incorporate small com-
puting devices such as PDAs and digital watches along with new networking
technology such as 802.11 and Bluetooth. While these environments offer a
host of new opportunities for content-driven applications, the traditional web
model that has often been used to enable access, management, and exchange

of information will no longer be sufficient.

The Web. In the web environment, an end user generally uses his/her home,
desktop computer to access content that is retrieved, over the wired Internet,
from a content provider. The content provider is often a company or other
organization that uses powerful, centrally maintained and administered servers
to manage and distribute information. In this environment, content-driven
applications are typically implemented using a centralized, client/server model.
The underlying assumption with the web model is that the user acts as a
content consumer, relying on the content provider to reliably and efficiently

provide information.

Peer-to-Peer. As end user desktop computers have become more powerful,
a new kind of computing environment has emerged. Content providers are no
longer exclusively organizations with centrally maintained and administered
servers. In fact, any end user device can act as a content provider, managing
and distributing information; a content consumer, accessing information; or
both. To support applications in this environment, a decentralized, peer-to-
peer (P2P) computing model has emerged. In the P2P model, all participants
are considered peers — heterogeneous nodes with varying capabilities that may
join and leave the network at will. Decentralized and resilient algorithms that
enable users to communicate directly and exchange information have begun
to develop. However, the general assumption is that the P2P model supports

desktop-to-desktop communication over the wired Internet.

Pervasive Computing. The vision of pervasive computing [67, 75] goes
beyond P2P to imagine a world in which computing devices are everywhere.
Small computing devices may be carried, worn, or even embedded into the en-
vironment. Moreover, these devices can seamlessly communicate using wireless
technology. To support content-driven applications in this kind of an environ-
ment, the goal of the pervasive computing model is to provide completely
seamless access, management, and exchange of information in an ad hoc and

dynamic way. Anytime, anywhere a user should be able to use whatever device

is available to access whatever piece of information he/she is interested in. It
is clear that the pervasive computing environment introduces a host of new

challenges that the pervasive computing model has yet to fully address.

1.2.1 Enabling New Applications

New environments coupled with new computing models such as P2P and
pervasive computing both enable enhanced functionality for existing applica-
tions, as well as enable completely new applications. The ultimate vision is
that applications can take advantage of the property that anywhere, at any
time, users can access and exchange information. A frequently used, motivat-
ing example demonstrates how a business person can take advantage of the
pervasive computing model to have seamless access to her personal informa-
tion. She wakes up and checks her email on her home desktop computer. As
she leaves home for the office, she picks up her laptop, cell phone, PDA, and
digital watch. Her email along with any other content she may have worked
on at home the previous evening is automatically transferred from her desktop
to the devices. As she sits on the subway train, her PDA exchanges news
articles with the devices the other riders are carrying. When she arrives at
the office, her devices download new email from the servers embedded into the
office environment as she runs to a meeting. As she arrives at the conference
room for the meeting, her laptop automatically detects the conference room
printer so that our user can print the slides she plans to use for her presenta-
tion. She wraps up her work day early to leave for a conference. As she leaves
the office for the airport, her conference presentation along with all the data
she has been recently working on is downloaded onto her devices so that she
can continue working on the plane.

Another motivating application is disaster recovery. Sensor devices may
be embedded into the structure of a building when it is constructed. If a
disaster, such as an earthquake, were to occur, the devices can seamlessly

communicate to determine the soundness of the structure. Additionally, relief

workers or robots carrying PDA-like devices can monitor the scene and gather
information from the sensor devices. Based on the information produced by
the sensors, plans for recovery efforts can be developed.

A third example application is a digital classroom [55]. In the classroom
of the future, instructors will be able to prepare digital material that can
be displayed in class, or can be digitally exchanged with local or remote stu-
dents who are using technology from laptops to digital watches. The pervasive
computing model opens up a world of opportunity for enabling students and
instructors to seamlessly communicate and share information, fostering collab-
oration across time and space. We save further explanation of this application
for Chapter 2 where we describe the classroom as a motivating application in

more detail.

1.3 New Challenges for Evolving Computing
Environments

While new computing environments provide a world of opportunity for
content-driven applications, they also introduce a host of new challenges that
make it vastly more difficult to support access, management, and exchange of
content. The challenges we define fall into two primary categories: capability

and availability.

Capability. Capability describes the functions that a content provider or
consumer is able to perform. As we move toward the P2P and pervasive envi-
ronments, content providers are no longer large mainframe or server machines,
and content consumers are no longer home desktop computers. They may be
anything from laptops to embedded sensors. These smaller devices are lim-
ited in terms of resources such as CPU, display, memory, bandwidth, disk
space, and power. While technology is continuously becoming more powerful,

each generation of devices is smaller and more constrained than the previous.

Additionally, resources like battery power and display will continue to be con-
strained. These limitations restrict the functions that the devices are able to
perform. Content displayed for the user may have to be transcoded into an
alternate format to meet the constraints of the display; loss of power on a de-
vice may mean that a user can no longer access important information stored
on that device; or limited bandwidth may prevent a device from uploading or
downloading the desired quantity of information. In this dissertation, we fo-
cus on the challenges associated with the reduced capability of next-generation

devices.

Availability. Availability describes the likelihood that a content consumer
or provider is reachable. In the P2P and pervasive models, availability becomes
more of a challenge for a number of reasons. First, end-point computers and
devices are dynamically connected. Much of the time, nodes join and leave
the network frequently either because users are mobile, or simply choose to
disconnect. Further, networks, especially wireless networks, can be lossy, slow,
and otherwise unpredictable. Connectivity problems may occur, through no
fault of the user, leaving participants unavailable. Finally, resource constraints
of devices, especially small devices, can lead to lower availability. Suppose a
laptop computer runs out of battery power. It will no longer be available as a

participant.

1.4 Scope of Work

This dissertation addresses the challenges associated with providing con-
tent access, management, and exchange in an environment where devices have
reduced capability. The thesis of this dissertation is that system-level tech-
niques can be used to overcome the resource constraints that restrict the use
of next-generation devices for content-driven applications. We focus on three
primary areas:

Content access is limited by the display constraints of a particular de-

vice. As devices become smaller, the visual access we are accustomed to is no
longer a viable solution in all cases. In order to support access to information
using a variety of devices, more flexible solutions that can adapt to varying
display capabilities must be developed. Ideally, a user should be able to access
information in a device-specific way based on the type of device he/she has
available.

Content management is also a challenge when the devices storing content
are resource-constrained. Specifically, we address the problem of managing
content across a collection of personal devices as in the previous example of
the business person. The loss of a resource, such as power, can make all content
on a particular device inaccessible unless the content has been moved prior to
resource loss. Relying on the user to manage data may not be effective, or
worse, the user may waste the same resources which are scarce. In addition, as
the shear number of devices increases, a user cannot manually manage content
across possibly tens or hundreds of personal devices.

Finally, content exchange is a challenge in a resource-constrained environ-
ment for a number of reasons. In this work, we focus on two main problems
and their application in peer-based environments. First, content location in
peer environments is typically not static as it is in the web model. In a more
dynamic environment, locating content is often done on-the-fly and may re-
quire use of the resources of a number of participants, content providers and
requesters. Participants limited by resources such as power or bandwidth may
not be able to participate in an unlimited way. Thus, developing data location
techniques that consume fewer resources in integral. Additionally, delivering
content in a straightforward, one-to-one fashion to all users that request it can
require more resources than a content provider may have available. Scalable,
resource-aware techniques must be employed to ensure that delivery is done

in an efficient manner.

1.4.1 Organization

This dissertation is organized as follows: In Chapter 2, we discuss a digital
classroom as a motivating application and point out the challenges that arise in
that context. In Chapter 3, we survey related work and provide a more concise
description of our contributions. Chapter 4 describes our work on enabling
content access via non-traditional displays. Chapter 5 describes our work on
resource-aware data management for small devices. Chapter 6 describes Pixie,
a jukebox-style architecture to support efficient data location and delivery in

large-scale peer environments. We conclude in Chapter 7.

Chapter 2
The Next-Generation Classroom

The goal of this chapter is to motivate the work in this dissertation by
describing the challenges associated with implementing a digital classroom
application. The chapter describes what a digital classroom is, explores how
the content-driven functions of access, management, and exchange are sup-
ported in the classrooms of today, and illustrates the challenges of supporting

the same functional objectives in the classroom of the future.

2.1 Defining a Content-Driven Application in
a Digital Classroom

A number of university campuses have undertaken the goal of developing
digital classrooms. One of the earliest experiments with this kind of technology
was the AT&T Learning/Teaching Theater at the University of Maryland [69].
More recent examples include 405 Soda at UC Berkeley [77] and Georgia Tech’s
eClass [1]. A digital classroom is a classroom meeting space that provides both
the ability to present information using multimedia tools as well the capability
to digitally record an account of the classroom activity. A digital classroom
can be considered a content-driven application because the primary goal of the

classroom is to bring together users and information. Typically, the users are

10

the students and the information is the material presented by the instructor.
As technology advances, the material presented by the instructor has become
more sophisticated, evolving from chalkboard notes and illustrations to digital
material. Additionally, information now extends beyond visual aids (such as
PowerPoint slides) to include a complete digital record of classroom activity,
including video and audio.

Digital classrooms today typically aim to support four primary activities:

Multimedia Presentation. In a traditional classroom, an instructor typi-
cally uses a chalkboard to write notes or hand-draw illustrations to clarify the
material presented. In a digital classroom, computers and display technology,
such as data projectors, can be used to display an array of digital material for
students in the classroom. Multimedia presentation enhances the instructor’s

ability to illustrate and demonstrate the material.

One-Way Webcasting. In a traditional classroom, students must be phys-
ically present in order to attend the class. In a digital classroom environment,
the classroom activity can be digitally captured using technology such as cam-
eras and microphones and sent, via the Internet, to a remote site. A remote
site might be a student’s dorm room where he/she is watching the lecture
on a desktop computer, or may be a remote classroom. One-way webcasting

completely redefines the meaning of the term classroom.

Remote Collaboration. In a traditional classroom, students can ask ques-
tions of the instructor and interact with other students at will. To enable this
functionality in a digital classroom, activity at the classroom site and remote
sites must be digitally captured, using technology such as cameras and mi-
crophones, and exchanged between sites in real time. Remote collaboration

enables a complete distance education scenario.

11

Archival/Retrieval. Finally, in a traditional classroom, students rely on
their handwritten notes to help them study for exams or later review the ma-
terial. In a digital classroom, a digital record of the classroom activity and
material can be archived and later retrieved and reviewed. In addition, a lec-
ture given by an "expert” may be reviewed by anyone interested in gaining
knowledge in the field [74]. Archival and retrieval of material can fundamen-

tally change the role of the instructor in the classroom.

2.2 Classroom Support for Functional Objec-

tives

It is difficult, even today, to support the functions required of a content-
driven application in the classroom environment. As new technology such as
PDAs, laptop computers, and wireless networking becomes more ubiquitous,
integrating the technology into the classroom application to support more
advanced activities will be even more challenging. This section describes how
the functional objectives of access, management, and exchange of content are
met in the classroom application today and the new challenges that arise with

regard to supporting these functions in the future.

2.2.1 Access

Content access in a digital classroom of today consists of two main pieces.
First, the technology to display multimedia material must be available in the
classroom. In most cases, this includes a computer to use to present material
and a data projector to project the image from the computer screen. The main
challenge in supporting this functionality lies in obtaining the right equipment
and connecting it together in the right way. The second piece is the display
of material such as audio and video at a remote site. Generally, the second

piece is accomplished using off-the-shelf tools such as RealMedia. Though, it

12

can be challenging to ensure that off-the-shelf tools provide all of the intended
functionality.

In the classroom of the future we can imagine that, in addition to large,
projected displays and/or desktop displays, each student may have one or
a collection of devices that he/she might like to use to access information
the instructor is presenting. A student might want to download slides onto
his/her PDA and take notes there while displaying a digital worksheet on
his/her laptop computer. The next student may want to take notes on his/her
Tablet PC while looking at the worksheet on a cell phone. Each of these
devices has slightly different display and input/output capabilities and is used
in a slightly different way, potentially to access the same material. One of
the primary challenges in this environment is to meet all of the demands of
the different devices. In Chapter 4, we discuss a general solution that enables

multimodal access to content via non-traditional displays.

2.2.2 Management

The main goal of content management in the classroom of today is to
ensure that prepared materials, such as slides, and generated media, such as
video, are stored and later made available to the user. Generally, the user
population for the classroom application is sufficiently small that this task is
not particularly challenging. A single, centrally located, powerful server can
often accomplish the task. However, one of the biggest remaining challenges
in this area is the indexing of material to ensure that it can be synchronized
for later retrieval and viewing.

In the classroom of the future, content may extend beyond slides prepared
by the instructor and video generated by an infrastructure embedded into
the classroom. With the proliferation of personal devices, students may use
their laptops, PDAs, and cell phones to contribute to the classroom content
base. A student may share notes from a PDA and a cached web page from a

laptop computer. The challenge in this environment is to ensure that student-

13

generated material is available even if it is stored on a cell phone rather than
a powerful server. In Chapter 5, we discuss techniques for managing content

across a collection of resource-constrained devices.

2.2.3 Exchange

In the classroom of today, content exchange involves delivering archived
content from servers as well as delivering or exchanging live video, audio, or
other media in real time between the classroom and remote sites. Delivering
archived content is generally straightforward. However, delivering live content
can be challenging. Often, to overcome jitter caused by the network, playout
tools buffer video and audio. The delay caused by buffering is intolerable if
the classroom and remote sites are collaborating in real time.

Looking toward the future, we can imagine a world in which students are
all capable of generating and distributing content. Therefore, the task of dis-
tributing content will no longer be restricted to a centrally located and admin-
istered server machine. Students may want to share content available on their
hand-held or wearable devices. Delivering content in this environment will
be challenging since techniques must be geared toward resource-constrained
devices. Imagine a student serving a video file to many classmates, from her
watch. In Chapter 6, we propose a content exchange solution that provides a
more scalable alternative to current systems.

The digital classroom is a prime example of a content-driven application.
Not only do the application participants bring content into the environment,
the environment itself can actually generate content. While supporting the
functions of a content-driven application can be challenging in the digital
classroom environment today, future computing technology promises to make
supporting access, management, and exchange of content even more challeng-
ing. The goal of this dissertation is to develop techniques to overcome some
of these challenges and enable applications such as digital classrooms in next-

generation computing environments.

14

Chapter 3

Related Work

The goal of this dissertation is to address the challenge of enabling content-
driven applications in the face of constrained resources. There are three fun-
damental functions that support content-driven applications; content access,
management, and exchange. This chapter investigates related efforts to sup-
port each of these functions in resource-constrained environments and demon-
strates where existing solutions fail to meet the demands of new and evolving
application scenarios. The chapter concludes with a summary of the three

primary contributions of this dissertation.

3.1 Capability and Content Access

The input and output capabilities of pervasive computing devices are lim-
ited, especially when compared to their desktop counterparts. A device such
as a digital watch may only have a 1-inch diameter face as compared to a 17-
inch desktop monitor. Moreover, a watch certainly cannot accommodate a full
sized keyboard or traditional mouse. The impact of this property is that most
pervasive devices cannot use traditional paradigms for accessing, navigating,
and modifying information. As devices become more commonplace, there is
a call to develop alternative mechanisms to support content access in varied

environments under varied conditions.

15

3.1.1 Interfaces for Pervasive Devices

Research on interfaces for pervasive devices ranges from creating the low
level technology to recognize user input, to performing user studies and ana-
lyzing user behavior. In this thesis, we narrow the playing field by specifically
focusing on providing system-level support for accessing, navigating, or mod-
ifying content on pervasive computing devices. The question at hand is: how
can an application programmer ensure that application data is accessible to
the widest audience possible? And, of course, the ideal scenario is to also limit
the workload of the application programmer.

In recent years, a number of research projects have investigated how to
build user interfaces and/or applications such that they are more accessible on
devices with diverse capabilities. One of the most promising models that has
emerged is that of single authoring [39]. Similar to the Model/View/Controller
paradigm [32], the idea behind single authoring is that content should be
authored independent of its presentation. Similar to Java’s write once, run
anywhere motto, the single authoring strategy could be considered write once,
view anywhere. There are numerous benefits to such a strategy, not the least
of which is that the application programmer or content provider does not have
to reinvent the wheel, creating new interface components every time a new
device is introduced on the market. However, the strategy itself has yet to be
fully realized.

A step in the right direction has been the development and subsequent
push of the eXtensible Markup Language (XML). XML, often touted as the
next step for the World Wide Web, is an ideal solution for separating content
from its presentation. It provides a semantically-enhanced, generic model for
representing information. The information can then be presented in a variety
of formats, using the added semantics inherent in the representation.

A number of research projects have taken advantage of XML’s benefits with
respect to interface adaptability [2, 27, 38, 41, 43]. The common theme that

underlies these projects is to represent a generic user interface using an XML

16

document. The document contains basic, device independent information; for
example input values will be in the range 1-10. This document can then be
transcoded, using XSL or similar technology, into the appropriate format for
the end-user device (such as HTML for desktops or WML for cell phones).
However, current solutions typically require that the application programmer
either write the XML document, or the original user interface (which can then
be automatically translated into the document [38]). Also, the application
programmer is responsible for creating the mapping (e.g., XSL) between the
generic XML document and the resulting device interface.

The previous set of projects use XML as a tool to represent the user inter-
face, but not necessarily the content itself. From a slightly different perspec-
tive, approaches like JAXB, Castor, and XOBE [31] attempt to automatically
build application components from XML data. The assumption is that the
XML document contains the underlying information, for example web content
or an eBook. An XML schema that specifies the structure of the document is
fed into the architecture and the result is a set of customized application com-
ponents (e.g., JavaBeans), to manipulate and access the information. These
approaches are typically useful for a developer who wants to integrate the ap-
plication components into a larger system. However, they do not address the
creation of interface components specifically geared toward providing the user

with access to information.

3.1.2 Speech-based Interfaces

The previous section primarily discusses how standard interfaces can be
adapted to work on devices with varying capabilities. The bulk of the work
discussed attempts to adapt a full-sized visual interface to be a more limited
visual interface on a small device. However, an alternative approach is to use
a different input and/or output modality all together. In fact, speech is often
considered an important component of next-generation interfaces [70].

For a number of years, researchers have been investigating speech-based in-

17

terfaces. Again, the range of research in this space is quite broad and encom-
passes everything from improving speech recognition software to evaluating
user experience. However, one of the primary challenges that speech-based in-
terfaces pose is the challenge of navigation. Especially in the era of the World
Wide Web, access is rarely serial. For example, a user who accesses a news-
paper using a traditional web browser is likely to jump from article to article,
selecting items of interest based on cues like font size and page layout. Typical
speech-based interfaces do not provide an equivalent navigational mechanism.
In the typical case, the listener of a newspaper would have to listen to every
article from beginning to end, in a sequential manner.

There have been a number of efforts that have addressed this challenge.
Aster [51] proposes that by using the semi-structured nature of LaTex [37],
a user can “listen to” information in a more interactive manner. The funda-
mental idea of Aster is to use the structure inherent in a LaTex document to
provide a listener more freedom to navigate, and hear customized renderings
of the content. For example, the structural cues in a LaTex document can be
used to generate an aural summary of the document. This provides the listener
with the equivalent ability to “scan” the entire document and select a portion
of interest. Unfortunately, the structure of LaTex is static. A developer who
wanted to use Aster would have limited flexibility in terms of the functionality
an application could support. Moreover, it is unlikely that a developer would
choose LaTex as the format for content access on a small device.

Other efforts have focused on navigation and document structure and rep-
resentation in a more general sense. DAHNI [42] focuses largely on navigation
between documents in a non-visual hypermedia system. The Hyperspeech sys-
tem [7] looks at presenting “speech as data” by focusing on providing the
ability to navigate through recorded speech. Other types of systems have
been constructed that look at how to use sound, speech or non-speech, to rep-
resent the structure of a document. Brewster [11] develops a set of guidelines

for integrating non-speech audio into user interfaces. The work presents a

18

comprehensive look at the components of sound and how each can be used to
convey information. Barrass presents a similar system [9] that looks at how
to design sounds to represent the types of activities performed in an applica-
tion. Portigal [50] looks specifically at how sound can convey structure and
location within a document. Finally, Wilson [76] examines the area of data
sonification by examining what it means to represent data with sound. While
these efforts certainly underscore the challenges of navigating using speech as
an input and/or output mechanism and representing information using speech
and sound, they do not directly address the challenge of building interfaces for
pervasive devices.

A more related area is the investigation of using speech for web browsing
and navigation. There is a large body of work that has addressed the question
of how to make the current World Wide Web accessible through voice-based
interfaces. Most of the work done has focused around how to make the web
accessible to users with print disabilities. However, many of the techniques
proposed may be applicable to users of pervasive devices as well.

James [29, 30] looks at how to make the web more accessible by integrat-
ing sound components like voice and pitch. Her work focuses on designing
experiments to determine how a user would best react to different aural repre-
sentations. It examines the parameters which are involved with designing an
aural interface. Other work on making the web accessible has taken a similar
approach, looking specifically at HI'ML and determining, for example, how one
should best represent an <H1> tag. Krell and Cubranic [35], Zajicek, Powell,
and Reeves [82], Zajicek and Powell [81], Oogane and Asakawa [46], and Albers
[4] all look specifically at HTML. Unfortunately, all of these approaches are
very specific, and directly targeted toward HTML content. Though some of
the proposed techniques may be appropriate for the scenario we target, they
have yet to be applied there.

A final body of work that deserves mention is the family of XML-based

languages that are being developed as solutions for voice-enabling the web.

19

Solutions like SpeechML, VoiceXML, JSML, TalkML, and VoxML all provide
a language that can be used by a content provider to specify how a user can
interact with the system to retrieve information. For example, the document
might specify which commands the user can use, or the rate and volume with
which a piece of text should be rendered. However, the model is that a content
provider must author the VoiceXML, SpeechML, or VoxML document. This

makes these solutions limited with respect to their ability to be generalized.

3.1.3 Summary

As pervasive devices with limited display capabilities become more com-
monplace, there is a call to support diverse input and output access mecha-
nisms. Most current solutions are either too specific, or require a great deal
of effort on the part of the content provider. Few efforts have tried to solve
these problems, and many that have focus on the automatic creation of gener-
alized application components rather than interface components. The goal of
this work is to provide a generalized solution to automatically create interface
components to support diverse content access mechanisms. Moreover, the so-
lution must support the generation of components that address the challenges

inherent to the given modality, such as speech.

3.2 Capability and Content Management

The fundamental idea behind pervasive computing is that small devices
will be ubiquitously deployed throughout the environment. Those devices may
range from minute sensors to laptop computers, and may be used for a variety
of applications. One class of applications is that of personal computing. The
predicted scenario depicts a single user who carries a number of computing
devices, from a laptop computer to a digital jacket. These devices can be used
to accomplished advanced, personal tasks on behalf of the user. Personal tasks

may range from address book maintenance to sending and receiving of email

20

to code compilation.

Unfortunately, the variety of tasks that a device can accomplish will be
limited by the resource availability of the device. Any pervasive device is likely
to have limited resources in one respect or another. Bandwidth, processing
power, disk space, and battery lifetime are all concerns for the next-generation
of computing devices. However, recall that a user may have an entire collection
of devices available at any given time. Given this property, it would be useful
to be able to aggregate device resources such that devices can be used in
concert to overcome resource constraints.

There are a number of challenges associated with coordinating the aggre-
gation of devices and device resources. Examples include the challenge of
assigning tasks to the most appropriate device(s) and the challenge of making
the coordination appear seamless to the user. In this work, we focus on the
challenge of content management. A user will have a subset of his/her per-
sonal information stored on each device in his/her collection. For example,
a user might store email on a laptop computer, MP3s on a PDA device, and
an address book on a cell phone. In order to be able to use the collection of
devices together (e.g., to make a phone call using a number that was jotted on
a PDA), the right content should be made available on the right device, and
at the right time.

Content or data management is not a new idea. Traditional data man-
agement schemes address concerns such as scalability, high availability, and
concurrency control. However, the new dimension with respect to personal
computing in the pervasive environment is resource availability. The funda-
mental idea is to ensure that the right content is available on the device with
the right resources. This idea of resource-aware content management is the

synthesis of many existing, somewhat disparate bodies of work.

21

3.2.1 Data Prefetching

Data prefetching, in many respects, addresses data management with re-
spect to the dimension of mobility. The idea is that a mobile device, such as
a laptop computer, should prefetch information while it is able to connect to
an infrastructure-based network, or another device. The general motivation
is that, in mobile environments where hosts are frequently disconnected, it is
important to ensure that, before disconnection, the mobile host downloads any
necessary information to continue working in disconnected mode. A number
of projects have developed schemes for data prefetching. Coda [66] focuses on
caching portions of a larger file system on a mobile host (e.g., laptop) so that
the host may continue to have access to relevant data even if not connected to
the file system. The concept of info-stations has been explored by a number of
projects. In the Map-on-the-Move project [79], Ye et al. propose a prefetching
strategy to be used in an environment where a user briefly passes through an
area of high bandwidth connectivity. Finally, the 7DS project [49] explores
the concept of prefetching from a peer-to-peer perspective. It supposes an
environment where small, mobile peer devices such as PDAs come in contact
for short periods of time, such as on subway trains. While connected, the
devices can probe one another to exchange information. One application the
work focuses on is exchanging news stories with the goal of obtaining an entire
newspaper before departing from a subway train.

These prefetching strategies are primarily concerned with the dimension
of mobility. Certainly, mobility is a unique and important property of the
pervasive environment. However, these strategies do not address the equally
important property of constrained resources. Additionally, the prefetching sce-
narios typically assume that data is prefetched to a single device. Even today,
a single user often carries an entire collection of devices. Our hypothesis is
that by taking advantage of the collection’s resources, services can be provided

more effectively.

22

3.2.2 Device Cooperation

The idea of aggregating devices in general is not unique to our work. First,
a number of projects address the question of how to aggregate a user’s per-
sonal devices to ease the burden on the user. The MPA project [61] uses an
infrastructure that tracks users and chooses the best device on which to contact
them. Roma [73] aggregates data stored across a collection of devices by stor-
ing metadata about all data on a single, portable device. These projects are
primarily concerned with device cooperation from a user-centric perspective,
but do not address the challenge from a resource-centric perspective.

There are also a collection of projects that take a more resource-centric
view of the problem. More specifically, the MOPED project [33] addresses
device aggregation from the network layer by using well-connected gateways
to communicate on behalf of other devices. While MOPED primarily seeks to
integrate the devices belonging to a single user, a similar project has looked at
aggregating connectivity across a larger collection of devices [48]. Papadopouli
and Schulzrine propose that, in a large-scale environment, some users may have
access to connectivity, while others do not. Those that do may act as gateways
for those users that would not otherwise have access.

These projects primarily address the resource of “connectivity”. However,
pervasive devices are constrained with respect to a variety of other resources.
In fact, battery lifetime tends to be the resource of most concern. While re-
sources like processing power and bandwidth are improving at a very rapid
pace, battery lifetime lags behind. Pervasive devices such as laptop comput-
ers may rival the processing, bandwidth, and storage capabilities of desktop
computers from only a few years ago. However, battery technology has not
improved to meet the demands of the newest computing devices and their

users.

23

3.2.3 Power Conservation

To overcome the limitations of constrained battery lifetimes, a number of
research projects investigate power conservation schemes. The idea behind
power conservation is to reduce the amount of energy a particular device con-
sumes in the process of normal operation. The Odyssey project [19] focuses
on application-level power conservation. In Odyssey, the application receives
a callback when the energy supply on the device gets low. The application
can then take application-specific action to reduce the amount of energy it
consumes. The MillyWatt project [16] advocates a similar idea proposing that
power should be managed as a high-level resource. Alternatively, work at
UCLA [64] has looked at reducing energy consumption on small devices by
offloading computation onto more powerful servers. These servers likely exist
as part of a well-connected infrastructure in the environment where the mobile
user is currently located. Finally, a number of projects have looked at reduc-
ing the power consumption of the network interface on small devices [34, 71].
These schemes work by turning the network interface card off when it is not
in use. The tradeoff in this case is managing and accounting for the messages
that are sent during the time the network interface is off.

Each of these schemes has proven to reduce the energy consumption on
individual small devices. However, even with the most conservative of schemes,
a device is still in danger of running out of power. Fortunately, if a user carries
not one, but a collection of devices, it would seem logical that one or more of
the alternate devices could be used to accomplish tasks when one devices runs
out of battery.

A collection of work has also looked at the idea of “aggregating” power
by managing data in a power-aware way. Both Directed Diffusion [28] and
SPIN [25] focus specifically on the application of sensor networks. In sensor
networks, small, power-constrained sensor devices are distributed throughout
an environment. As the devices sense and gather data, the data must be

propagated throughout the network in a resource-efficient manner. This is

24

accomplished by building efficient paths throughout the network in the case
of Directed Diffusion, and by exchanging high level metadata to determine
interest, and sending only the requested data in the case of SPIN.
Unfortunately, the sensor network application has a number of unique prop-
erties that do not apply generally to pervasive computing. First, in a sensor
network, data is continuously sensed and streamed. In a personal network of
devices, content is likely to be comparatively static. That is to say that only a
few files may be modified over the course of a few hours. Since updates are not
continuous, a batched model is more likely to apply. Additionally, the number
of devices in a sensor network is quite large. In a small, personal network,

additional optimizations can be considered.

3.2.4 Summary

Intelligent content management is essential to enable cooperation between
devices. Such cooperation provides a number of advantages including more
effective use of the limited resources available on individual pervasive comput-
ing devices. However, the pervasive environment introduces a new dimension
into a content management scheme. In order to more effectively use device
resources, those resources must be considered when making content manage-
ment decisions. The idea of resource-aware content management is a synthesis
of a number of related areas. Work on data prefetching is concerned with
developing a data management strategy, but does not consider the dimension
of constrained resources or the benefit of the availability of multiple devices.
Work on device cooperation addresses the aggregation of devices, but consid-
ers only connectivity as a device resource. Finally, work on power conservation
focuses specifically on the resource of power, the primary constrained resource
in the pervasive environment, but does not address the cooperation of personal
devices. The goal of this work is to synthesize these areas to enable coopera-
tion between devices by being aware of available resources and managing data

accordingly. The resource of primary concern is power since it is, by far, the

25

most constrained resource in the pervasive environment.

3.3 Capability and Content Exchange

The goal of content exchange is to allow end hosts to efficiently share infor-
mation. In the web model, content exchange happens only in one direction. A
participant acts only as a producer or a consumer of information, but not both.
Therefore, instead of supporting all of the functionality of content exchange,
the web model supports a more limited subfunction — content distribution.
However, as next-generation computing environments emerge, there is a call
to support the full functionality of content exchange. Envisioned uses of perva-
sive devices include scientists in the field collecting and sharing data and iPod
users roaming about sharing media files. In these kinds of scenarios, all users
are on a level playing field and information exchange is likely to be two-way.

Over the past few years, there has been a great deal of interest in support-
ing the full functionality of content exchange as P2P file sharing has become
popular [40, 47]. The P2P computing model has promised to support a va-
riety of applications including global computation [44, 45] and collaborative
computing. However, the most popular P2P application thus far has been
exchange of MP3s. Due in part to the popularity of the application, quite a
few research projects have started to address the question of how to support
content exchange in the P2P environment. Research in this space has focused

on three main challenges:

Peer Discovery and Group Management. In order to share information,
peers need to find out about other peers in the network. The dynamic, ad hoc
nature of peer groups makes it difficult to implement peer discovery and group
management algorithms. Centralized solutions largely defeat the purpose of a
peer network and can be too restrictive if a centralized infrastructure is not
available. On the other hand, distributed solutions can be resource inefficient

because they require a great deal of overhead in terms of state kept about

26

other peers and messaging required to maintain that state.

Data Location. To support content exchange, a system must enable users
to search for and locate content of interest. The distributed nature of peer
networks makes finding information of interest a difficult problem. The solu-
tion at one end of the spectrum is to have centralized index or catalogue of
available content. However, centralizing the task of data location defeats the
purpose of a P2P solution and may not be possible if no centralized infrastruc-
ture exists. At the other end of the spectrum, a fully replicated index could
be maintained at each peer. However, this solution wastes resources at each
peer and it would be difficult, if not impossible, to maintain consistency of a

fully replicated index in such a dynamic environment.

Reliable and Efficient Content Delivery. Once a peer locates a piece
of information of interest, that peer requests that the storing peer deliver the
file across the network. However, end-user peers are inherently resource con-
strained. Especially when compared to centrally administered servers, end-
user devices (e.g., desktop computers) are restricted with respect to band-
width, disk space, processing power, as well as up-time since peers cannot be
relied upon to remain connected for any specific length of time. This limita-
tion makes reliable content delivery more challenging in the P2P environment.
New and innovative schemes must be employed to provide fast downloads and
avoid overloading the resources of peers that store hot items.

In a typical P2P environment composed of desktop computers, these func-
tions are particularly difficult to support. Hosts can come and go at will, and
have constrained resources with respect to their server-grade counterparts. As
we move toward the pervasive computing environment, hosts will be even more
constrained with respect to resources such as bandwidth, processing power,
and disk space. Schemes to support peer discovery, data location, and data
delivery must be efficient in order to be viable solutions to enable content ex-

change in pervasive computing environments. The remainder of this section

27

looks at current research in these areas and identifies where current solutions

for the P2P environment become insufficient for the pervasive environment.

3.3.1 Peer Discovery and Group Management

Peer discovery and group management algorithms used in a traditional
P2P system can be implemented using a centralized solution, a distributed
solution, or a hybrid solution. Centralized solutions such as those used in
Napster, Magi, and Groove are most efficient because peers need not keep
state about other peers. Moreover, peers can locate each other with a single
request to the centralized directory. The problem with this approach is that
it requires a centralized infrastructure. Such an infrastructure may not always
be available, as is the case in the pervasive environment, or may introduce a
central point of failure which minimizes the benefit of a P2P system.

Distributed solutions such as Gnutella, FreeNet [14], Chord [72], CAN [52],
Tapestry [83], and Pastry [62] generally rely on using a well-known peer to
discover the rest of the peer group. However, the group management protocols
employed by these solutions are distributed. In Gnutella and FreeNet, a peer
keeps track of a constant number of other peers. This is efficient in terms of
the state kept at each peer. The problem with the approach is that searching
the peer network may be slow.

Chord, CAN, Tapestry, and Pastry represent the second-generation of P2P
discovery and group management algorithms. In each of these algorithms, the
network is organized such that peers keep track of a logarithmic number of
other peers (with respect to the number of peers in the network). When
searching, the protocols can guarantee, or guarantee with high probability,
that the desired item can be located in a logarithmic number of peer hops.

There has also been some exploration into the tradeoffs between centralized
and distributed solutions A group of peers, particularly those using mobile de-
vices, may have intermittent access to a centralized infrastructure. Therefore,

it may be beneficial to have the ability to tradeoff between centralized and dis-

28

tributed solutions based on the currently available infrastructure. However,
research in this space is still somewhat immature.

Peer discovery and group management algorithms have, so far, been a
primary focus of research on P2P content exchange. The solutions proposed
are quite promising and could likely be applied to the pervasive computing
environment as well. Therefore, in this work, we focus our attention on the

following two challenges of content exchange.

3.3.2 Data Location

Most of the work on supporting data location in peer networks has focused
on on-demand searches for information. Systems like Gnutella and Napster,
as well as CFS [15], OceanStore [36], and PAST [63], systems built on top
of Chord, Tapestry, and Pastry respectively, allow the user to search for a
particular document. The user must know the name of the document prior
to making the request. When the request is made, the search message is
sent to the appropriate peer (or centralized entity in the case of Napster).
While many of these systems claim to support file system-like functionality,
the infrastructures do not support file system-like content location. Providing
that kind of support would require the application to keep track of metadata
about each user’s files. Even so, this facility would not support exchange of
content between users.

Most of these protocols can be resource-inefficient. Gnutella is particu-
larly inefficient since each search message is potentially sent to every peer in
the network. Many of the other protocols can guarantee logarithmic bounds.
However, even a logarithmic number of search messages may be too consump-
tive of network-wide resources in a large peer network. Moreover, a user may
not always know which item he/she wants to download. This could lead to

additional searching on the part of the user as well as a poor user experience.

29

3.3.3 Reliable and Efficient Content Delivery

In the P2P space, techniques for making content distribution more reliable
and efficient have relied on replicating data within the network. Most deployed
systems such as Napster and Gnutella rely on the assumption that data are
inherently replicated throughout the network. First, the user selects the best
peer from which to download content. If the download request fails, generally
because the other peer is not reachable, the user must try a different peer.

This model is not always sufficient. It begins to break down when hot data
is stored on only a small number of peers. Especially if the peers are resource-
constrained, they may not be able to support multiple simultaneous requests
from the remainder of the network. This problem is further exaggerated by
the fact that peer networks are often composed primarily of freeriders [3, 65],
peers that are only part of the network long enough to retrieve content from
other peers.

Solutions to increase the efficiency of content delivery have largely targeted
a streaming model. The basic idea is that content can be more efficiently de-
livered if the task of streaming media is distributed between multiple peers
as opposed to just one source. The chaining approach [68] pipelines the data
stream through a chain of receiving clients to reduce the burden on the server.
Xu et al. [78] have developed strategies to choose the best server(s), and to in-
crease the capacity of the entire system as quickly as possible. Jungle Monkey
[26] focuses on building the tree structure to support end-host connectivity.
There has also been work focused on streaming in a strictly mobile environ-
ment [22]. However, all of these solutions address very specific problems. In
fact, the goal is to provide the underlying communication mechanisms to sup-
port more efficient content delivery. The remaining challenge is to develop
an integrated solution that will employ one or more of these communication

mechanisms to support content exchange in a content-driven application.

30

3.3.4 Summary

Efficient support for content exchange is essential to enable many of the en-
visioned applications of the pervasive computing environment. Unfortunately,
the resource-constrained nature of the environment makes locating and deliv-
ering content particularly challenging. Many research efforts have addressed
the primary challenges of content exchange with respect to traditional P2P
environments of wired, desktop computers. Some of these solutions may be
usable in the pervasive environment as well, but an integrated solution remains
to be realized. The goal of this work is to take an incremental step in that
direction by proposing a more efficient searching and delivery scheme. Rather
than reinvent the wheel, the goal of this work is to integrate existing concepts

and evaluate them in the context of a larger, content exchange solution.

3.4 Contributions

There are three main contributions of this dissertation:

1. Chapter 4 presents a novel method for automatically generating inter-
face components from a defined document schema. The MakerFactory
architecture employs the method by supporting the ability to analyze
an XML schema and automatically produce the Java code for interface
components that allow access, navigation, and modification of documents
conforming to the schema. Audio XmL (AXL) validates the feasibil-
ity of the architecture by demonstrating that usable, speech-based inter-
faces can be automatically generated by analyzing an XML DTD. This
method provides a user and developer-friendly way to support access to
information using devices that have varying, and possibly limited user

interface capabilities. [54, 59, 60]

2. Chapter 5 presents a novel method for integrating a new dimension,

resource availability, into a content management scheme. The architec-

31

ture presented monitors resource availability across a user’s collection of
personal devices and enables resource-aware management of the user’s
data files. The experimental results validate the usefulness of such an
architecture by comparing techniques for power-aware content man-
agement and demonstrating that, in many scenarios, these techniques
improve the aggregate device usability. A resource-aware content man-
agement scheme enables device cooperation and can ultimately enable
users to accomplish more advanced tasks on devices which have inher-

ently constrained resources. [57]

. Chapter 6 presents a novel architecture to make content exchange more
efficient by integrating existing communication and content delivery so-
lutions to provide additional peer network services and improve peer
network performance. The Pixie architecture provides push-based data
location and uses batching and one-to-many delivery to service download
requests. Evaluation of the architecture demonstrates that these tech-
niques can reduce resource usage across the network as well as provide
better service to the end users. The Pizie architecture is an incremen-
tal step toward supporting large-scale content exchange for applications

using pervasive devices which have constrained resources. [56, 58|

32

Chapter 4

Enabling Content Access Via
Non-Traditional Displays

4.1 Motivation

The WIMP (windows, icons, menus, pointing devices) model is no longer
sufficient for providing access to content. As pervasive computing technology
explodes, anyone anywhere may have access to the power of a processor and be
connected to the Internet. With the explosive growth of portable devices such
as Palm Pilots and cellular phones, there is a growing demand for technology
that will allow users to interact with their computers in non-traditional ways.
Moreover, historically the WIMP model has posed problems for print disabled
users [21]. The graphical representation of data on the web and desktop alike
prevents many users from accessing the real content underlying the icons and
buttons.

The underlying goal of this work is to provide access to information using
the most appropriate input and output mode(s) in any given scenario. To-
day, this goal is typically met by having content providers provide content
in different formats. For example, a website might be published in standard
HTML as well as in WML for those users who want to access the site us-

ing a cell phone. Unfortunately, this translates into more work for content

33

providers and is unlikely to meet the demands of all possible users. In an
ideal scenario, the content provider publishes one, presentation-independent
representation of the content. Then, the user can employ tools that present
device and user-specific access to the same underlying information.

This work presents an architecture for automatically developing tools that
provide customized, multi-modal access to semi-structured content. The eX-
tensible Markup Language (XML) is emerging as a standard that provides
a common format for storing and communicating data. It allows content
providers to separate underlying data from its presentation. Our goal is to
promote the use of XML, and devise a method that will provide the means
for a user to interact with XML content using the input and output modes
that are most appropriate for that user. Moreover, XML provides the means
to specify a schema; a document that provides metadata about the contents
of any document conforming to that schema. By using the schema definition
in developing access tools, we can automatically generate and provide more
customized tools to support content access.

The MakerFactory is an architecture that supports the generation and
instantiation of multi-modal interface components for XML documents. The
architecture provides a framework in which multiple interface components can
interact and simultaneously provide access to the same content. However,
in order to truly demonstrate the ability to automatically build customized
interface components based on XML schemas, specific interface components
must be developed.

Recall that the focus of this work is on developing tools to enable con-
tent access in next-generation environments made up of many small, pervasive
computing devices. While most of these devices will not have the resources
to provide traditional access to information (e.g., using a mouse and moni-
tor), researchers predict, and current trends indicate, that they will support
speech-based input and output. However, there are a number of challenges to

developing speech-based interface components.

34

First, audio is serial. By nature, a listener must assume a passive role where
a viewer takes a more active approach [51]. For example, a screen reader that
trivially reads a flat piece of text does not give a listener abilities afforded a
viewer such as freedom to navigate. A listener cannot scan the information,
move back or forward, or infer an underlying structure based on attributes
such as font size or page layout. In order to provide a listener with as much
control as a viewer, an aural interface must provide a mechanism to allow users
to scan information and actively select portions of the document to be read.

Further, it is difficult at best to represent graphical Uls using speech [10].
The current solution employed by most screen readers used to access web con-
tent is to rely on “alt” tags to provide information about the content of the
images, although a general solution does not exist. However, by separating the
content of the data from the presentation of that data, an interface can display
the underlying information in the most appropriate manner. Information need
not be represented only using graphics. The concept of multiple representa-
tions of the same data is also useful when an environment must be multi-modal
as could be the case with a visually impaired student and a sighted teacher.

Finally, it is imperative to avoid the cumbersome task of generating a
specialized interface for different types of data. Solutions like VoiceXML are
useful, but require manual intervention when new data need to be communi-
cated. An all-purpose solution should provide an automatic way of generating
a data to speech conversion.

Audio XmL (AXL) is a MakerFactory component that can automatically
generate customized, speech-based interfaces for XML content. AXL demon-
strates the feasibility of the MakerFactory abstraction, and overcomes many
of the challenges that must be addressed in order to build usable, speech-
based interfaces. This chapter explores the design and implementation of the
MakerFactory, and the design, implementation, and evaluation of AXL, the

speech-based MakerFactory component.

35

4.1.1 The eXtensible Markup Language

The eXtensible Markup Language (XML) is gaining popularity as a model
for data representation. XML is a standard way to separate underlying data
(i.e. the chapters of a textbook or the content of a web page) from the rep-
resentation of the data (i.e. fancy graphics or just plain text). XML allows a
user to define the structure of a document and hence add semantic information
to the data. By providing the user that freedom, the user can store the data in
such a way that it can be later retrieved in a manner convenient to the user’s
current set of circumstances.

Like its predecessor, the Standard Generalized Markup Language (SGML),
XML uses tags to add a semantic, hierarchical structure to the data itself. A
start-tag marks the beginning of an XML element. A start-tag consist of a
left angle bracket (<) followed by a tag name that describes the content of the
element, followed by a right angle bracket (>). The start tag is followed by the
content of the element itself. An end-tag marks the end of the element. The
end-tag looks similar to the start-tag and should have the same tag name, how-
ever a forward slash (/) follows the left angle bracket. The following example
shows a “Name” element with two element children, “First” and “Last”.

<Name>

<First> John </First>

<Last> Doe </Last>
</Name>
The semantic structure implies that the data “John” is a firstname while the
data “Doe” is a lastname. However, the same data might have a very different
meaning if surrounded by different semantic tags.

The third type of tag is the empty tag. An empty tag is used if there is no
content for the element and is equivalent to a start-tag immediately followed
by an end-tag. An empty tag looks much like a start-tag, except that the right
angle bracket is preceded by a forward slash (/). An empty tag can be useful
if an element contains attributes. An attribute is a <name, value> pair where

the value is the data itself and the name is a semantic description of the value.

36

The data from the previous example can also be represented using attributes

and an empty tag. The following example illustrates:

<Name First=’’John’’ Last=’’Doe’’/>

In this case, “Name” is an empty tag even though it contains attributes. An
empty tag can also exist without attributes. For example, between the <First>
and <Last> tags of the first example, the empty tag <Middle/> would in-
dicate that a middle name could be present, but is not present in the given
case.

A benefit of XML is that it allows the user to define the hierarchical struc-
ture that surrounds the underlying data. A Document Type Definition (DTD)
allows the user to specify the structural template of the elements and attributes
of an XML document. While XML Schema is another emerging schema spec-
ification standard, this thesis focuses on DTD schema specification. A DTD
for the first XML example given would look like the following:
<!ELEMENT Name (First, Middle?, Last)>
<!ELEMENT First (#PCDATA)>

<!ELEMENT Middle (#PCDATA)>
<!ELEMENT Last (#PCDATA)>

DTDs use a regular expression-style language to indicate which elements are
required, which are optional, and which can occur in a list. Furthermore, a
DTD specifies the order in which elements must occur and may also indicate
that an element may contain text or parsed character data by using the keyword
PCDATA.

The latter example would have a DTD similar to the following:
<!ELEMENT Name EMPTY>
<!ATTLIST Name First CDATA #REQUIRED

Middle CDATA #IMPLIED
Last CDATA #REQUIRED>

In this case, the attributes are of type CDATA. The First and Last attributes
are required while the Middle attribute is optional.

37

XML has two parsing models. The first is the Simple API for XML (SAX).
SAX is an event-driven model that parses a stream and notifies the applica-
tion when a parsing event occurs. SAX parsing avoids building an entire XML
structure in memory and is useful when parsing large documents. The alter-
nate model is the Document Object Model (DOM). DOM parses the entire
XML document and builds a tree structure in memory. Moreover, DOM pro-
vides an API for navigation within the parsed XML tree. This work employs
the DOM model of XML tree navigation.

XML can be used in a slew of different application scenarios. XML not
only represents the future of the World Wide Web, it is a far reaching solution
that can be used to represent any data kept in electronic form. Electronic

books, electronic commerce, and distance learning all promise to make use of
XML.

4.2 Design of a Tool to Support Automatic
(Generation of XML-based Interfaces

One of the largest benefits of using XML for applications such as web
content representation, electronic commerce, and distance learning is that
XML separates content from its presentation in a semantically-enhanced, semi-
structured way. An XML document provides basic information and semantics
to allow a variety of presentations, or uses of that information. The goal of this
work is to leverage that property. By representing content in XML, we can
exploit the inherent structure to provide customizable, intuitive interfaces that
allow navigation, rendering, and modification of the document itself. XML not
only gives us the benefit of a structural data representation, it also provides
a schema definition mechanism. By exploiting the schema definition, we can
automatically create a customized interface for each family of documents con-
forming to a given schema. The functionality of the interface should include

linking, navigation, creation, and modification of XML documents. The Mak-

38

erFactory architecture supports this goal. It is interactive, customizable, and
useful not only for the XML reader, but for the XML writer as well.

We have developed a customizable system that provides a user-specified,
multi-modal view of any XML document. The MakerFactory allows the user to
select a set of rendering components as well as define an optional rule document
that further specifies the rendering. Additionally, the MakerFactory defines
a link traversal mechanism. Therefore, a user can navigate not only within
the document itself, but may navigate between XML documents using our
Renderer. This system eliminates many of the constraints imposed by current
browsing systems. First, the user is not constrained to a visual representation
of the data. In fact, the system eliminates the requirement of a monitor.
Moreover, the system eliminates the requirement of keyboard /mouse input. A
further benefit of the system is that we take advantage of the XML schema
model. Given a published schema, the MakerFactory generates a renderer that
is unique for the given schema.

The MakerFactory is a general architecture that can support a variety of
methods to access information. To further justify the architecture, in this work
we develop an auditory-based MakerFactory component. We call this compo-
nent Audio XmL (AXL). AXL aims to provide a customizable user interface
that uses speech as both its input and output mode. We have found that the
semi-structured nature of XML helps to overcome many of the inherent chal-
lenges in the aural environment. Using the XML structure, users can more
easily navigate a given document and actively choose which piece of informa-
tion should be read by the rendering system. Additionally, by analyzing the
XML schema of a potential document before hand, we can extract a great deal
of information that helps to make the interface as intuitive as possible. AXL
also provides a customization language. This facility allows the user to specify
the type of interaction he/she wishes to have with the document. This section
provides an overview of the design of the MakerFactory architecture and the

AXL component.

39

4.2.1 The MakerFactory

Generated Components Rule
Spec/ [Component
4\
\

/L1

Step 1:

The schemais \ « Comgonert
\ uponthe input /v (-0 onent
components g

Step 2: The underlying
document is rendered

based upon the chosen
generated components:

Figure 4.1: An overview of the system design.

The MakerFactory is designed to operate in two phases (see Figure 4.1).
The first phase is the code-generation phase. In this phase, the user selects a
series of interface generation components from the library provided. To gen-
erate a customized interface, the user need only select those components that
will be relevant to the run-time rendering scenario. Each component is re-
sponsible for making a specialized interface for an XML document and hence
must implement our Maker interface. In addition, the user may optionally
specify a set of customization rules that further refine how the document will
be rendered. The result of code generation is a set of Java classes designed
to mediate communication between the user and the synchronized tree man-
ager. Therefore, the Maker-generated classes should minimally implement our
Mediator interface. Since each Mediator is designed to be independent of the
others, the user need only select to invoke the Mediators that are relevant to
the current scenario and hence not incur the overhead of having to run all

Mediators simultaneously.

40

The second phase is the run-time rendering phase. The MakerFactory
provides a Renderer that is responsible for controlling synchronized rendering
of the XML tree. Each Mediator acts as an intermediary between the Renderer
and the user allowing its own specialized input and output mode. For example,
AXL is designed to act as the auditory Mediator allowing the user to navigate

the XML document and traverse its links via a speech-based interface.

l
AXL | | AXL <
Mediato Maker
|| Maker) T Schema
Mediator M
M
HTML | «——
HTML -
@ Maker

Figure 4.2: The MakerFactory code-generation phase.

Code-Generation. Figure 4.2 shows the architecture of the code-generation
system. A given schema is analyzed and the results of the analysis are passed
into a series of user-selected Maker classes. Given the schema and any op-
tional customization rules specified by the user, the system produces a set of
customized Mediator classes that can be used with the Renderer to interact
with any XML document conforming to the given schema. For example, if the
user specifies the AXL Maker (a component used to generate auditory input
and output methods) and the HTML Maker (a component used to produce
an HTML representation of the data), the result should be two independent

41

Mediator classes. The AXL Mediator will listen for spoken commands from
the user and provide spoken output whereas the HTML Mediator may display
the XML in HTML format and disallow input from the user. Additionally, if
the given schema were a NEWSPAPER with a list of ARTICLES each con-
taining HEADLINE and BODY elements, the AXL. Maker might determine
that the AXL Mediator should render an ARTICLE by rendering the HEAD-
LINE whereas the HTML Maker may determine that the HTML Mediator will
render an ARTICLE by textually displaying both HEADLINE and BODY.

) Last Child
AXL
Render “ARTICLE” Mediator
XML

Mediator

Render “ARTICLE” M

Renderer
HTML

Render “ARTICLE” Mediator

Figure 4.3: The MakerFactory Renderer.

Rendering. The architecture of the Renderer is shown in Figure 4.3. The
Renderer controls synchronized access to the XML tree. Each Mediator may
receive input from the user in the mode supported by the Mediator. The
Mediator interprets the command and issues a corresponding set of commands
to the Renderer. The Renderer changes the tree view based upon the command
and updates the synchronized view for all other Mediators. Once the Mediator

view changes, it may provide output to the user via the Mediator’s supported

42

mode of output.

The Renderer employs the concept of a cursor. At any given point, all of
the registered Mediators should be rendering the portion of the tree pointed to
by the cursor. When the cursor is moved, the new view of the tree should be
rendered. However, it is possible that a Mediator will have to move the cursor
more than one time to achieve the desired view. This is because the methods to
move the cursor are generally incremental and somewhat limited. For example,
moving to the grandparent of a node would require two requests to move
the cursor to the current node’s parent. To accommodate this situation, the
Renderer defines a locking mechanism. Before calling a method that will move
the cursor, the given Mediator must acquire the lock. After all movement is
complete, the lock is released. When the lock is released, all of the Mediators
are notified that the cursor has changed. For example, if a Mediator directs
the Renderer to move the current cursor to an ARTICLE node, the Renderer

will in turn ask all of the other Mediators to render the given ARTICLE.

4.2.2 AXL

To MakerFactory architecture is quite general and can support a variety of
functions. In order to best evaluate its use, we have developed a specific Mak-
erFactory component, AXL. The goal of the AXL component is to demonstrate
the feasibility of the MakerFactory goals by producing a usable, speech-based
interface for any XML document. The choice to focus on a speech-based
component follows from the computing environment that we imagine for the
future. In the future, we imagine lots of small computing devices that may
be carried (such as PDAs and cellular phones), worn (such as clothing and
jewelry), or embedded into the environment (such as sensor devices). Many
of these devices may not have 17-inch monitors and keyboards for input and
output. However, most are likely to have the ability to accommodate a speaker
and microphone. Many researchers predict that speech-based interaction will

play a large role in the pervasive computing environment of the future.

43

The primary goal in the design of AXL was to create a component that
would produce a usable, speech-based interface for any XML document. There
are many questions we sought to answer in conjunction with this goal. First,
we wanted to produce user interfaces that would give the user as much control
as possible over the navigation of the document. In the case of a large web
page, the user would likely want the ability to choose which portion of the page
she wanted to hear. However, we recognized that there are situations where
the user may actually wish to be the passive participant while allowing the
rendering system to navigate and present the XML document. For example, a
user that reads an electronic newspaper in the same order everyday might wish
to simply configure the system to read the newspaper in that order without
requiring user interaction. Therefore, we wanted our design to allow the user
the freedom to choose the level of interaction she wishes to have with the

document.

44

Vocabulary

Input Command . N _| AXL Maker [Schema
Processors

Output Rende
Processors

Figure 4.4: The AXL code-generation phase.

Code-Generation. In the code-generation phase, the AXL Maker analyzes
the schema and produces a vocabulary for interacting with a document con-
forming to the given schema. For example, the previously cited NEWSPAPER
example might generate a vocabulary {article, body, headline}. Each word in
the vocabulary has a semantic meaning associated with traversing a document
of the given type. The “headline” command may mean to read the HEAD-
LINE of the current article. Given that vocabulary, the AXL Maker generates
a set of classes that process commands within the vocabulary as well as a set
of classes that know how to render nodes of the given schema via a speech syn-
thesizing engine as shown in Figure 4.4. The resulting set of classes compose
the AXL Mediator.

Rendering. The AXL Mediator operates as shown in Figure 4.5. When the
Mediator is asked to render a node, AXL will determine the type of node it
is being asked to render and then perform the appropriate operations. The

rendering can include everything from a simple rendering of the node’s tag

45

“Plane Crash”

“12 Dead”

;V

if(node is “HEADLINE”)

if(node is “BODY")
- (ren)
NO OUTPUT

render “HEADLINE”

Figure 4.5: The AXL Rendering phase.

name to performing the action specified in a pre-compiled Java class. Perhaps
a HEADLINE node has two parts, TITLE and SUBTITLE. The rendering
of a HEADLINE may indicate to render first the title and then the subtitle.
Correspondingly, perhaps rendering a BODY node simply means to perform

some action and provide no output to the user.

4.2.3 Link Traversal Support

Linking is an important feature of XML. Not only is it important for a web
scenario, linking is important in a variety of XML applications. For example,
an electronic book might provide links to annotations of the material.

At the most basic level, we want to support the kinds of links defined in
HTML using the “A” tag and “href” attribute. For XML, the XLink standard
is being developed. Not only does XLink provide the mechanism to define
HTML style links, it also has the benefit of attaching semantic meaning to the
action of link traversal. We investigate how to design our system to support

XLink style link traversal.

46

MakerFactory Linking. In order to support a linking mechanism, the Ren-
derer must provide a mechanism for the Mediator classes to request that a
link be followed. We investigate this requirement by looking at the different
attributes that may occur within the XLink namespace. Currently, we are
looking only at XLink simple links.

The XLink standard defines four classes of attributes. Each type of at-
tribute can be specified in an XLink node and helps the parser to determine
how to traverse and display the attribute as well as provides metadata describ-
ing the function and content of the link itself. The MakerFactory considers
how to integrate all of the possible values of those attributes given the XLink
definition of their functions.

The href location attribute is necessary for determining where to find the
given node. The arc end attributes are not required at this time for the
purposes of the MakerFactory. The behavior attributes help the MakerFac-
tory in determining how to load the referenced resource. The resource may
be appended to the current tree, replace the current tree possibly causing the
system to instantiate a new set of Mediator classes, or may require that a new
Renderer be instantiated. Additionally, the Renderer may automatically load
the resource, or may wait for a Mediator to explicitly ask to load it. Finally,
a Mediator may use the semantic attributes in its own rendering of a node

to give the user more information about the link.

AXL Linking. It is the job of AXL to appropriately interpret the Maker-
Factory supported commands and provide the user with a suitable method of
accessing those commands via a speech-based interface. Therefore, AXL must
allow the user to issue a command that follows a link. If the user has reached
a node that is identified as a link, the user may ask to follow the link. AXL
will subsequently invoke the Renderer method used to perform the traversal.
The result may be a new tree which will then be rendered appropriately by all
of the Mediators including AXL, or may simply be the current tree with an

additional subtree.

47

Conceptual Attribute | Function MakerFactory
Classification Implications
Location href provides URI Renderer uses value
of resource to load resource
Arc End from defines where NONE
link originates
to defines where NONE
link traverses
Behavior show defines how the parsed - resource is
resource should be | appended as child
presented to the of current node
user replace - resource
replaces current data;
new Mediators
may be instantiated
new - requires a
new Renderer
be instantiated;
see future work
on Speech Spaces
actuate defines how link user - a Mediator
traversal is must request link
initiated traversal
auto - the Renderer
traverses the link
upon rendering
the XLink node
Semantic role defines function of | may be used to
link enhance rendering
title description of link | may be used to

enhance rendering

Table 4.1: The XLink Specification Attributes.

48

XLink provides the definition of role and title attributes. These define the
link’s function and provide a summary of the link. AXL can take advantage of
both of these attributes. If the node currently being rendered is a link node,
AXL will render the node by synthesizing both semantic attributes for the
user. These attributes provide a built-in way for the XML writer to indicate
to AXL the best rendering for the node.

Our design supports a concept, of data-specific navigation and editing tools.
The following sections describe our implementation of the framework, and of

an aural component to support speech-based navigation and modification of
XML data.

4.3 Implementation of a System for Navigat-
ing and Editing XML Data

The MakerFactory architecture is designed to provide an infrastructure
for automatically generating interfaces for navigating and modifying XML
data. This section examines the implementation decisions of the MakerFac-
tory. Many of the implementation details of the MakerFactory are more clearly
illustrated by using the speech component, AXL, as an example.

The entire system has been implemented in Java using the IBM Speech
for Java implementation of the Java Speech API. Furthermore, the Speech for
Java implementation requires that IBM’s ViaVoice be installed and used as

the synthesizing and recognizing engine.

4.3.1 The MakerFactory

The general concept of the MakerFactory is to traverse a schema and notify
each Maker of the content model of each node in the schema. Based upon the
schema and a given rule specification file, each Maker generates an interface

for the user and the end result is a completely customized, multi-modal user

49

interface to any XML document conforming to the given schema.

MakerFactory Configuration Schema. When the MakerFactory is in-
voked, a configuration file must be specified. The following is the DTD schema
that defines the MakerFactory configuration file:

<!ELEMENT MakerConfig (Makerx) >
<!ATTLIST MakerConfig
SchemaProcessor CDATA #REQUIRED
Schemalocation CDATA #REQUIRED>

<!ELEMENT Maker EMPTY>

<IATTLIST Maker
Classname CDATA #REQUIRED
Rulefile CDATA #IMPLIED>

The MakerConfig element has two attributes. The first attribute defines
where the program should find a SchemaProcessor class. The value of this
attribute should be a string that indicates the class name of a class that im-
plements the SchemaProcessor interface. The current implementation provides
a DTDSchemaProcessor class that supports the DTD schema definition. How-
ever, there are multiple ways to define a schema for an XML document. XML
Schema is another example. Therefore, to support other methods, any other
schema processor conforming to the SchemaProcessor interface may be used.
The second attribute of the MakerConfig element is the Schemal.ocation. The
value of this attribute should be a string that indicates where the actual schema
definition can be found e.g. the file location of the DTD. This string should
be a valid URL.

The MakerConfig may have a list of Maker elements as its child nodes.
Each Maker element indicates a Maker to be used in interface generation. The
first attribute of the Maker element is the Classname. The focus of this work
is the SpeechMaker or AXL. Other examples might include an HTML Maker
that transforms an XML document into an HTML document or a Picture

Maker that creates a pictorial view of the XML data by querying an image

50

repository. The second attribute is the name of a Rulefile. The MakerFactory
defines a general schema for the set of rules, however each Maker may refine
the MakerFactory rule schema to allow a user to write highly customized rules

for rendering the elements in the manner defined by the Maker.

The SchemaProcessor Interface. The SchemaProcessor is defined by the

following interface:

public interface SchemaProcessor {
void init(String loc) throws InvalidSchemaException;

boolean hasMoreDecls();

SchemaNode getNextDecl();

The current implementation supports a DTD processor, however any class
implementing the interface may be used in place of the DT DSchemaProcessor.
The processor acts as an enumerator. It should process the given schema and
generate a generic SchemaNode representation of each element declaration. A
SchemaNode is the MakerFactory defined structure to hold all of the relevant
information given in the schema definition of an element. The MakerFactory
will iterate once through the schema and process each node.

Any implementation must support three methods. The first is the init
method that takes as a parameter the location of the actual schema file. If the
schema is found to be invalid, an InvalidSchemaFException should be thrown.
The schema defined in the file should be in the format that the SchemaPro-
cessor is expecting. For example, the DTDSchemaProcessor should be given
the location of a “.dtd” file.

The second method that must be supported by a SchemaProcessor is the
hasMoreDecls method. This method is called to determine if all of the nodes
in the schema have been processed. If the processor has iterated through all

of the nodes, this method should return false, otherwise it should return true.

ol

The final method that a SchemaProcessor must define is the getNextDecl
method. This method should return the next unprocessed node from the
schema. Fach node should be processed once. The first step in processing a
node of the schema definition is to create a generic SchemaNode object. This
MakerFactory defined object contains all of the relevant information from a
given node. By analyzing a SchemaNode, a Maker should be able to derive
all necessary information in order to build the interface. This gives rise to
the second step in processing a node. Each Maker should extract all of the
information it needs from the SchemaNode and use it to create the appropriate

components of the interface.

The Maker Interface. Each Maker must conform to the following Maker
interface:

public interface Maker {
public void processNode(SchemaNode snode);

public void addRulefile(RuleFileProcessor rfp);

public void export();

A Maker is notified of each node in the schema and should ultimately produce
a set of one or more Java classes that will allow navigation of a document
conforming to the schema specified.

A Maker must support three methods. The first is the processNode
method. This method should take a SchemaNode as a parameter and do the
processing necessary to create a Mediator. The processing may include using
the SchemaNode API to extract information about the XML instance defined
in the schema and generating the appropriate Java code.

The second method the Maker must support is the addRulefile method. If
the configuration document specifies a rule file, the rules defined will be given
to the Maker. The Maker should then use the defined rules when building
the customized interface. At the very least, a Maker should be able to handle

92

rules conforming to the rule schema defined for the MakerFactory in general.
If a given Maker wishes to extend the general rules, it must also implement a
way to analyze those extensions.

The final method that must be supported by a Maker is the export
method. This method will be called when the entire schema has been tra-
versed. The Maker should do any cleanup and make the results of the schema
traversal persistent. Generally, this means that the Maker will create one or

more Java files containing code that implements the Mediator interface.

The RenderRule Language. Each Maker in the factory can be given an
XML document containing user-specified rendering rules. The default Maker
generated rendering might not be sufficient for all user’s needs. Therefore,
the MakerFactory defines a RenderRule schema that may be extended by any
given Maker. Any Maker implementation should provide the necessary code to
process such a rule definition. At the most basic level, a RenderRule document

must conform to the following DTD:

93

default.

<!ELEMENT
<!ELEMENT
<IATTLIST

<!ELEMENT
<!ATTLIST

<!ELEMENT
<IATTLIST

<!ELEMENT
<IATTLIST

<!ELEMENT

<IATTLIST

<!ELEMENT
<IATTLIST

RenderRules (ElementRule|AttributeRule)+>

ElementRule (ElementRendering)+>

ElementRule

elementid CDATA #REQUIRED>

ElementRendering (Render|Action)+>

ElementRendering

cond CDATA #IMPLIED>

Render EMPTY>

Render

depth (NONE|NODE_ONLY|CHILDREN_ONLY |
ATTRS_ONLY | NODE_CHILDREN |
NODE_ATTRS | CHILDREN_NODE | CHILDREN_ATTRS |
ATTRS_NODE | ATTRS_CHILDREN | NODE_ATTRS_CHILDREN |
NODE_CHILDREN_ATTRS|ATTRS_CHILDREN_NODE|
ATTRS_NODE_CHILDREN | CHILDREN_NODE_ATTRS|
CHILDREN_ATTRS_NODE | NAME | VALUE | NAME_VALUE |
VALUE_NAME) ¢ ‘NODE_ONLY’’

cond CDATA #IMPLIED>

Action EMPTY>

Action

classname CDATA #IMPLIED

ismodifier (TRUE|FALSE) ¢‘FALSE’’>

AttributeRule (AttributeRendering)+>

AttributeRule

attribteid CDATA #REQUIRED>

AttributeRendering (Render|Action)x*>

AttributeRendering

cond CDATA #IMPLIED>

The RenderRules element should contain a list of ElementRule and/or At-

tributeRule children. The ElementRule element is used to specify a rendering

for a given element in the input XML document to be rendered and the At-

tributeRule element is used to specify a rendering for an attribute in the given

document. We explain each type of rule in the following paragraph.

The ElementRule should contain a list of ElementRendering elements.

Each ElementRendering with a condition that evaluates to true will be in-

voked. Any ElementRendering child with no condition will be invoked by

In addition, the ElementRule should have an elementid attribute.

o4

This attribute should specify the tag name of the elements that will match
this rendering rule.

An ElementRendering element can contain one attribute cond. If specified,
this attribute indicates the name of a class that implements the UnaryPred-
icate interface. The UnaryPredicate should take one argument, the node in
question, and produce a boolean value. When the parent ElementRule is
invoked for an element, the class indicated by the cond attribute is instanti-
ated and passed the node currently being rendered as an argument. If the
UnaryPredicate returns true, the rendering defined by the children of the El-
ementRendering element will be used to render the node.

The children of the ElementRendering element define a single rendering.
The rendering is defined by a list of Render or Action children. The children
are invoked in the order they are defined. A Render child will produce one
view of an element and an Action child will invoke a user-defined Java code

block. Any Action class must implement the following interface:

public interface Action {
public void notify(Node node);
}

Like the Java event model, a render event causes the notify method of the
Action class to be invoked. The current node to be rendered is passed as an
argument. If the action modifies the node it its subtree, the Renderer should
be notified of the change following the completion of the notify method. This
allows a user to render an element, change the content through the use of an
action block, and then render it again.

The Render element has two attributes, depth and cond. The cond at-
tribute acts the same as the ElementRendering cond attribute. Before a node
is rendered it must meet the condition in the UnaryPredicate class. The depth
attribute indicates the depth to which the node should be rendered. The valid

values for this attribute are:

%)

NONE

NODE_ONLY
CHILDREN_ONLY
ATTRS_ONLY
NODE_ATTRS
NODE_CHILDREN
CHILDREN_ATTRS
CHILDREN_NODE
ATTRS_CHILDREN
ATTRS_NODE
NODE_ATTRS_CHILDREN
NODE_CHILDREN_ATTRS
CHILDREN_ATTRS_NODE
CHILDREN_NODE_ATTRS
ATTRS_NODE_CHILDREN
ATTRS_CHILDREN_NODE

The node, its children, or its attributes may be rendered. In addition, any
combination of the three may be specified and in any order. For example,
NODE_CHILDREN means to render the node and then its children whereas
ATTRS_CHILDREN_NODE means to render the attributes of the node, the
children of the node, and then the node itself. Finally, NONE is the option
that indicates that the node should have no rendering at all.

The Action element contains two attributes. The first is the classname at-
tribute. This should contain the name of a class which implements the Action
interface. When invoked, the notify method of this class will be passed the
node currently being visited. The second attribute is the ismodifier attribute.
This attribute should be TRUE if the Java action code modifies the node it
is passed and FALSE otherwise. If this attribute is TRUE, the Maker that
generates the code should generate the appropriate code to replace the global
XML in the Renderer itself with the modified local copy. In the future, the rule
language will be extended to support Java code embedded within the XML
rules.

The ElementRule and AttributeRule elements are very similar. The only

difference between the two is that the valid values for the depth attribute of an

96

AttributeRendering node are NODE, NAME, VALUE, NAME_VALUE, and
VALUE_NAME. This allows the user to specify whether just the name, just
the value, or both properties of an attribute are rendered.

It is up to the programmer to extend the schema for a given Maker. See
the AXL discussion in the next section for an example extension to these base

rules.

4.3.2 The MakerFactory Renderer

The MakerFactory also provides a Renderer that may be used to navigate
and modify an XML document. The Renderer interacts with each Mediator
in two ways. First, the Renderer receives directives from the Mediators that
indicate that the current cursor should be moved or that the tree should be
modified. Second, the Renderer issues directives to the Mediators to update
each Mediator’s current view of the tree. Like the MakerFactory, the Ren-
derer also defines a configuration file schema that specifies which Mediators to
use. The Renderer can interface with any class that implements the Mediator
abstract class.

The Renderer reads in an XML document and instantiates a series of Me-
diators that will listen for changes in the traversal of the document. Each
Mediator interfaces with both the Renderer and the user. Based upon the
user input, the Mediators notify the Renderer to change the current view of
the document or modify its contents. When one Mediator updates the view,

all Mediators are notified by the Renderer.

o7

Renderer Configuration Schema. The following is the DTD schema that

defines the Renderer configuration file:

<!ELEMENT RendererConfig (Mediatorx*) >
<!ATTLIST RendererConfig
XMLFile CDATA #REQUIRED >

<!ELEMENT Mediator EMPTY>
<IATTLIST Mediator
Classname CDATA #REQUIRED >

The RendererConfig element has one attribute. The XMLFile attribute
defines the name of the XML file that is to be traversed. This string should
be a valid URL of a file that contains a valid XML document. The XML
document should conform to the schema used when creating the Mediators
defined.

A RendererConfig element contains a list of Mediator elements. It is likely
that each Mediator will be an automatically generated MakerFactory Media-
tor, however, any class extending the Mediator abstract class can be specified.
Each Mediator element specifies a Classname attribute. The Classname should

be a string indicating the name of the Mediator class.

The Renderer Class. The Renderer is a fixed class that exports a series of
methods that may be called by a Mediator class. The methods are generally
wrappers around the org.w3c.dom.Node interface. The methods exported sup-
port navigation through and modification of an XML document. The Renderer
implements the concept of a cursor. There are conceptually two cursors. One
points to the current element, and the other points to the current attribute
of the current element. When the element cursor moves, the attribute cursor
will point to the first attribute of the new element. The methods exported by
the Renderer can move the cursors, or change the data to which the cursors

point. The methods supported by the Render class are defined below:

28

appendChild(Node newChild)
Behavior - appends the newChild as the last child of the current element
Return Value - true if the append was successful
attribute(String attrname)
Behavior - moves the current attribute cursor to the attribute of the
current element with the given name
Return Value - true if the move was successful
element(String eltname, int n)
Behavior - moves the current element cursor to the nth occurrence
of the element “eltname”
Return Value - true if the move was successful
firstChild()
Behavior - moves the current element cursor to the first child
of the current element
Return Value - true if the move was successful
insert Before(Node newChild)
Behavior - inserts newChild as the previous sibling of the
current element node
Return Value - true if the insert was successful
lastChild()
Behavior - moves the current element cursor to the last child of
the current element
Return Value - true if the move was successful
name()
Behavior - gets the tag name of the current element
Return Value - String - tag name of the current element node
nextAttr()
Behavior - moves the current attribute cursor to the next attribute
of the current element

Return Value - true if the move was successful

29

nextSibling()
Behavior - moves the current element cursor to the next sibling
of the current element
Return Value - {rue if the move was successful
parent()
Behavior - moves the current element cursor to the parent of the
current element
Return Value - true if the move was successful
previousAttr()
Behavior - moves the current attribute cursor to the previous attribute
of the current element
Return Value - true if the move was successful
previousSibling()
Behavior - moves the current element cursor to the previous sibling
of the current element
Return Value - true if the move was successful
remove()
Behavior - removes the current element and moves the current element
cursor to the parent
Return Value - true if the remove was successful
replaceChild(Node newChild)
Behavior - replaces the current element with newChild
Return Value - true if the replace was successful
set Attr(String name, String value)
Behavior - sets attribute name of the current element to the given value
Return Value - true if the set was successful
setData(Document newDoc)
Behavior - replaces the XML tree with newDoc and renders the root
Return Value - true if the set was successful

value()

60

Behavior - returns a cloned copy of the current element node

Return Value - Node - cloned copy of the current element and its children

Because most of the commands are iterative, that is to say that attribute
(attributename) and element (elementname, indexOfElement) are the only
methods that allow a user to randomly access a node, a Mediator may want
to move a cursor multiple hops before settling on the node that should be
rendered. For example, to access the grandparent of the current node, two
calls must be made to the parent method. To accommodate this case, the
Renderer implements the concept of a lock. Before the Mediator can call any
of the methods available to alter the cursor state, the lock must be acquired.
Once the lock is acquired, the Mediator may move the cursor as many times
as it likes. Only when the lock is released are the remaining Mediators notified
of the new state of the tree. If the lock is released and the cursor has moved,
the node that the cursor now points to is queued for update. Each Mediator
is notified of the current state of the cursor.

The locking mechanism is also useful for write interaction. Most of the
discussion of this thesis focuses around navigation within an XML document.
However, modification is also a desired quality of such a system. In order to
allow multiple Mediators to participate and possibly modify the XML tree
itself, the Renderer allows a Mediator to lock the tree and replace the current
node with a new node specified by the Mediator.

The Renderer interfaces with any Mediator class. In most cases, the Me-
diators will be automatically generated by the MakerFactory. However, it is
possible that a Mediator is physically implemented by a developer using the
Renderer. All Mediators must conform to the Mediator abstract class defini-

tion.

The Mediator Class. The purpose of a Mediator is to provide a mode-
specific interpretation of the basic DOM methods supported by the Renderer.
For example, the AXL Mediator provides a means to navigate the XML tree

61

using speech as the input/output mode while a Picture Mediator might provide
the facility to drag and drop a pictorial representation of the data.

Any Mediator must implement the render method. This method should
render the given node in a manner appropriate for the Mediator. The param-
eter to the method is the node to be rendered. This node is a deep cloned
copy of the actual node and all of the subtrees of the node.

Mediators must also implement a cleanup method. This method should
deallocate all resources appropriately and stop listening for user input.

The init method of the Mediator is provided. This method sets the parent
Renderer object. This is necessary so that the Mediator can make calls to the

parent to traverse the XML document.

4.4 An Auditory Component for XML Navi-
gation and Modification

The MakerFactory implementation provides a framework to support gener-
ation of multi-modal interface components. In order to fully understand how
the architecture can be used, we have chosen to implement an auditory com-
ponent called AXL. The goal of AXL is to automatically generate audio-based
components for navigating and modifying XML data. This section evaluates
the implementation choices of AXL. At the lowest level, AXL provides an
auditory version of the Document Object Model. Beyond that, it provides a

customized interface through schema analysis and user-customization.

Speech DOM. At the most basic level, AXL provides a speech version of
the Document Object Model. DOM defines a series of methods that allow
access to a parsed XML tree. Our Speech DOM provides a set of spoken
commands that perform the same function. At the core level, an XML tree is
a collection of org.w3c.dom.Node objects. Therefore, the AXL Speech DOM

provides a set of commands conforming to the org.w3c.dom.Node API.

62

The basic commands available are:
Parent

Next Sibling

Previous Sibling

Next Attribute

Previous Attribute

First Child

Last Child

Name

Value

Remove

Insert Before

Append

New Text

Set Attribute
When each command is spoken, the Mediator simply calls the correspond-

ing method of the Renderer class. The only commands that warrant expla-
nation are Insert Before, Append, New Text, and Set Attribute. Each of these
commands requires more input than the command itself. When the command
Insert Before is spoken, the system beeps, indicating that it is waiting for
more user input. It waits for the user to speak the tag name of the node to be
inserted. When it hears the name it inserts the node and returns to normal
operation mode. Append is exactly the same, except that the new element is
appended as the last child of the current node rather than inserted as the cur-
rent node’s previous sibling. New Text and Set Attribute both require actual
dictation from the user. Therefore, the New Text command causes the system
to beep indicating that it is waiting for free dictation. It records everything
the user speaks until the user issues the command Complete. At that point,
all of the text is appended as the last child of the current node. Finally, Set
Attribute is much like the New Text command. However, there are two parts
to the new node, the name and the value. Therefore, Set Attribute puts the
system in the dictation mode. The first word spoken in this mode is inter-
preted as the name of the attribute. Anything spoken before the Complete
command is issued is interpreted as the value of the attribute. For example,

“Set Attribute [Title] [A Midsummer Night’s Dream| Complete” would set the

63

‘ Command ‘ Behavior

Complete ends dictation mode
Pause pauses input; engine only recognizes Resume command
Resume ends paused state; engine listens for all commands

Command List

lists the set of commands available at the current node

Save saves the current XML tree
Stop stops the rendering of the current node
Exit performs any necessary cleanup and exits the program

Table 4.2: Command Set Used to Direct the AXL Engine.

Title attribute of the current element to be “A Midsummer Night’s Dream”.

Table 4.2 outlines commands the user may employ to direct the engine

itself. Each command tells the engine to perform a function independent of

the underlying document. This command set should not result in an update

to the view of the XML structure.

*Parent

«Next Sibling Insert Befor

*Previous Sibling *APPend Any Valid

«First Child Tag Name

sLast Child

*Name Pause

*Value Normal Paused

*Remove

«Commands Resume

«Save

*Stop *New Text Complete
*Set Attribute

Figure 4.6: The AXL engine state transition diagram.

The AXL Speech DOM engine can be in one of four states (see Figure 4.6).

The transition from one state to another is initiated by a spoken command from

64

the user. To transition from Normal to Paused, the user speaks the command
Pause. Resume returns the system to normal operation. Dictation mode is
entered by speaking either the New Text or Set Attribute command. After the
user finishes dictating, Complete returns the system to normal operating mode.
Tag Specification is entered by either the Insert Before command or the Append
command. Once the tag name is spoken, the system automatically returns to
the Normalstate. The remaining commands cause the system to perform some
action which may or may not result in output to the user, however the system
itself remains in the Normal state.

This basic implementation does not require a schema or user-specified rules.
In fact, this interface can be created one time and used to navigate any XML
document. However, it is not enough to provide a generic, low-level interface
to an XML document. We would like to leverage the functionality provided by
the Speech DOM, and build a higher-level interface on top of it to give users
a more intuitive way to navigate a document. A schema-specific interface not
only allows more intuitive navigation, it provides the means to customize the
output rendering of each type of node. Ultimately, given an XML document
conforming to one schema, we would to interact with it in a way specific to

that schema.

4.4.1 A Schema-Driven Interface

Primarily, the DTD tells us what kind of element children and attributes
an element is allowed to have. The first task is to use that information to
provide a rendering of the node. For example, in addition to rendering the
node by speaking the tag name, we can also speak the names of the children
and attributes that the node is allowed to have. For example, the rendering of
an ARTICLE node might be “An ARTICLE is a HEADLINE and a BODY”.
This provides the user with a brief look at the general structure at any given
node without having to know the structure before hand.

The second task is to use the schema derived information to produce a

65

more intuitive vocabulary with which we can interact with the document.
First, we can use the knowledge of the elements and attributes that exist in
the document to develop a vocabulary. Suppose that a user wished to navigate
to the BODY element of an ARTICLE. Instead of navigating all of the children
using the Speech DOM vocabulary, we allow the user to actually speak the
command ”BODY”. This is more intuitive for the user. In addition, developing
such a vocabulary allows us to easily disallow illegal directives. If the user asks
for the NEWSPAPER node while at the BODY element, we can immediately
give the user feedback indicating that no such node exists without having to
actually look for the node in the subtree. This creates a more efficient system.

Even though this design allows us to query using a more high-level lan-
guage, it still does not provide all of the facilities that one might desire. The
user may want to have more control over how each type of node should be
rendered. The automatically generated interface may not be sufficient for a

user’s desired usage of the system. In that case, user input is required.

4.4.2 The ABL Rule Language

There are many reasons why a user might want to specify how they would
like a document to be rendered. The complete semantic definition of the struc-
ture might not be specifiable in an XML schema. Furthermore, the user may
just have a different preference than that which is defined by the default AXL
maker. Therefore, AXL defines its own rule language, the Audio Browsing
Language (ABL). ABL allows a user to provide input about the rendering of
the element and attribute nodes in the XML tree.

ABL Implementation of the MakerFactory Rules. The general Mak-
erFactory architecture provides a high-level rule language that we can use to
specify general rules. However, the meaning of those rules can be interpreted
differently by different types of Makers. This section examines the ABL inter-

pretation of the MakerFactory rules.

66

The cond, elementid, and attributeid attributes are straightforward and im-
plemented as they are described in section 4.1.4 of this thesis. Both elementid
and attributeid specify the tag name of the given node that should invoke the
defined rule. For example, if “Person” occurs as the value of the elementid
attribute, then the rendering defined in the rule will be invoked when a Person
element is encountered. When the cond attribute occurs as a child of an El-
ementRendering element, the given ElementRendering will only be invoked if
the condition is met. If the cond attribute is a child of an AttributeRendering
element, the same logic applies. When cond occurs as a child of a Render ele-
ment, that specific rendering will only be invoked when the condition is met.

Suppose that the content model of an A node were the following:

<!ELEMENT A ((B|C)*)>

Suppose that the logic behind the rendering were as follows:

if A has less than 5 children

render all B children then render all C children
else

render all C children then render all B children

To implement this logic, there should be two ElementRendering nodes.
The first should be invoked if the condition numChildren(A) < 5 is met,
and the second should be invoked in all other cases. Furthermore, the first
rendering element should have two Render children. The first should indicate
that CHILDREN_ONLY should be rendered upon condition tagName = B
and the second should indicate that CHILDREN_ONLY should be rendered
upon condition tagName = C'. The second ElementRendering node would also
have two Render children. The first of its Render children would indicate that
CHILDREN_ONLY should be rendered upon condition tagName = C and
the second would indicate CHILDREN_ONLY upon condition tagName = B.

The ABL implementation of the depth attribute also warrants explanation.
In the speech interface, all rendering is done recursively. The default imple-

mentation specifies that only a node is rendered. However, the user may wish

67

to change that implementation. It may make sense to render an entire subtree
rather than just the node at the root. To illustrate, we use the following XML

fragment:

<Name>
<First> John </First>
<Last> Doe </Last>
</Name>

Arriving at the Name node does not give the user much information. In
order to be able to identify whether or not this is the entry that the user is
looking for, the user needs more information. Furthermore, since the subtree
itself is very small, the user may actually want to specify that when the cursor
arrives at a Name element, the entire subtree should be rendered. This is the
purpose of the depth attribute. In the ElementRendering case, the user can
specify that the node and its children should both be rendered by specifying
NODE_CHILDREN as the value for the attribute. In this case, a depth of
NODE_CHILDREN would cause the system to render “Name, First John,
Last Doe” when it arrived at the Name node. The depth attribute when used
in the AttributeRendering context is very similar. If the user wants only the
name of the attribute to be rendered, or perhaps just the value, then the depth
attribute should change accordingly.

Finally, if the speech rules define an Action element, the classname at-
tribute indicates that a class of the given type will be instantiated. If the
ismodifier attribute is TRUE, then the AXL Mediator will acquire the Ren-
derer lock before invoking the given class. After the class is invoked, the
Mediator will replace the current node with the modified node and unlock the

Renderer. This is the expected behavior of any Mediator.

ABL-Specific Rules. ABL also defines its own set of rules. ABL aims to
allow the user to customize each Render element. The current implementation

supports the following children of the Render element.

68

<IELEMENT Tag EMPTY>

<IATTLIST Tag
rendername CDATA #REQUIRED>

<!ELEMENT Phrase EMPTY>

<!ATTLIST Phrase
prenode CDATA #IMPLIED
postnode CDATA #IMPLIED
prechild CDATA #IMPLIED
postchild CDATA #IMPLIED
preattr CDATA #IMPLIED
postattr CDATA #IMPLIED>

The Tag element allows the user to change the rendering from the tag name
of the element to some user-specified value. This is useful for many reasons,
one in particular being the discrepancy between tag names and actual English.
Instead of speaking a tag name such as “STGDIR”, which the engine may not
even be able to convert to speech, the user could specify that the output should
be “stage direction”, a more understandable phrase.

The Phrase element allows the user to define different phrases that will be
spoken before and after the rendering of each type of node. For example, a
prenode phrase might be “You have arrived at a ”, while a postnode phrase
might simply be “ node”. The resulting rendering of a Name node would be
“You have arrived at a Name node”. Similarly, a postchild phrase might be
“followed by” such that the rendering of the children might be something like
“First followed by Last”. Of course, all of these can be left blank. However,
any or all of the attributes can be defined such that nodes can be connected
together with a more sentence-like flow.

Another desired function is to specify the way in which the user can access
a node of a given type. For example, the Tag element allows the user to specify
how the tag of a given node should be interpreted in the spoken rendering of
the node. It makes sense to have the semantics of this element attached to
a given Render element because a given node may be spoken in a variety of
different ways depending upon the given condition. However, it is also useful

to allow the user to specify the way in which they wish to access a node of

69

the given type. However, this specification does not depend on any given
condition of the node. For example, every time the user wishes to hear the
“stgdir” node, the user should speak the same command. Therefore, we attach
a Speak attribute to the ElementRule element of the rules. If the user wishes
to access a “stgdir” node by saying “Give me the stage direction”, then the
value of the Speak attribute will be “Give me the stage direction”.

The final extension that we have made to the schema is to add a Default
element to the content model of the RenderRules element. The Speak and

Default modifications yield the following changes to the base schema:

<!ELEMENT RenderRules ((ElementRule|AttributeRule)+, Default?)>
<!ELEMENT ElementRule (ElementRendering)+>
<!ATTLIST ElementRule
elementtid CDATA #REQUIRED
Speak CDATA #IMPLIED>
<!ELEMENT Default EMPTY>
<!ATTLIST Default
parent CDATA #IMPLIED
next CDATA #IMPLIED
previous CDATA #IMPLIED
nextAttr CDATA #IMPLIED
previousAttr CDATA #IMPLIED
name CDATA #IMPLIED
value CDATA #IMPLIED
exit CDATA #IMPLIED
pause CDATA #IMPLIED
resume CDATA #IMPLIED
whatcanisay CDATA #IMPLIED
stop CDATA #IMPLIED>

Each attribute represents one of the default commands in the current ver-
sion of AXL. If the user wishes to change one of the default commands, the
new command should be given as the value of the attribute. For example, if
there were an element “name” in the actual schema of the document, there
would clearly be a conflict between the command to access the name element

and the command to get the name of the element pointed to by the current

70

cursor. This conflict can be resolved if the user changes the default name

command to something else.

<Default name=’’my identifier’’>

The preceding example would change the default name command to “my iden-
tifier”. When the computer hears the user say that phrase, it will reply with

the tag name of the current node.

4.5 Evaluation Using a Study of User Experi-
ence

The goal of AXL is to demonstrate that we can automatically produce
a usable system to access content using non-traditional devices and displays.
The section demonstrates the usability of AXL by presenting a set of user-
based experiments. First, we discuss how the experiments were designed and
conducted. We then examine the observations and conclusions we have made.

Our main goal was to produce a system that would be usable for people
with a variety of skill levels. We hoped that the command set we provided was
intuitive enough to allow any user to extract information from an XML docu-
ment without knowing about the underlying data representation. Further, we
hoped that any user would be able to extract information from the document
with a minimal learning curve. Finally, we hoped that users would be able to

understand the context of the information they received from the document.

4.5.1 Design of the User Tasks

The study we conducted asked a set of users to navigate and extract infor-
mation from an XML document outlining possible travel plans. The concept
was that a user could plan a vacation online by navigating such a document to
find the necessary information and choose a destination, find a flight to that

destination, etc. The document we designed followed the following schema:

71

<!ELEMENT Travel (Flight-List, Rental-Car-List,
Vacation-Package-List)>

<IELEMENT Flight-List (Flight*)>

<!ELEMENT Flight (Destination, Airline, Price)>
<!ELEMENT Destination (#PCDATA)>

<!ELEMENT Airline (#PCDATA)>

<!ELEMENT Price (#PCDATA)>

<!ELEMENT Rental-Car-List (Rental-Carx)>
<!ELEMENT Rental-Car (Type, Price)>
<!ELEMENT Type (#PCDATA) >

<!ELEMENT Vacation-Package-List (Vacation-Package*)>

<!ELEMENT Vacation-Package (Description, Airfare,
Hotel-Cost, Price)>

<!ELEMENT Airfare (#PCDATA)>

<!ELEMENT Hotel-Cost (#PCDATA)>

<!ELEMENT Description (#PCDATA)>

Users were first asked to read six words and two sentences as minimal training
for the ViaVoice system. Then, the subjects were given a brief set of oral direc-
tions and were shown the structure shown in 4.7 and told that the document
they would be navigating would follow the same structure.

Following the oral directions, any questions were answered and the user
was given a set of written instructions that told the user which commands to
issue to navigate within the document. The user was then expected to execute
each instruction without help from the proctor.

The first set of written directions was intended to familiarize the user with
the system and the commands provided. The directions led the user down one
path of the tree to a Flight element and investigated all of the information
at the leaf level including price, destination, and airline. The users then con-
tinued to the second set of instructions which were designed to test whether
or not the user could remember and apply the commands from the first sec-

tion and successfully navigate the structure without explicit directions. The

72

Figure 4.7: A tree representation of a travel document.

instructions asked the user to navigate from the root of the tree to a sibling
Flight element and retrieve the same information retrieved in the first set of
directions. The third set of directions led the user down a different path of
the tree to the Rental Car element and tested the user’s ability to find the
price without explicit instructions on how to find the price of a Rental Car.
The final set of instructions asked the user to navigate the tree to a Vacation
Package element and asked them to insert a new node into the tree. The in-
tention was to examine the user’s ability and reaction to modifying the XML
structure.

Finally, the users were asked a series of questions about their experience
using the system. The questions involved rating and commenting on the com-
mand set provided, the appropriateness of the feedback provided by the sys-

tem, and the user’s prior experience including familiarity with XML.

73

4.5.2 Subject Profiles

We surveyed three preliminary subjects and found that the study itself
needed to be modified. The subjects found that some of the instructions
needed to be enhanced with further explanation. After slight modification of
the study we surveyed five other people, all of whom were able to perform the
given tasks. We found that the observations of both sets of subjects were very
similar and thus discuss observations of all eight subjects.

All three preliminary subjects were familiar with XML. Of the subjects, two
were male and one female. Moreover, two subjects had non-American accents.
Of the five remaining subjects, four were female and one was male. One of the
female subjects had a non-American accent and only one was familiar with
XML.

4.5.3 Observations

We made five main observations:

1. The users’ frustration with the rendering of some nodes facilitates the

need for customization rules.

2. The automatic generation of a command set based upon schema yields

commands considered natural by users.

3. The limited vocabulary produced by schema analysis aids the ViaVoice

recognition engine.
4. There is a need to develop a better help command.

5. There is a need to develop enhanced feedback mechanisms.

The Need for Customization Rules. The study itself did not provide
customization rules nor did it allow the users to write their own customization

rules. Therefore, the rendering of all elements was simply the rendering of the

74

tag name or the tag name and text data if the element had the content model
(PCDATA). Many users expressed frustration with the fact that when they
asked for “Flight eight”, that is to say that they moved the current cursor to
the eighth flight element, the response from the computer was simply “Flight”.
Many of the users wanted the computer to say “Flight eight”. One user even
suggested that when she asked for the “Flight List” the response should be
the price, destination, and airline of each flight in the list.

Despite the users’ frustrations, this observation indicates that our cus-
tomization language is imperative to allow users to easily specify their pre-
ferred method of rendering. By writing a simple set of customization rules
using the customization language we have designed, the user could easily pro-

gram the system to render each node in a more suitable manner.

The Command Set. We observed the users’ perceptions of the command
set in two ways. First, the initial set of questions we asked the subjects was
designed to probe the user’s opinion of the commands provided. We wanted to
know how natural or intuitive the commands were for the user and whether or
not it was difficult to understand the function of any of the commands. More-
over, we wanted to know if the subjects felt that the command set provided
was complete or if the users found themselves in want of different commands.
Second, the directions provided included instructions to access information,
but allowed the user the freedom to choose between a Speech DOM level com-
mand or a schema-based command. For example, the users were asked to get
the price of a given flight, but were able to choose between the command price
and last child. We expected that the Speech DOM level commands would
seem less natural to users and that the commands generated through schema
analysis would be more natural.

We found that the users were generally pleased with the command set pro-
vided. As we had anticipated, most users indicated that the natural commands
were the generated commands like price and destination while commands like

first child and parent were less natural. When able to choose between a Speech

75

DOM command and a schema based command, most users chose the schema
based commands (i.e. price). However surprisingly, one user did choose to use
a Speech DOM command. We propose that those familiar with tree struc-
tures and the terminology related to them would be more inclined to use the
Speech DOM commands. However, more novice users find the more natural

commands most useful.

Recognition Accuracy. We were somewhat skeptical of the recognition
accuracy of the ViaVoice system. It has been given accuracy ratings in the
85 percent range, but tends to require extensive training in order to perform
well. However, we were encouraged to discover that with only two sentences
worth of training, the system was able to understand a variety of people who
had a variety of accents with high accuracy. We attribute this benefit to the
restricted vocabulary used by the system. Because there are only a limited
number of commands a user can speak, ViaVoice performs much better than
in a general dictation scenario.

There were some instances of misunderstanding however. Background noise
and misuse of the microphone (i.e. touching the microphone causing extra
noise) accounted for some instances of the system not hearing or mishearing
the user. In some cases, the system’s complete lack of response caused the
user frustration. We attribute this behavior to the speech recognition software

and hence it is beyond the scope of this thesis.

A Help Command. The only help facility provided by the system is the
command list command which lists all possible commands at the given node
including all schema based commands as well as all Speech DOM commands.
We made a couple of observations based upon the use of this command.
First, users expressed the desire for two separate help commands, one to
hear the schema based and another to hear the Speech DOM commands.
Some wanted to hear only the schema based commands, but were inundated

with all of the possible commands for the system. Second, one user expressed

76

frustration by the fact that the commands listed were all possible commands.
She wanted to hear only the commands that were valid for the given node in
the given subject tree. For example, if an optional node were absent in the
subject tree, the command to access that node would not be given.

We can first conclude that a thorough help facility needs to be integrated
into the system. Because the system is designed to be used by a person who
cannot see the document or its structure, we need to examine how to best
communicate possible navigation paths and how to access them using only
auditory input and output.

However, we also anticipate that there is a reasonable learning curve related
to AXL. If each user underwent a short period of AXL training, they would
be less likely to need such a help facility. Moreover, we predict that more
advanced users would be likely to use the Speech DOM level commands more
often simply because they would not want to learn a new set of commands for

every new schema.

System Feedback. AXL attempts to provide feedback by using different
sounds to convey different errors. In the initial instructions given to the users,
they were told what each of the sounds meant, but most were unable to re-
call the meaning when they encountered the sounds while later traversing the
document.

We believe that more extensive research must be done to determine which
sounds are best suited for providing error feedback. In this case, one uniform
beep would likely have been less confusing than the three different sounds the
system emitted. However, three different sounds could be most useful if the
sounds were carefully selected. Moreover, users expressed frustration in general
with the feedback of the system in terms of communicating positioning within
the document. A deployable system should integrate a mechanism to aurally

communicate a relative position within a document in an understandable way.

7

4.6 Discussion

Next-generation environments promise to pose new challenges to providing
access to information. Pervasive computing devices such as cellular phones,
PDAs, digital clothing and jewelry, and embedded sensor devices do not sup-
port the traditional tools that a user would employ to navigate information.
For example, a typical web user is accustomed to having a 17-inch monitor,
mouse, and full sized keyboard to access web content. The user of a cellu-
lar telephone may not have any of the same tools available. Therefore, the
challenge is to develop alternative mechanisms that can enable content-driven
applications, such as web surfing, by providing access to information using
whatever input and output resources are available.

The MakerFactory and AXL address that challenge. The MakerFactory is
an architecture designed to support device and user-specific access to semi-
structured, presentation-independent content. The MakerFactory can support
a variety of mechanisms to access the same underlying content, represented
in XML format. More specifically, AXL is a speech-based component that
automatically generates customized, usable speech-based interfaces. For next-
generation devices that have display constraints and cannot support traditional
access tools, the MakerFactory and AXL enable content-driven applications by
providing a usable solution to support content access and provide speech-based

access and navigation of information.

78

Chapter 5

Resource-Aware Content
Management for a Network of

Personal Devices

5.1 Motivation

Personal computing devices are becoming increasingly pervasive. In the
future, and even now, a person may go to work, to school, or simply walk
down the street adorned with an entire collection of devices. These devices
include PDAs, cell phones, laptop computers, and even clothing or jewelry.
While each device is often limited in its capabilities because of constraints such
as limited bandwidth, by improving coordination between the set of devices,
the collection can become more powerful than any single device. One of the
primary challenges in using a collection of devices in a coordinated way is
managing the content stored on each device, and placing content where it will
be most useful. This chapter presents a generalized architecture to manage
content across a collection of devices in a resource-aware way. To validate
the architecture, we evaluate a power-aware scheme that manages content by

taking into account the remaining energy supply across a collection of devices.

79

5.1.1 Target Applications

As devices become more advanced, the range of applications they sup-
port is ever increasing [67]. In particular, increased disk space, memory, and
bandwidth have enabled small devices to be used for more advanced, content-
driven applications. While the first generation of PDA devices supported
tasks such as calendar and address book maintenance, newer PDAs support
access to text documents and multimedia content such as audio and video files.
In the next generation, the same functionality may be supported by a user’s
jacket (http://www.media.mit.edu/hyperins/levis/). Moreover, increased con-
nectivity between devices enables more advanced, content-driven applications.
Today, we can imagine users on a subway train exchanging sections of the
morning newspaper [49]. In the future, we can imagine millions of computers
embedded in the environment, each gathering information and making sure
the information is available where it is likely to be accessed.

Managing information in such a large-scale environment promises to be
a great challenge. In fact, even in a more limited environment challenges
arise. As devices become smaller, a single user is likely to carry a collection
of devices. Even today we see business people who carry a PDA to keep
track of appointments, a cellular phone to speak with colleagues, and a laptop
computer to aid in presentations and perform other complex chores. A high
school student might carry an MP3 player to listen to music, a cellular phone
to send messages to friends, and a laptop computer to take notes in class. In
the future, the same student may be wearing digital earrings to listen to music,
a digital shirt to capture her voice and transmit her instant voice message to
friends, and a digital jacket with a keypad to allow her to take notes in class.

Figure 5.1 provides a generic view of how a collection of devices can be used.
When the user wants to view, create, modify, or remove a document from a
device is his/her collection, he/she should be able to do so without regard for
where that information is actually stored. In other words, the user should

be able to pick up any device and access any piece of information he/she is

80

View

Create

/e

download World
Remove \
Collection @

Figure 5.1: An overview of our model for use.

interested in accessing. Similarly, if the user is participating in an application
such as peer content sharing, a user in the “outside world” should be able to
seamlessly request download of content from device owner without having to
specify on which device the content is stored.

To illustrate a more specific scenario, imagine a user on an airplane. She
picks up her laptop and starts to modify a document. When the laptop runs
out of battery, she picks up her PDA and continues to modify the document
using the more limited interface. Eventually, the PDA runs out of battery
and she switches to her cell phone. Finally, when her cell phone runs out of
battery she resorts to her digital watch where she can dictate text using speech
recognition. Today, state-of-the-art technology such as Bluetooth enables a
user to manually transfer content from device to device. However, the burden
is on the user to realize that a device is running low on battery and to select
and transfer the files he/she might be using in the next few hours. In the ideal

scenario, the user would be able to seamlessly switch from device to device

81

without having to worry about the state of the resources on each device or

explicitly transfer the content from laptop, to PDA, and so on.

5.1.2 Device Limitations

As the practice of carrying multiple devices on a day-to-day basis becomes
more commonplace, creating tools for automatically managing and coordinat-
ing them becomes necessary. The ideal situation from the user perspective is
to accomplish any task on any device. For example, a task that a user would
normally perform on a laptop should still be possible, even if the laptop’s
battery has died. The goal of content management is to automatically and
seamlessly overcome many of the limitations of a collection of small devices
by enabling devices to cooperate to accomplish content-driven tasks. Device

limitations fall into two main categories:

Resource-Centric. Small, wireless devices are extremely limited with re-
spect to resources such as bandwidth, processing, storage, and power. Up-
loading and downloading content using a PDA or even smaller device can be
time consuming, and may not even complete in the alloted time slot if a user
is highly mobile. Processing tasks such as decoding a video stream may be too
CPU intensive for a small device. Constraints on the storage space of devices
may prevent a user from having access to all the content she needs for a given
application. Finally, energy is especially limiting since battery technology is
not advancing as quickly as other resources [24]. Often, a single battery will
only sustain a laptop for a couple of hours or less under a normal workload

and, once a battery dies, a device becomes completely unusable.

User-Centric. While it would seem intuitive that a user who carries a col-
lection of devices would be able to accomplish more than if the user carried
a single device, managing and using the collection is often difficult. Despite

redundant functionality, multiple devices often cannot be used to accomplish

82

the same task. The primary problem is lack of coordination. Especially with
content-driven applications, if the content a user wants to access is not avail-
able on the device where the user is trying to access it, the task cannot be
completed.

A generic framework for managing and coordinating devices should ad-
dress both of these limitations by monitoring available resources, and making
content available on the devices that the user is most likely to use to access
that content. Resources can include CPU, network bandwidth, disk space, and
battery lifetime. Moreover, the framework should perform tasks in a seamless
manner such that the user can transition from device to device and access any

content that may be of interest.

5.2 An Architecture for Supporting Content
Management

The focus of this work is on developing an architecture to support resource-
aware management of content. The idea behind a resource-aware content man-
agement architecture is to monitor the resources available across a collection
of devices and predict where content is likely to be used or accessed. For ex-
ample, if one device in a collection has a much faster CPU than the others,
that device is likely to be used for compute-intensive tasks. Therefore, a data
set, likely to be used for a compute-intensive task should be migrated to the
device with the fast CPU. This section outlines a generic architecture for mon-
itoring resources and managing information based on knowledge of available

resources.

5.2.1 Architectural Overview and Components

Figure 5.2 illustrates a high-level view of our architecture. A user carries a

collection of devices (e.g., a Jornada, laptop, and digital watch). Each device

83

Download
<

—— Application

Jornada

[

API

Resource

Policies

Request
Routing

Data
Migration

Download
‘part1.doc

Laptop

API

Resource
State

Policies

N

Request
Routing

Migration

Data

Download
"part2.doc”

Watch

API

Resource

Policies

State

Request
Routing

Data
Migration

Migrate “toDolList.wav”

Figure 5.2: An architectural overview.

runs a middleware component that is configured such that it knows about the
other devices in the collection and can communicate with them. Each device
monitors its own resources, and content is managed based upon the resource
view. For example, if a user’s laptop and watch have higher bandwidth than
his/her Jornada, the task of downloading content from an external source
could be passed from the Jornada to the other devices. Similarly, the “todo”

list a user stores on his/her watch could be migrated to his/her laptop if the

watch starts to run low on battery.

The function of each architectural component is as follows:

e Application Interface - The application interface interacts with the
application. It allows the application to request execution of tasks as

well as provides a transparent view of the content that is stored across

the entire collection of devices.

specific information and are used to make decisions about where content
should be placed for optimal access. For example, the user may spec-

ify that he/she will never read email on any device but his/her laptop

84

Policies and Preferences - Policies and preferences keep track of user-

computer. Using this information, the architecture can reduce waste-
ful content migration by choosing never to migrate email to the user’s

Jornada or watch.

Resource State - Each node in the device group maintains a view of
the state of its resources, and any information it has about the resources
available on the other devices in the group. Each device can communi-
cate with the other devices in the collection to request information about
remote resources when necessary. The resource state is used when mak-
ing decisions about where content should be placed. For example, if the
battery is low on a particular device, the content stored there should be
moved from that device to another device in the collection. The resource
state can provide crucial information used in deciding to where content

should be migrated.

Request Routing - When a task is issued by the application, the re-
quest routing component evaluates whether or not the task should be
reassigned to another device in the collection. For example, if the user
issues a download request on his/her Jornada, the request routing com-
ponent may recognize that the user’s laptop and watch have higher band-

width, and may reroute the user’s request to the alternate devices.

Data Migration - The data migration component is responsible for
ensuring that content is available where it is most likely to be used.
For example, if the task of downloading is rerouted from a Jornada to
a laptop and, subsequently, the user wants to access the downloaded
content on the Jornada, the data migration component is responsible for
transferring the content from the laptop. Similarly, if the battery on a
particular device is dangerously low, the data migration component is
responsible for migrating content away from the dying device to a device

where it is more likely to be used.

85

5.2.2 Example Implementations

The goal of this architecture is to support content-driven applications by
ensuring the content is available on the devices which have the best set of
resources to provide access to that content. Examples of how this architecture

can be used include:

e Bandwidth-Awareness - Applications such as peer-to-peer content
exchange are bandwidth intensive. A user may want to upload and
download large amounts of content, but may not be able to complete
the task simply because the bandwidth is not available. The problem
is exacerbated by the highly mobile nature of personal computing de-
vices. However, by allocating bandwidth-intensive tasks across a collec-
tion of devices, tasks can be accomplished in a more efficient manner.
A bandwidth-aware content management scheme can allocate the task
of downloading information to the devices with the highest bandwidth
while still making content available to the user on the user’s preferred

device.

e CPU-Awareness - Compute-intensive tasks such as decoding of video
are often slow or even impossible on small devices. By dividing or of-
floading CPU-intensive tasks, or even simply assigning the entire task to
a more powerful device, the collection can accomplish a task that would
have otherwise been impossible on a single device. CPU-aware content
management can ensure that data required to perform computation is
made available on the device which has the CPU power to carry out the

computation.

e Storage-Awareness - A small device may only have the disk space
available to store a limited number of large data files, such as MP3s
or MPEG movies, at any given time. By storing unused data on alter-
nate devices, or even dividing a file such that it can be stored across a

set of devices, the total available space can be used more efficiently.

86

Storage-aware content management can provide more efficient use of
storage space while continuing to provide the user with easy access to

information on the most appropriate device.

e Power-Awareness - Small devices have an inherently limited battery
lifetime. Additionally, if the battery runs out on a particular device,
the user cannot subsequently access any of the content stored on that
device. A power-aware content management scheme can monitor the
battery levels of each device in a collection, and migrate any critical
data from a device that is dying. Doing so can extend the amount of
time the collection remains usable because critical data can continue to

be accessed from an alternate device.

5.3 Implementing a Scheme for Power-Aware
Content Management

The architecture presented in Section 5.2 is very general. In order to pro-
vide a quantifiable measure of its usefulness, we must investigate how effec-
tively an implementation of the architecture can monitor a particular resource,
and manage content based upon the current state of that resource. This sec-
tion investigates the implementation of a power-aware content management
scheme. By focusing on a specific resource, power, we can gain a quantitative
understanding of how beneficial content management can be in a given imple-
mentation. Additionally, power is perhaps the most limited resource in small
device environments. While resources such as CPU and disk space continue
to advance quickly, battery power lags behind. The impact of this can be seen
in a variety of potential scenarios. In an environment such as a disaster site,
an energy source such as an outlet is unlikely to be available at all. Alterna-
tively, an environment such as an airport may offer a few outlets. However,

there is no guarantee that a given traveler will be able to access an outlet in

87

the interim between flights. As devices with energy consuming network inter-
faces and displays become more commonplace, schemes to manage and reduce
energy consumption will become more crucial.

Recall our model for use presented in Figure 5.1. The idea behind power-
aware content management is that, even if device D1 runs out of battery power
(dies), the user should be able to continue working on one of the other devices
in the collection. That means that information initially stored on D1 should be
migrated to an alternate device if the user is likely to access that information

after the device dies.

5.3.1 Implementation Goals and Components

There are three underlying goals that should be supported by an imple-

mentation of power-aware content management:

1. Maintain data availability - As long as one device in the collection
remains live, the user should be able to access any piece of information
he/she is interested in accessing. This goal can be accomplished by
migrating crucial content away from dying devices and placing it on

devices that are still live.

2. Support ease of access - The user should be able to pick up any de-
vice and access a desired piece of content as quickly and effortlessly as
possible. This goal can be accomplished by making intelligent predic-
tions and decisions about where content should be migrated and made

available to the user.

3. Limit energy wasted during migration - The energy spent migrating
content should not affect the overall use of the collection of devices. This
goal can be accomplished by limiting the amount of content migrated,
and by intelligently choosing where to migrate content such that it need

not be migrated multiple times before it is accessed.

88

To support these goals, we describe the implementation of the architectural

components described in Section 5.2:

Application Interface. The application interface supports ease of access
by presenting a global view of the files available across a collection of devices.
Each device shares metadata about the files it stores with the other devices in
the collection. Using this metadata, each device can present the user with a

complete view of the distributed file system.

Policies and Preferences. Policies and preferences support ease of access
and limit the energy wasted during migration. The user can specify a policy
that indicates which data he/she is likely to access as well as on which device
each piece of data is most likely to be accessed. Using this information, mi-
gration can be done in a more efficient manner, with a greater probability of

migrating the best data to the best location.

Resource State. Monitoring of the state of the battery life of each device
in the collection supports all three goals of power-aware content management.
To monitor the state of the battery on each device, we simply poll the oper-
ating system for the remaining energy supply. Additionally, we assume that
the energy consumption characteristics of the devices can be configured, or
observed. Using this information, we can migrate content from dying devices,
hence supporting the goal of maintaining data availability. Also, this informa-
tion can be used as a predictor; the user is most likely to access information on
the devices with the greatest remaining battery supply. By helping to predict
where the user is likely to access information, the resource state component

supports ease of access as well as limits the energy wasted during migration.

Request Routing. The request routing component supports ease of access
by determining whether or not information requested by the user is available

on the device where it is being requested. If the user requests information

89

that is not on the local device, the request routing component automatically
initiates an on-demand data fetch to retrieve the information from the remote

device.

Data Migration. The data migration component maintains data availabil-
ity by migrating content from dying devices; supports ease of access by at-
tempting to use predictors in making migration decisions; and limits energy
wasted during migration by making intelligent choices about which pieces of
content to migrate, and where those pieces of content should be migrated. The
component behaves according the the following algorithm:
poll the resource state component for the remaining energy level
if the level is below a threshold
migrate subset of items on this device to 1 or more
target devices in the collection

repeat

This algorithm is quite general and leaves a number of questions unan-
swered. The first question is how the threshold for migration is determined.
The threshold is determined by taking into account the remaining energy on
the device, the amount of content to be migrated (e.g., all content in a specified
directory), the network throughput of the device, and the power consumption
characteristics of the device. We assume that the power consumption and
network characteristics can be configured, or can be dynamically determined
by observing system behavior. When the amount of energy remaining is equal
to the amount of energy it will take to migrate all of the required content,
migration is initiated.

Migration presents two primary challenges: (1) determining which data to
migrate from a dying device, and (2) choosing the destination device(s). The

following two subsections address each of these challenges.

Choosing the Data to Migrate

Choosing which data to migrate from a dying device is challenging. Mi-

grating too little content may not be helpful since the user may want to access

90

a piece of content that did not get migrated. Migrating too much content is
wasteful of the resources, such as energy, required to transmit content. Be-
cause the answer to this question is not straightforward, we investigate three

strategies for choosing which data to migrate:

e Migrate All (MA) - In a migrate all strategy, all data is migrated
from the device losing power. While it may not be practical to migrate
everything on a particular device, this strategy can be implemented by

migrating all data that is located in a specified directory.

e Migrate Most Recently Used (MRU) - In a most recently used
strategy, all data that has been accessed recently by the user will be
migrated. This strategy assumes that a user is likely to access some
specific subset of the available content over a given time period. For
example, over the course of a few hours, the user might access only files

related to one specific project.

e Access Optimized (AO) - In an access optimized scheme, we assume
that we have some knowledge of which data the user is likely to access.
Either the user can specify a list of content that is likely to be accessed,

or we can implement some form of user profiling.

Choosing the Destination Device

The final challenge addresses the strategy for choosing the destination de-
vice(s). We can imagine a number of very simple schemes such as round-
robin or simply choosing the device with the largest remaining power supply.
However, such schemes may be ineffective, or wasteful. Using a round-robin
scheme, content may be migrated from a dying device to another dying device.
In this case, the content will only have to be migrated again, likely before it is
even used. Choosing the device with the largest remaining power supply may
also be ineffective if the target device has very high energy usage characteris-

tics. Additionally, considerations such as available storage space or bandwidth

91

of the target device are also likely to have an effect on performance.

In this work, we investigate a Power Aware (PA) scheme for choosing
the destination device. The amount of content migrated to a particular device
is based on the remaining lifetime of that device with respect to the lifetimes of
the other devices. We poll each live device d in the collection for the amount
of time it can continue work before it reaches its threshold (rl;). For each
device d, the number of items migrated to d with respect to the total number
of items (ni) is (rly * ni)/ SN, rl;. Similarly, we could consider the total size
of the items instead of the number of items. However, for the purposes of our
experiments, we assume that all files are roughly the same size. This formula
ensures that the amount of content migrated to a given device is proportional
to the remaining lifetime of the device with respect to the remaining lifetimes
of the other devices in the collection. The goal of this scheme is to ensure that
content is available on devices that are likely to be alive when the user tries
to use them.

We could also imagine even more advanced schemes such as predicting
the remaining energy supply after migration occurs, or predicting the device
where the user is most likely to access the specific content. In the first case,
implementing such a scheme would only be necessary if the ratio of energy
consumed to remaining energy supply varied greatly across the collection of
devices. The second option would avoid the case of migrating content to a
device, and then having to fetch it, on-demand, from another device before it
can be used. However, to implement such a scheme, we need to either explore
user profiling techniques, or require the user to specify where content is likely

to accessed.

5.4 Evaluating the Tradeoffs of Power-Aware
Content Management

The goal of our evaluation is to explore the tradeoffs associated with the

content migration schemes presented in the previous section, and to explore

92

the overall benefit of using migration. To fully understand the benefits and
tradeoffs, it is necessary to explore the behavior of each scheme under a variety
of conditions. This section presents the set up and results of a set of simulated
experiments. By using a simulation to explore the behavior of migration, we
have the freedom to modify both device characteristics and user usage patterns.
This enables us to gain a more complete understanding of the benefits and

tradeoffs of using power-aware content management schemes.

5.4.1 Simulation Overview

Our simulator models a set of personal devices and simulates a single user
accessing content on those devices. An example would be a user who is travel-
ing on an airplane. We suppose the user carries a collection of devices; perhaps
a laptop, a PDA, a cell phone, and a digital watch. When the user boards the
airplane, all devices are fully charged. For the first two hours of the flight, the
user uses his/her laptop to access information stored there (e.g., a PowerPoint
presentation, email, or an MPEG movie). When the battery on the laptop
dies, the user continues to access the same information on the PDA device.
When the PDA dies, the user switches to the cell phone, and eventually to the
digital watch.

There are a number of assumptions inherent in this example scenario. First,
all of the devices must have similar functionality. If a piece of content is
migrated from one device to another, both devices should have the capability
to access and/or modify that piece of content. For example, if an MP3 file is
migrated from one device to another, both devices must have speakers and an
MP3 player installed. This is certainly true of many devices today. It is not
uncommon for a laptop, PDA, and cell phone to have overlapping functionality.

Next, we assume that a user uses one device at a time, and uses that device
until the battery has been exhausted. In other words, the user does not switch
from laptop, to cell phone, back to laptop, nor does the user listen to an MP3

on his/her watch while working on a PowerPoint document on his/her laptop.

93

Scenarios where the user accesses multiple devices simultaneously do exist,
and would reduce the benefit of migration. However, our assumption of serial
access is a reasonable assumption for many application scenarios such as the
airplane example described above.

Finally, we assume that at any given time, one device is in use, and the
remaining devices are idle (or have run out of power). In practice, an intelligent
energy saving scheme that puts all devices into sleep mode when no device is
in use is likely to be employed. We assume such a scheme is used, therefore
we do not simulate intermittent periods when all devices are idle. We could
additionally employ energy saving techniques to reduce energy consumption
of the idle devices when one device is in use. However, for the purposes of this
work, we assume that all unused devices must be on and idle such that any
content not available on the device currently in use can be fetched on-demand.
That is to say, if a user wants to listen to an MP3 stored on her PDA while
she is currently using her laptop, the file will be fetched, on-demand, from the
PDA.

The simulation proceeds as follows:
generate trace of items to be accessed
for device 1 ton

while battery threshold not reached
while trace contains a next item
if item is on another device
fetch on-demand
record a fetch
else if item is not available
record total miss
continue

access item for specified time
initiate migration

The trace of accesses is a list of <item, time> pairs. Each pair indicates
that the the given item should be accessed for the specified time. The trace
is finite and the total trace time is equal to the number of seconds that the

device collection would be available in the ideal case. The battery threshold

94

is determined as described in Section 5.3. Similarly, migration is performed

according to the algorithms described in Section 5.3.

5.4.2 Metrics

Our evaluation looks at three primary metrics:

e Time Devices Remain Usable - The primary metric we are interested
in is the total time that a user can work. The goal of migration is to
increase the total amount of time a collection of devices remains usable
by migrating relevant items from devices with low battery supplies to
devices with more plentiful battery supplies. Therefore, even if a user
is interested in accessing an item that was originally stored on a device
that has died, the user may be able to access the item elsewhere and

hence continue to work.

e Data Misses - A secondary metric is the number of misses the user
experiences. A miss occurs when the user picks up a device and tries
to access an item not available there. There are three miss scenarios:
(1) the item was originally stored on device d2 and the user is trying to
access the item on device dI; (2) the item i was migrated from device d2
to device d3, but the user is trying to access the item on device d1; and
(3) the item was originally stored on device dI and was not migrated
before device d1 died. In scenarios 1 and 2, the item will be fetched,
on-demand, from the live device where it is currently stored. However,
scenario 2 indicates that the migration algorithm has failed to predict the
correct device and energy is wasted migrating the item twice. Scenario
3 indicates that the migration algorithm has failed completely and the
user will have to move to the next item he/she is interested in accessing
(e.g., the user cannot access his/her PowerPoint presentation, so he/she

decides to read email instead).

95

e Wasted Migrations - The third metric is the amount of energy that
is wasted by migrating items that are never accessed after migration.
Migrating data requires additional energy that would not otherwise be
consumed if a user were simply working on the device. Therefore, the
energy spent migrating unnecessary items is likely to reduce the total

amount of time a user can work.

5.4.3 Setup

Full Energy | Idle Active | I/R A/R I/T A/T
Supply () | (W) W) | W) | (W) (W) (W)
| 90000 | 3.93944 [13.839 | 9.2006 | 14.0006 | 9.64615 | 14.44615 |

Table 5.1: Energy consumption characteristics of devices simulated.

The simulator models a set of large devices such as a laptop computers.
Certainly, different devices have varying energy consumption characteristics.
Moreover, smaller devices such as PDAs consume much less absolute energy.
However, we have chosen the large device model for two reasons. First, we
were able to build a more accurate large device model based on previously
published energy consumption measurements. Also, while absolute energy
consumption varies, most devices have similar lifetimes. Typically, devices
consume energy at the same rate given the full energy supply, and energy
consumption characteristics of the device. Farkas et al. confirm this notion
with their measurements of the Itsy Pocket Computer [17]. Therefore, our
results hold true for any device that has a lifetime similar to that of our large
device.

The characteristics of the device we model are shown in Table 5.1. These
characteristics are taken from measurements reported by Farkas et al. [17].
They measured power consumption of the IBM ThinkPad 560x running at
233MHz using 64Mbytes of memory. We use the idle, busy wait, and busy

wait with LCD-enabled benchmarks. While different workloads may consume

96

different amounts of energy, differences are often slight and these measure-
ments are reasonable for the granularity of our experiments.

Because Farkas et al. do not measure the power consumption of a network
interface, we use the measurements taken by Feeney and Nilsson [18]. They
measure the consumption of a 2.4GHz DSSS Lucent IEEE 802.11 WaveLAN
PC Silver card (11Mbps) running on an IBM ThinkPad 560. To obtain the
device characteristics shown in Table 5.1, we have added the measurements
reported by Feeney and Nilsson (idle, receiving, and transmitting) to the mea-
surements reported by Farkas et al. and Hill et al. This provides us with a
reasonable model for our simulation. Finally, the full energy supply measure-
ment is taken from numbers reported by Flinn and Satyanarayanan [19].

A device can be in one of six states:

e Idle - In the idle state, all components of the device are in idle mode

including the display and network card.

e Active - In the active state, the processor and display are busy, and the
network card is idle. This state models the user accessing content on the

device without having any network interaction.

e Inactive Receiving (I/R) - In the inactive receiving state, the pro-
cessor is busy, the display is idle, and the network card is in receiving
mode. This state models the device receiving content migrated from
another device. However, no content is being accessed on the receiving

device.

e Active Receiving (A/R) - In the active receiving state, the processor
and display are busy, and the network card is in receiving mode. This
state models the device receiving the content migrated from another

device while the user is accessing content on the receiving device.

e Inactive Transmitting (I/T) - In the inactive transmitting mode,

the processor is busy, the display is idle, and the network card is in

97

transmitting mode. This state models migrating content from a device

while the user is not accessing content on that device.

e Active Transmitting (A/T) - In the active transmitting state, the
processor and display are both busy, and the network card is in trans-
mitting mode. This state models migrating content from a device that

the user is currently using to access content.

A device transitions into an active state if the user attempts to access
content on the device. A device transitions into a receiving state if content is
migrated to the device, or if the device fetches content from another device
on-demand. Finally, a device transitions into a transmitting state if the device
is migrating content to another device, or is responding to an on-demand fetch.

We compare six migration schemes based on the strategies described in
Section 5.3. In the first scheme, NONE, no migration is employed. In the
second scheme, power aware migrate all (PAMA), we use a power aware
scheme for choosing the destination device, and we migrate all data from
the current device. In the third scheme, power aware most recently used
(PAMRU), we use a power aware scheme for choosing the destination device
and we use a most recently used scheme for determining which data to migrate.
In the most recently used strategy, we do not assume any history is kept from
session to session and all data migrated is that which has been accessed since
the simulation began. In the fourth scheme, power aware access optimized
(AO), we look ahead in the trace of items to model user preference. In essence,
we assume that we have perfect knowledge of the documents the user will access
and migrate only those items that appear in the remainder of the trace. In
the fifth scheme, ideal access optimized (IAO), we assume that all data is
already in its ideal location such that no migration is necessary and a user can
always continue working. In the final scheme, ideal power and access optimized
(IPAO), we make the same assumptions as in the IAO scheme. However, we
further assume that any device not in use can be safely turned off. Thus, this

scheme wastes no power in idle mode.

98

Parameter Normative | Range
Value Tested
Storage 32MB 128KB - 1GB
Access Time 20 mintues | 5 mintues - 40 mintues
Number of Items 128 16 - 1024
Bandwidth 11Mbps 106Kbps - 54Mbps
Idle Energy 3.9W OW - 3.9W
Number of Devices | 4 2-10
Trace Distribution Zipf Zipf, uniform

Table 5.2: Energy consumption characteristics of devices simulated.

Table 5.2 summarizes the parameters we examine in our experiments. Be-

low, we summarize each parameter and its anticipated effects:

e Storage - Storage is the amount of disk space that is initially used on
each device. As the amount of space used increases, more content is
likely to be migrated, especially in the migrate all scheme. Migrating
more content requires more energy, which, in turn, is likely to reduce the

overall availability of the collection of devices.

e Access Time - Access time is the amount of time each particular item is
accessed by the user. It is the time component of the trace. The shorter
each access is, the better PAMRU is likely to perform. The logic follows
from the fact that when access times are shorter, a longer history will
be generated and more items ultimately migrated. However, the other

schemes are unlikely to be greatly affected.

e Number of Items - Number of items is the total number of items
initially stored on each device. The more items, the smaller each item
since the storage remains fixed. Again, this parameter is most likely to
affect the PAMRU scheme. When the number of items is larger, there
is a higher probability that the migration scheme will fail to migrate an

item that will be later requested by the user.

99

e Bandwidth - Bandwidth is the available bandwidth of each device in
the collection. Devices with lower bandwidth will spend more time in
transmit mode, migrating content. Thus, the devices will use more en-
ergy overall. By using more energy to migrate content, the collection of

devices will be, ultimately, less available.

e Idle Energy - Idle energy is the power used by each device while in the
idle state. It is clear that the less energy consumed in idle state, the
longer the collection will remain available overall. However, the purpose
of varying this parameter is to get an idea of how useful migration is,
versus strategies that can reduce the absolute energy consumption of a

device.

e Number of Devices - Number of devices is the total number of devices
used in the experiment. In the IPAO scheme, the time devices remain
usable should increase linearly. However, since the other schemes con-
sume a great deal of energy in idle mode, they are unlikely to match the

linear increase.

e Trace Distribution - The trace distribution is the distribution used
for the items selected for the trace. We compare a Zipf distribution to
a uniform distribution. The Zipf distribution models many applications
wherein the user is primarily interested in only a few of the items avail-
able on his/her devices. It is likely that migration will perform well for
these kinds of applications because it should be easier to predict which
pieces of content should be migrated. In contrast, a uniform distribu-
tion models the scenario wherein the user may be interested in any piece
of content. Migration is less likely to perform well for these kinds of

applications.

100

—~IPAO =]AO AO PAMA - PAMRU --- NONE

500
450 -
400 -
350 -
300 1 .
250 -
200 -
150 -
100

Total Duration (minutes)

6]
o

o

Storage (KBytes)

Figure 5.3: Usable duration for varied storage using Zipf access pattern.

5.4.4 Results

Figures 5.3 and 5.4 illustrate the total time the collection of devices re-
mains usable as the total storage space initially used on each device varies.
Primarily, these graphs illustrate the general relationship between each of the
migration schemes, and demonstrate that migration is useful under a variety
of conditions. More specifically, for the Zipf trace pattern, PAMA shows up to
a nearly 50% improvement over NONE; well over a 1.5 hour total increase in
the amount of time the collection of devices is usable. Additionally, the PAMA
scheme performs very close to IAO, the ideal scenario, for most initial storage
configurations. PAMA also performs very close to AO for most initial storage
configurations. This suggests that we can achieve good results without im-
plementing difficult user profiling techniques that would be necessary for AO.
Finally, no migration scheme comes close to the results achievable with IPAO.
This is because the power consumption of the devices during idle time is quite
high. In order to compete with the IPAO scheme, the devices not in use would

need to employ more intelligent, power saving techniques.

101

—~IPAO =]AO AO PAMA - PAMRU --- NONE

500
450 ~
o 400 -

w W

o u

o O
I I

P R NN

o U O U

O O O O
I I I

Total Duration (minutes

6]
o

o

Storage (KBytes)

Figure 5.4: Usable duration for varied storage using uniform access pattern.

Unfortunately, PAMRU performs well below PAMA in most cases. While
PAMRU does remain stable for all initial storage configurations, it only per-
forms marginally better than NONE. The most recently used strategy alone is
not sufficient to predict which pieces of content the user is most likely to access
in the future. However, the benefit of the PAMRU strategy over PAMA is that
less energy is consumed migrating content that is not going to be accessed in
the future.

As the initial storage used on each device begins to exceed 256MBytes,
the wastefulness of the PAMA scheme becomes more clear. The total usable
duration begins to decline because the devices are wasting energy migrating
content that will never be accessed. While this is an expected result, the
decline is not as significant as we initially anticipated. Because the default
device bandwidth is relatively fast, the energy wasted transferring content is
minimal. In a lower bandwidth environment, this is less likely to be the case.

Figure 5.4 illustrates the same parameter, but for a uniform distribution
of items accessed. In the uniform case, NONE performs much better and the

benefit of migration is decreased. This is an expected result. In the Zipf

102

case, when a device that stores one or more pieces of popular content dies,
the total usable time of the collection is dramatically decreased. In contrast,
the uniform case models the situation where a user can make use of virtually
any piece of content stored on any device. However, there are a large number
of applications that do not follow the uniform model and, hence, will benefit
from a content migration scheme.

An additional observation is that, much like in the Zipf case, PAMA starts
to decline in performance when the initial storage used on each device exceeds
256MBytes. In this case, PAMA actually performs worse than NONE for large
values of storage used. Again, this result is not surprising. The conclusion that
can be drawn based on this set of experiments is that, for many applications,
a migration scheme can be very beneficial. However, for the applications that
follow the uniform access model, migration may actually be more costly than
no migration at all.

Table 5.3 illustrates the number of items that are migrated and never ac-
cessed on the new device (Wasted Migrations) and the number of times a piece
of content must be fetched on-demand (Fetches) or cannot be accessed because
it was not migrated from a device that died (Total Misses). Migrations do not
occur in the TPAO and TAO schemes, therefore results for those schemes are
not presented. The results presented are for the Zipf trace distribution. Re-
sults for the uniform distribution as well as for the other parameters to be
presented in this section were similar, and will not be presented.

First, the results confirm that PAMA is very wasteful of energy. This is
not surprising since PAMA essentially implements a fully replicated file system
across all devices in a collection. In some cases, this may be an acceptable
solution. In fact, the analysis of Figures 5.3 and 5.4 indicates that full repli-
cation does not have a substantial impact on the overall availability of the
collection. But, full replication not only impacts the energy spent transferring
content, it also impacts the storage space used on the collection of devices.

Replicating all data onto a watch may not be feasible. Therefore, the tradeoff

103

is to use a scheme, such as PAMRU, that incurs the penalty of increased Total
Misses but reduces migrations. It is noteworthy to point out that the trace of
requests is finite, but slightly exceeds the total amount of time the collection
of devices will remain available. There are two impacts of this. First, this
is why the AO scheme experiences a non-zero number of Wasted migrations.
Also, since we assume that a user’s list of tasks exceeds the amount of time
she will actually have to complete them, even if a Total Miss is experienced,
the user may be able to continue working. Making the list of tasks longer can

increase the time work can be done in both the NONE and PAMRU schemes.

104

Storage || Scheme | Total Wasted Access Fetches | Total
(KB) Migrations | Migrations | Attempts Misses
128 AO 26 17 18 5 0
PAMA | 559 548 18 3 0
PAMRU | 11 9 24 2 11
NONE |0 0 24 2 13
512 AO 26 17 18 5 0
PAMA | 561 550 18 3 0
PAMRU | 11 9 24 2 11
NONE |0 0 24 2 13
2048 AO 26 17 18 5 0
PAMA | 561 550 18 3 0
PAMRU | 11 9 24 2 11
NONE |0 0 24 2 13
8192 AO 26 17 18 5 0
PAMA | 561 550 18 3 0
PAMRU | 11 9 24 2 11
NONE |0 0 24 2 13
32768 AO 26 17 18 5 0
PAMA | 561 550 18 3 0
PAMRU | 11 9 24 2 11
NONE |0 0 24 2 13
131072 || AO 26 17 18 5 0
PAMA | 560 551 16 2 0
PAMRU | 11 9 24 2 11
NONE |0 0 24 2 13
524288 | AO 26 17 18 5 0
PAMA | 560 550 17 2 0
PAMRU | 11 9 24 2 11
NONE |0 0 24 2 13
Table 5.3: Misses and wasted migrations for varied storage using Zipf access
pattern.

105

—-IPAO = IAO AO PAMA - PAMRU --- NONE
500
450
__ 400
i)
2 350
c
£ 300
T
T 150
2 100
50
0 T T T T T
300 600 900 1200 1500 1800 2100 2400
Item Access Time (seconds)

Figure 5.5: Usable duration for varied access time using Zipf access pattern.

Figure 5.5 illustrates the total time the collection of devices remains usable
as the amount of time each item is accessed varies. The results discussed use
the Zipf pattern for the distribution of accesses. A comparison of the results
for the Zipf pattern versus the results for a uniform pattern yield the same
observations made in the results for the varied initial storage used on each
device. Therefore, the remainder of the results presented are for the Zipf
access pattern only.

Not surprisingly, PAMA, AO, and TAO are unaffected by the change in ac-
cess time. PAMA consistently performs well and shows up to an 88% improve-
ment over NONE. Unfortunately, PAMRU and NONE are not as consistent.
The lack of any reasonable trend indicates that the access time is not as im-
portant as the trace of items accessed during the experiment. While PAMRU
sometimes performs well, NONE consistently performs poorly and seems to
perform worse for longer access times. This result follows from the fact that
longer access times mean that there are ultimately fewer items accessed. If
one of the few items accessed is stored on a device that dies, the total time
the device collection remains usable can be greatly reduced.

Figure 5.6 illustrates the total time the collection of devices remains usable

106

—~IPAO = IAO AO ~ PAMA -+ PAMRU ---NONE

500
450
400
350
300 +
250
g
150 1

100
50

Total Duration (minutes)

16 32 64 128 256 512 1024
Total Items

Figure 5.6: Usable duration for varied number of items using Zipf access
pattern.

as the total number of items initially stored on each device grows. As expected,
the results for PAMA, AO, and TAO are not affected by the change in number
of items. However, as seen in the previous experiment, the results for PAMRU
and NONE are very inconsistent. PAMRU should perform better for smaller
values of total items because fewer total items means that each item will be
larger. Thus, a single migration ensures that more of the total base of content
remains available. However, the inconsistency in the experiment indicates that,
with PAMRU, poor prediction of future content access is the cause of mediocre
performance. Similarly, with NONE, poor performance can be attributed to
the content access pattern.

Figure 5.7 illustrates the total time the collection of devices remains usable
as the device bandwidth varies. Overall, the affect of lower bandwidth is
similar to the affect of larger initial storage used. This is a logical result since
it takes longer both to migrate more content or to migrate content over a lower
bandwidth connection. The more time a device spends migrating, the more
energy the device uses during migration, and the shorter the duration that the

collection of devices remains usable.

107

—~IPAO = IAO AO ~ PAMA -~ PAMRU - NONE

0 T T T T T T T T T

S N N R B
SR UG AN SO IR
\,

Bandwidth (Kbps)

Figure 5.7: Usable duration for varied bandwidth using Zipf access pattern.

More specifically, PAMA starts to drop at bandwidths below 1.5Mbps while
PAMRU remains unaffected. Again, this is the result of the wastefulness of the
PAMA scheme. A slow connection between devices increases the transfer time
and ultimately the power used. While it is possible that a lower bandwidth
connection may actually require less energy during transfer, the results indicate
that a migrate all scheme is not the best option for low bandwidth devices.

Figure 5.8 illustrates the total time the collection of devices remains usable
as the idle power consumption varies. As the energy consumed in idle state
is reduced, the TAO, AO, and PAMA schemes approach the performance of
the IPAO scheme. While PAMA is consistently similar to IAO, PAMRU does
not perform as well and is unaffected by the change in power consumption.
This result again illustrates that the bottleneck with the PAMRU scheme
is the trace of items accessed, and not the energy consumed during content
migration.

Figure 5.9 illustrates the total time the collection of devices remains usable
as the total number of devices grows. For IPAO, there is a linear increase
in usable time as the number of devices gets larger. While PAMA does not

approach linear growth, it does remain consistently similar to the IAO strategy.

108

—~IPAO = IAO AO PAMA ~PAMRU --- NONE

500
450 ~
400
350
300 -
250
200 +
150 -
100

50

Total Duration (minutes)

0 0.9 1.9 2.9 3.9
Idle Power Consumption (W)

Figure 5.8: Usable duration for varied idle power consumption using Zipf
access pattern.

Recall that TAO is the ideal result given that all devices remain on and idle
throughout the course of the experiment. Unfortunately, PAMRU suffers the
same fate as in previous experiments. It shows marginal improvement over

NONE, and does not follow the same trend we see with PAMA.

5.4.5 Observations

Migration performs well in a variety of scenarios. In most cases, the cost
in terms of energy consumed migrating content does not outweigh the benefit
with respect to the total amount of time the collection of devices remains
usable. An exceptional case is the uniform distribution for item access. For
applications that offer flexibility in terms of which pieces of content can be
used, migration may not be useful or necessary. However, for many common
applications, the user focuses on only a few select pieces of content. The Zipf
access pattern is a reasonable model for these kinds of applications.

Somewhat surprisingly, the PAMA scheme, which mimics a fully repli-
cated file system, performs well in most cases. While PAMA is quite wasteful

in terms of energy spent transferring content, the overall impact is minimal

109

—-|PAO = |AO AO PAMA -+ PAMRU --- NONE
1200
1000 -
m
i}
g 800 -
£
_5 600
§ /
pm}
A 400 .
g / " ! . ”
°
/ \.
0
2 3 4 5 6 7 8 9 10
Number of Devices

Figure 5.9: Usable duration for varied number of devices using Zipf access
pattern.

in most cases. There may be additional factors, such as limited disk space,
that prevent PAMA from being truly effective. However, from an energy per-
spective, migrating all content can be effective if the devices have reasonable
available bandwidth and a reasonable amount of content.

Unfortunately, in the extreme cases when devices have low bandwidth, or a
large base of initial content, it is clear that an intelligent form of user profiling
should be employed to ensure extended device usability. Naive schemes such as
PAMRU are not sufficient to increase the amount of time a collection of devices
remains usable. While user profiling is a very challenging problem, ultimately
a solution is likely to include some form of user profiling along with the use of
user-specified preferences. The more information the user can provide about
which content is likely to be accessed, the more effective migration can be.

Finally, while migration strategies aid in dealing with the challenge of
power constraints, it is imperative to integrate strategies to reduce absolute
power consumption, during idle periods or otherwise. Results of our experi-
ments clearly show that reducing energy used during idle time greatly effects

the amount of time a collection of devices can remain usable. Ultimately, a

110

resource-aware content management solution must manage content when re-
sources are limited, but must also use resources in the most intelligent manner

possible.

5.5 Discussion

The pervasive environment introduces a new dimension to consider when
designing a content management scheme. Next-generation devices are incred-
ibly resource-constrained in comparison to their desktop counterparts. Re-
sources such as processing power, disk space, bandwidth, and battery lifetime
are all relatively scarce. Interestingly, content management can be used as
a solution to ease resource constraints by enabling devices to cooperate and
share resources. However, a content management scheme must intelligently
consider resource availability in order to aid in device cooperation and re-
source aggregation.

This work presents an architecture that supports resource-aware content
management. The architecture allows a user’s personal collection of devices to
communicate and share resource state. Based on that state, intelligent content
placement decisions can be made. More specifically, the evaluation focuses
on the resource of power. Battery lifetime is typically the most constrained
resource for a small device. The proposed technique provides support for
content-driven applications by monitoring the battery levels on each device

and ensuring that content remains available in the face of power loss.

111

Chapter 6

Using Push and Batching to
Enable Efficient Content
Location and Distribution

6.1 Motivation

Napster’s pioneering efforts have spawned a number of academic and indus-
trial projects aimed at developing efficient, peer-to-peer (P2P) applications.
A primary goal of these applications is to support content exchange between
users. In the peer environment, support for content exchange involves two
phases. In the first phase, a user searches the network to find a remote peer
that stores a particular piece of content that he/she is interested in download-
ing. In the second phase, the user requests download of the content from the
remote user. If the remote user decides to service the request, that user is
responsible for distributing content to the requester.

The primary use of these applications has, so far, been the sharing of MP3
music files between desktop computers connected via the wired Internet. How-
ever, the concept of P2P is expanding. One area that has recently received
a great deal of attention is pervasive computing. The promise of the ubig-
uitous deployment of small devices has introduced a new, more constrained
environment where P2P is not only a desired, but necessary model for con-

tent exchange as well as other applications. Technology such as Bluetooth

112

and even 802.11 allows devices to talk to other devices within a certain range,
but may not support infrastructure-based, Internet connectivity. This kind of
environment is inherently P2P, and as such, P2P architectures are necessary
to enable advanced applications on small computing devices.

However, especially in small device environments, P2P content exchange
is challenging. In a traditional peer network, participants may come and go
by choice. In a small device environment, participants may come and go
by choice, or may simply walk out of range of the other participants. In a
traditional peer network, end-user computers may have limited resources such
as bandwidth (e.g., a modem connection), disk space, and processing speed.
However, compare the resources of a desktop computer to a PDA device, or
even digital jewelry or clothing.

As peer networks expand and evolve, an efficient scheme for exchanging
content is required. Much previous research has focused on the challenge of
peer discovery and group management. This work focuses on the challenges of
data location and reliable and efficient delivery. We have developed an archi-
tecture called Pizie. Pizie addresses the problem of data location by providing
a browsable catalogue of popular content available across the network. More-
over, the catalogue caches the location of content making data location more
resource efficient. Additionally, we address the challenge of efficient delivery of
content by batching requests for content and servicing hundreds or thousands
of requests simultaneously. From the client perspective, this greatly reduces
the wait time experienced after issuing a request. From the server perspective,
we greatly reduce the resources required at the serving peer including disk

space, distribution time, and bandwidth.

6.2 The Jukebox Paradigm

The Pizie architecture represents the evolution of a traditional jukebox
paradigm. A jukebox works by scheduling playout of requested songs. Users

can browse the scheduled songs and choose to wait for a song already scheduled

113

for playout. Alternatively, a user can schedule a new song for playout if he/she
is willing to wait until the next available time slot.

The Interactive Multimedia Jukebox (IMJ) [5] applied this paradigm to
network-based content distribution by architecting a Video-on-Demand (VoD)
application that supports near-on-demand functionality. The IMJ provides a
scalable, network-based video streaming service by batching client requests for
movies, and scheduling distribution of content. At distribution time, scheduled
content is streamed to the end-user via multicast. The schedule of content is
available to all users, and all users can take advantage of the same distributions.

In this way, a larger user population can be supported.

6.2.1 The AIS Model

While the IMJ supports only a single service, distribution of video, the
jukebox-style batching paradigm can be applied to a number of Internet-based
applications. We identify the behavior of the IMJ as that of an Active Infor-
mation System (AIS). An AIS supports scalable user interaction by using one-
to-many, push-based delivery to distribute new information when it becomes
available. In the AIS, new information can include anything from realtime
questions posed in an online classroom to new bids in an auction application.

Figure 6.1 illustrates the architectural components of an AIS. The functions

of an AIS are as follows:

Static Content Distribution. The AIS model assumes a stable back-end
information source such as a database. Users begin interacting with the system
by issuing requests for information from that source. In a VoD system like the
IMJ, this is the list of available movies. Requests may be straightforward such
as requesting all database information, or may be more sophisticated. For
example, a user may request only a subset of available information (e.g. all
PG rated movies). The basis of information delivery in the AIS model is the
one-to-many delivery of content. The challenge is to find ways to aggregate the

many user requests without having to constantly transmit information that is

114

Service I l?ynamtip Static
Activity ntormation Information

g~k gy

Figure 6.1: The architecture of a generic AIS.

not needed and without having to make users wait while other requests are

batched. Given a large enough user base, this will not be a problem.

Input Processing. Input processing consists of accepting and processing
requests from the user. In the IMJ, these requests may be to schedule playout
of a particular video. Allowing the user to provide input to the application
greatly increases the flexibility of the application itself. The goal of processing
the request is to alter or add to the dynamic content distributed by the applica-
tion. In most cases, the exact type of user requests and the processing required
is application-specific. Ideally, the actions of one user should positively affect

other users.

Dynamic Content Distribution. The AIS model is deemed “active” be-
cause user requests create dynamic changes in the application. In the IMJ, the
dynamic component is the schedule of programs to be distributed. AIS-style

applications are dependent upon user requests. When the state of the applica-

115

tion changes, the update must be propagated to all users. Unlike most tradi-
tional web-services, which expect users to check for new updates by re-loading,
the AIS uses a push-based technique. The traditional pull-based approach is
limiting in a number of ways. First, realtime applications suffer arbitrary de-
lays based on how willing the user is to frequently check for updates. And
second, additional load is placed on the system because users are constantly
checking for updates. A large enough user population makes this kind of sys-
tem wholly unscalable. In the AIS model, updates are sent to interested users
of the system as events. This ensures that (1) updates are delivered efficiently
without wasting network bandwidth and (2) users receive updates as soon as
possible. Using multicast to deliver these events is an effective technique for

achieving scalability.

Service Activity. The service provided by an AIS application may include
anything from multimedia content distribution (as in the case of the IMJ)
to the sale of an item in a realtime auction. This piece of the framework
is intentionally left open such that we can support a variety of applications.
However, as with the IMJ, the underlying goal is still scalability. Therefore, we
would like to service as many users as possible by using a minimal allocation
of resources. Again, in many applications, the use of multicast is appropriate
to service all users with a single set of resources (e.g., one video stream).
For some applications, like a chat room, the functionality can effectively be
achieved using a completely distributed system. The real function of the AIS
system is simply to coordinate users and build a community with a common

interest.

6.2.2 Applying the AIS

The underlying goal of the AIS is to employ a batching paradigm to reduce
the resource usage of resource-intensive applications. For a content-driven ap-
plication in a peer network, especially a peer network of resource-constrained,

pervasive computing devices, reducing resource usage is imperative. By batch-

116

ing download requests and distributing content to multiple peers in parallel,
we can ease much of the burden placed on the peer acting as a server as well
as the network. Additionally, by scheduling content to be distributed and dis-
tributing the schedule to all peers, we gain the advantage of having a local
hot list catalogue. Users can consult the local schedule as a means to browse
content available in the network.

Unfortunately, the current design of the AIS is targeted toward allowing
application service providers to provide a service over the wired Internet. It
relies on a centralized infrastructure to mediate communication and perform
updates. This restriction makes the AIS model unsuitable for deployment
in a peer-based network. In the remainder of this chapter, we describe and
evaluate an architecture that applies the AIS model to peer networks. Pizie
is a peer-based, jukebox-style architecture that supports efficient, scalable,

content exchange in peer environments.

6.3 An Architecture for Request Aggregation
and Batched Content Distribution in Peer
Networks

Pizie applies the AIS model to reduce resource usage and improve data lo-
cation and content delivery in peer networks. This section presents an overview

of Pizie and discusses the Pizie architecture in more detail.

6.3.1 Pixie Overview

Pizie is an architecture to support one-to-many distribution of content in
peer networks. The first goal of Pixie is to aggregate peer requests to down-
load content and use intelligent, one-to-many content delivery (e.g., multicast)
to enable a large number of peers to take advantage of the same distribution
(see Figure 6.2). The second goal is to publish a schedule of content to be dis-
tributed to allow users to browse through the most popular subset of content

available across the network. Pizie can be implemented on top of virtually any

117

unicastrequest —
multicast delivery---»

eI
re ues O)
reques).
request(“0”)

Management

- ~ I request(*0”)
request(*0”) . T
,,’ \ ‘Q

Figure 6.2: Overlapping requests are aggregated at the serving peer.

peer group management protocol. When a peer joins the network, it requests
the schedule. The schedule contains information about content that will be
distributed (e.g., Gone with the Wind), how the peer is to receive the content
(i.e., the IP address of the multicast group), and when the distribution is sched-
uled to begin (e.g., 8pm GST). If a user is not interested in content already
scheduled for distribution, the user may choose to search for and schedule new
content. When a new distribution is scheduled, an updateSchedule message is
pushed to all peers indicating the name of the content that will be distributed,
how an interested peer can receive the content, and the scheduled distribution
time. At distribution time, interested peers tune in to the distribution.
Using this model, peers are able to more rapidly and efficiently locate data
of interest. Instead of requiring that the user perform an on-demand search
for every piece of content, the schedule provides a new service by acting as
a browsable hot list of available content within the network. Assuming that
many users are interested in the same content, it is likely that a user will find
the content he or he/she is interested in by looking at the schedule. Since the
schedule is local, no on-demand search must be performed, thus easing the

burden on the network.

118

By distributing content using one-to-many distribution, we provide addi-
tional scalability properties as well. Efficiency gains come from reducing the
load on peers by aggregating requests and servicing multiple peers simulta-
neously. At the scheduled time, a sending peer distributes the information
using one-to-many delivery. All interested peers simply tune in and receive
the content. While network-layer multicast is the most efficient distribution
mechanism, we also envision the use of application-layer proxies to reach peers

that may not be multicast capable.

6.3.2 Pixie Architecture

----+ multicast
— unicast
Content
User
Schedulef Event
ContentManagdr‘ScheduleManage*r Manager

Group Management

[4 4
1 1 1
1 1 1
1 : :
! 1
1 1 1
1 ! 1
! 1
: i .
i i | searchReply updateSchedule searchReply
1 i
; search currentSchedule search
updateSchedule - contentDistribution getSchedule scheduleNewDistribution

scheduleNewDistribution

Figure 6.3: Architecture of a Pixie peer.

Figure 6.3 shows the general architecture of a Pizie peer. The Pizie com-
ponents are implemented on top of a group management layer. We place no
restrictions on the group management protocol. We envision anything from
Napster-style centralized management to Gnutella-style distributed manage-
ment to Chord-style distributed management. We discuss each component in

more detail:

119

ScheduleManager. The ScheduleManager controls access to the sched-
ule. The schedule contains information about which data are scheduled to
be distributed, when distribution will begin, and where the data will be dis-
tributed. It is the equivalent of a TV guide that indicates which programs
will be showing, at what time, and on which channel. Each peer retrieves
a copy of the schedule when joining the network. Where the copy is found
depends on the group management algorithm employed. In a Napster-style
network, a getSchedule request will be routed to the centralized server. In a
Gnutella-style network, a getSchedule request will be routed to a neighboring
peer. We consider the schedule to be best effortin that we do not guarantee the
peer will receive the latest version. However, if a peer receives a stale version
and attempts to search for or schedule an already-scheduled piece of content,
the peer serving the content will simply respond with an update indicating
where and when the content is already scheduled. The ScheduleManager also
receives and applies any updates to the schedule. Schedule updates contain
relevant information about newly scheduled distributions (i.e., the content to
be distributed, when the distribution will begin, and where the data will be
distributed).

Scheduler. The Scheduler handles the scheduling of content distribution
for a given peer. When the Scheduler receives a request for new content, it
determines when the peer will have the resources available to fulfill the request.
For example, if a peer can only support two simultaneous distributions and
it is already distributing two streams, the new distribution must wait at least
until one of the distributions has finished. The Scheduler may also apply more
advanced scheduling algorithms such as delaying distribution in anticipation
that more peers will be interested in the same content in the near future. Once
the distribution has been scheduled, an updateSchedule message is generated
and sent to all peers in the network. The most straightforward method of
distributing the updateSchedule message is via multicast. However, a broadcast

or gossiping scheme could be used propagate the message.

120

In a decentralized system, the Scheduler will exist on each peer and each
peer will be responsible for scheduling distribution of its own content. How-
ever, a centralized implementation could also be employed. In a Napster-style
system, a centralized authority would have information about each peer and
could make scheduling decisions based upon that global information. This
may be more efficient in terms of resource usage, however would require the
presence of a centralized infrastructure.

ContentManager. The ContentManager controls access to the data
stored on each peer. If a peer is not interested in scheduled content, it can
search the network for other content. Search requests are routed through the
network in a manner consistent with the underlying group management proto-
col. For example, using a Napster protocol, search requests would be routed to
a centralized server while in a Gnutella protocol, requests would be routed to
neighboring peers. When a peer receives a search request, it consults its con-
tent base and responds with information about content matching the search
query. In a Gnutella-style network, the request would then be forwarded to
neighboring peers.

The ContentManager is also responsible for distributing content. At the
scheduled time, the ContentManager distributes the content, preferably us-
ing multicast. While network-layer multicast is the most efficient distribution
mechanism, application-layer multicast distribution [26, 84] can be employed
for peers without multicast connectivity. Finally, the ContentManager is re-
sponsible for receiving and storing content distributed by other peers.

UserEventManager. The UserEventManager processes events from the
user and interacts with the user interface. It initiates searches for content spec-
ified by the user, requests new content be scheduled, and receives and displays
search responses. This component is quite flexible and can be implemented to

suit the preferred user interface.

121

6.4 Reliability and Fault Handling

The dynamic nature of typical peer networks like Gnutella makes reli-
able and fault tolerant peer-based applications challenging to implement. The
problem is exacerbated in networks of pervasive computing devices. In these
networks, unreliability may be caused by a user choosing to remove his/her
device from the network (the typical case for wired peer networks), or may
be caused by other factors such as the user walking out of range of the other
users of the system. In this section, we address how Pizie handles faults and
unreliability. We consider both reliability in terms of data delivery and fault

handling in terms of failed serving peers.

6.4.1 Reliable Data Delivery

The first challenge we must address is to ensure that all data and control
messages are reliably delivered to Pizie peers. Content must be delivered to
all peers that are interested in receiving that content, and control messages
(e.g., updateSchedule messages) must be delivered to every peer in the network.
If a native multicast infrastructure is available, Pizie can use a basic reliable
multicast distribution scheme for delivery of content and control messages.
The primary advantage of using native multicast is the efficiency it provides.
However, requiring that Pizie users have multicast connectivity is likely to be
too restrictive. An alternative to reliable native multicast distribution is a
reliable application-layer multicast scheme such as NICE [8]. Such a scheme
is easier to deploy, and hence, can support a wider base of users.

Any straightforward reliable protocol run over either native or application-
layer multicast requires receivers to join the distribution from the beginning.
Moreover, if a serving peer fails, a new serving peer must start the distribution
again from the beginning. To overcome this limitation, we propose the use
of a digital fountain-style scheme [12]. Using a digital fountain scheme, the
ContentManager distributes files that have been encoded using Tornado codes.

The serving peer continuously distributes blocks of the encoded file until the

122

client peer has received a sufficient number of blocks to reconstruct the file.
Since blocks may be received in any order, a client can join the distribution
at any time and take advantage of the distribution in progress. Similarly,
if N blocks are needed to reconstruct a file and a serving peer fails after a
corresponding receiving peer has received N-X blocks, the receiving peer can
join a new distribution and will only need to receive the remaining X blocks.

Using this scheme, a peer can potentially remain continuously occupied,
distributing the same file. In the most extreme case, a serving peer distributing
a file that requires N blocks to decode will receive a new request for the file
after almost all blocks have been sent. In some cases, this behavior may be
desirable. However, a peer that stores multiple pieces of popular content may
need to perform some form of internal load balancing to ensure that it can

service requests for multiple pieces of content.

6.4.2 Serving Peer Fault Handling

The most critical failure case occurs when a serving peer fails during or
before its scheduled distribution. Failure can be the result of system failure,
network failure, or a user can simply choose to take the peer offline, the so-
called freeriders problem. We make the assumption that peers may go offline
without any prior notification. Therefore, we must develop a strategy for
rescheduling distributions that have not completed.

First, let us consider the basic (i.e., no failure) case when a user does not
find an item of interest in the schedule and must search for a piece of content

and schedule a distribution.

1. An interested peer searches for a piece of content.

2. Once the piece of content has been found, the requesting peer contacts
the serving peer and requests a distribution be scheduled.

3. An updateSchedule message is propagated to all peers in the network.

4. At distribution time, the content is distributed to all interested peers.

123

In the event that the serving peer fails, there must be a strategy for de-
tecting the failure and rescheduling the distribution. For the purposes of this
work, we assume that a serving peer has failed if a receiving peer expects
to receive content from the serving peer, but has not received data for some
timeout period. The determination of this timeout period is dependent on
many factors, including the underlying data distribution protocol. Moreover,
more advanced schemes for detecting failures are also possible. However, more
sophisticated schemes are beyond the scope of this work.

Once a fault is detected, the distribution must be rescheduled. To support
our fault recovery algorithm, we must modify the basic search and schedule

case as follows:

1. An interested peer searches for a piece of content.

2. Once the piece of content has been found, the requesting peer contacts
the serving peer and requests a distribution be scheduled.

3. Along with the request, the requesting peer provides a list of all poten-
tial serving peers in the network that initially responded to the search
request.

4. An updateSchedule message that includes the complete list of potential
serving peers is propagated to all peers in the network.

5. At distribution time, the content is distributed to all interested peers.

Using the cached search results, the general fault recovery algorithm is as

follows:

if the serving peer fails
wait a random backoff period
if the distribution has not resumed
do
select an alternate serving peer from the cached search
results
while the selected peer is not reachable
request a new distribution from the selected peer on the
same channel
immediately, the new serving peer begins distribution to all
peers waiting for the distribution

124

This strategy reschedules a failed distribution in an efficient manner. First,
the random backoff period helps to avoid the case that multiple receiving peers
simultaneously detect a fault and attempt to reschedule a distribution. The
first peer to reach the end of the backoff period will reschedule the distribu-
tion and the remaining peers can take advantage of the rescheduled distribu-
tion. Moreover, using the same channel (e.g., multicast group address) for
the rescheduled distribution avoids the overhead of sending out an additional
updateSchedule message. Only those peers that are joined in the current distri-
bution are affected. Finally, because the original search responses are cached
in the schedule, there is no need to burden the network with a new search.

More advanced and efficient schemes for handling faults and ensuring reli-
ability are also possible. For example, assuming the use of a digital fountain-
style scheme, if multiple peers store the same content, they can be scheduled
to distribute the same file simultaneously on the same channel. If neither
serving peer fails, those receiving peers with a high bandwidth connection can
potentially receive the file in half the time. Also, if one serving peer fails,
another peer is already in the process of distributing the content. Moreover, if
we used a more reliable group management protocol such as Chord, we could
detect the failure of a peer and automatically reschedule a distribution at the
infrastructure layer.

Using this strategy, the overhead and cost associated with unreliability are
minimal. If a serving peer fails, the overhead incurred is one additional request
to reschedule content. The cost associated with unreliability, either a serving
peer failure, or the failure of an intermediate node in a distribution tree, is an
increase in the amount of time it takes to download a piece of content. This
increase in time is the result of the time to either reschedule a distribution, or
reconfigure the distribution tree. However, using one-to-many distribution can
greatly increase the number of peers that are ultimately serviced in a faulty

network since multiple peers can be serviced simultaneously.

125

6.5 Evaluating Improved Data Location

In this section, we investigate the benefit of the schedule abstraction. Un-
like other systems, Pizie allows users to browse an index of the most popular
content available within the peer network. This property provides an enhanced
user experience while incurring minimal overhead. This section focuses on the
evaluation of the benefits of using Pixie. The overhead of using Pizie is ex-

plored in more detail in Section 6.6.

6.5.1 Metrics

We are interested in three metrics:

1. Found - Found describes the frequency that the user finds an item of
interest in the schedule. This metric will allow us to conclude how useful

the schedule is for users.

2. Aggregated - Aggregated describes the frequency that the user is inter-
ested in an item in the schedule and can take advantage of the scheduled
distribution. This metric provides insight into how often multiple users
are serviced by the same stream. We explore resource savings in more

detail in Section 6.7.

3. Schedule Size - The size of the schedule will help us to determine
the amount of repetition in the schedule and the manageability of the

catalogue.

6.5.2 Setup

To evaluate these metrics, we have simulated the schedule portion of our
architecture. When a request is made, we schedule the request according to

the following algorithm:

126

if the requested item is scheduled
record as FOUND
if the distribution has not started
record as AGGREGATED
else if the distribution has started
schedule on next available server according
to shortest wait first
send updateSchedule message to entire network
else
send search message
schedule at current time + 1 minute delay
send updateSchedule message to entire network

For this set of experiments, we assume distribution is done through a basic
reliable one-to-many distribution service such that users can only join the
distribution from the beginning. This service can be either a network-layer
multicast group or can be an application-layer distribution service. An item
remains in the schedule from the time it is scheduled until it has been dis-
tributed.

This model does not entirely capture three cases. First, we do not capture
the case when scheduling incurs an additional delay because a peer’s resources
are otherwise occupied. However, we claim that the model we use is, in fact,
the most restrictive for the metrics we consider. Lower delay means that
items remain in the schedule for a shorter period of time and are less likely to
be found. Incurring an additional delay because a peer is distributing other
content or is otherwise busy would only improve our results. Additionally,
we assume that if it is possible to aggregate a request, aggregation occurs. If
a client peer were to choose to schedule a new distribution rather than take
advantage of an already-scheduled distribution, the aggregation and schedule
size metrics would both be affected. However, the goal of this work is to
promote request aggregation and investigate its benefits. Finally, we do not
consider failures in the network. As described in Section 6.4, intelligent fault

recovery schemes can minimize or eliminate the impact of faults on the metrics

127

we measure here.

We generate a trace of requests using a Zipf distribution [85]. Recent stud-
ies have shown this to be typical for current P2P systems'. For all experiments
we use a catalogue of 400,000 items and run the experiment for a simulated
period of 8 hours. We have also run simulations over a simulated period of 24
hours and observed similar results. To analyze the behavior of the system, we

vary three main parameters:

1. Load - We look at the system behavior under different load conditions
by varying the number of requests per second made across the network
from 20-90. Values are taken from recent studies of the gnutella network
[53, 65] that indicate that a single peer services or routes roughly 20

requests per second.

2. Peer Characteristics - We look at the behavior of the system based on
different peer characteristics by varying the time it takes to distribute a
single object. Table 6.1 details the values chosen. Small values for the
distribution time can be the result of a fast connection or a small object.
A large disparity between the min and max times is the result of highly
varying peer characteristics. Each distribution time is chosen uniformly

between the minimum and maximum times.

3. Number of Servers - We look at the behavior of the system as the
number of serving peers available to serve each piece of content varies
from 1 to 10. We assume that the number of available servers for each
piece of content remains fixed through the experiment and that the same
number of servers are available for every piece of content available in the

network.

Thttp:/ /www-2.cs.cmu.edu/~kunwadee/research/p2p/gnutella.html

128

| Min Time (sec) | Max Time (sec) | Description

1 500 Fast Connection
High Variance
10 50 Fast Connection
Low Variance
3800 4300 Mid Connection
10800 21600 Slow Connection
High Variance
15120 16920 Slow Connection
Low Variance
120 180 Typical of
Current Usage

Table 6.1: Results of varying min/max distribution time.

6.5.3 Results

We present the results of four experiments. In the first experiment, we look
at the found and aggregated metrics with respect to varying the load (number
of requests per second) across the network. In the second experiment, we
vary the number of servers and look at the aggregated metric. In the third
experiment, we vary the peer characteristics in terms of the time to distribute
a single item (the effect of either larger files or peers with slower connections)
and again look at both the found and aggregated metrics. Finally, we look at
the schedule size metric with respect to varied load, varied peer characteristics,
and a varied number of servers. We follow with a discussion of the impact of
these results.

Figures 6.4 and 6.5 illustrate how the number of found and aggregated
items changes over time as the load (requests per second) varies. For this
experiment, we fix the minimum and maximum distribution times at 1 and
500 seconds respectively. We observe that the greater the number of requests
per second seen by the network, the greater the number of both found and
aggregated items at each 1 minute interval. This is not surprising since a

greater number of requests will mean that the schedule of distributions is

129

—— 90 Requests/Second —»%— 60 Requests/Second
—e— 40 Requests/Second Load spike 30-80 Requests/Second
—=— 20 Requests/Second

4000

- 3500 r..v..._. 0090 B000 000400000008 00y 0009, 20s2000000 (004000, _.._v.&v".‘_.v. 0oyt 0y
§ 3000 aan
5 2500 -
é 2000
2 1500 - et = o0 -
< 1000 W ’ o YO WINC W
= LM”WWMMW
3 500
[T

0

70
93

N D O oI S N~ O ™M
© 0 O M L I~ O o
I 4 N N N N M ™M

47
116
139
346
369
392
415
438
461

Time (minutes)

Figure 6.4: Number of items found over time for varied requests per second.

larger and there is a greater probability of overlap.

We also observe that, in all cases including the case when the load spikes
from 30 to 80 requests per second from minute 120 to minute 180, the number
of found and aggregated items stabilizes quickly and remains stable throughout
the experiment. This property allows us to conclude that under varying load
conditions, the system will remain stable.

Another interesting observation is that the percentage of requests that are
found and/or aggregated remains relatively stable throughout the experiment.
The percentage of found items ranges from 54.0% overall in the 20 requests
per second case to 65.1% overall in the 90 requests per second case and the
percentage of aggregated items ranges from 43.5% overall in the 20 requests
per second case to 54.6% overall in the 90 requests per second case. Thus,
we can extrapolate that even under varying load conditions, nearly the same
percentage of requests will be found or aggregated overall.

Our final observation is that the difference between the number of found
and aggregated items is relatively small. Thus, the case when an already-
scheduled item must be scheduled again is relatively rare. Most requests for
the same content can take advantage of an existing, scheduled distribution.

Figure 6.6 illustrates the number of items aggregated over time as the num-

130

Figure 6.5: Number of items aggregated over time for varied requests per

second.

Figure 6.6: Number of items aggregated over time for varied serving peers.

—e— 90 Requests/Second
—e— 40 Requests/Second
20 Requests/Second

—»— 60 Requests/Second
—— Load spike 30-80 Requests/Second

Aggregated (number of

4000

3500

3000 + WWMMMWWW

2500 1
2000

items)

1500
1000

500 -
0~

0N O ™M N~
N < N~ O

121
145
169

M N~ <0 o M
O« < © © o
- N N N N ™

Time (minutes)

337
361
385
409
433
457

Aggregated (number of items)

—~1SP =2SP

3SP +~4SP «~5SP - 6SP —7SP

27
53
79
105
131

~
n
—

M O W d N~ MmO
0 O M © W I ™M
— N N N N MO ™

Time (minutes)

365
391
417
443
469

131

ber of available serving peers (SP) varies. The found metric is almost un-
changed for this experiment. Therefore, we omit the results. Our first obser-
vation of the figure is that the greater the number of serving peers available,
the smaller the number of aggregated requests. In essence, with only one
serving peer available, if a requesting peer cannot take advantage of an al-
ready scheduled distribution it must wait until that distribution is finished.
However, by increasing the number of serving peers, there is an increase in
the probability that a requesting peer can schedule a new distribution on an
alternate, idle serving peer. This increases the parallelism and reduces aggre-
gation. However, there is still a significant amount of aggregation across the
network, and the level of aggregation reaches a minimum with only 6 serving

peers available.

—e—15120-16920 Seconds —— 10800-21600 Seconds 3800-4300 Seconds
—»— 1-500 Seconds —*— 120-180 Seconds —e— 10-50 Seconds
2500
m |
g 2000
e .
S 1500
5
Qo
§ 1000
=
e}
5 500
(o]
[T
0
T NN O M O OO NN O dJd S N~NO0O MO O NN O o
N <~ OO 4 M © 0 O M W MN~NO NI © O 4 M O
I 4 +H 4 N N N N OO OO OO 0O M 5 <
Time (minutes)

Figure 6.7: Number of items found over time for varied distribution times.

Figures 6.7 and 6.8 illustrate how the number of found and aggregated
items changes over time for varied item distribution times. The item distri-
bution time is the amount of time it takes to distribute a particular object.
The greater the distribution time, the greater the number of found and aggre-
gated items at each one minute time interval. The reason for this behavior is
that items with longer distribution times will remain in the schedule longer.

Hence, the schedule itself will be larger and the probability of finding an item

132

—e—15120-16920 Seconds —— 10800-21600 Seconds 3800-4300 Seconds
—»— 1-500 Seconds —*— 120-180 Seconds —e— 10-50 Seconds

2500

2000 1

1500 -

5000280886060 2
1000 -

500 H

Aggregated (number of items)

0

Time (minutes)

Figure 6.8: Number of items aggregated over time for varied distribution times.

in the schedule will be higher. Additionally, when items have longer distribu-
tion times, the system takes longer to stabilize. This is because no items are
removed from the schedule until the initially scheduled items finish.

We also observe that faster distribution times result in fewer found and
aggregated items overall. This is simply because when requests are processed
faster, there is less opportunity to find a scheduled or executing distribution.
Our results indicate that when downloads occur very quickly (10-50 seconds),
the percentage of items found in the schedule is 48.1% and the percentage
aggregated is 35.6%. This is still a substantial percentage and would still
render our system useful.

Our final observation is that slower connections with low variance tend to
be quite cyclic. This is largely because the low variance means that all requests
initially scheduled are likely to finish at nearly the same time and new requests
will be scheduled at that time. This behavior is less likely to occur in a system
with varying load, or one in which the load gradually builds up to a stable
point.

Figure 6.9 illustrates the total size of the schedule and number of distinct
schedule items over time. We fix the number of requests per second at 40 and

introduce a spike in load from 40 to 90 requests per second from minute 120

133

—e— Size - 3800-4300 seconds —— Distinct items - 3800-4300 seconds
Size - 1-500 seconds —— Distinct items - 1-500 seconds

120000
100000 ¥ Y

80000 / J’\\M
60000 1 //::_/'/ \\\“
40000
20000 i/

EXHRIHKHIKHIRIHRKIKA >

- 0 O M K~ o
N?Nmﬁ

Schedule (number of items)

0

D M N~ W0 o M
© O «H I © 0
— <4 N N N N ™M

145
337
361
385
409
433
457

Time (minutes)

Figure 6.9: Total size of schedule and number of distinct items in schedule.

to minute 180. For the standard 1-500 second distribution time, the schedule
size stabilizes quickly, recovers quickly from the load spike, and the size of the
schedule is nearly identical to the number of distinct items. With distribution
times from 3800-4300 seconds, we see that the schedule takes almost an hour
to stabilize initially, does not completely stabilize during the load spike, and is
large overall, over 60,000 items at its most stable point. The 6,000-7,000 item
schedule for 1-500 second distributions is quite manageable. However, to deal
with a larger schedule we might have to employ a solution such as caching only
the hottest parts of the schedule and asking for other parts of it on demand.
Figure 6.10 illustrates the size of the schedule as the number of serving
peers varies. A greater number of serving peers does lead to a slightly larger
schedule. However, the total size of the schedule only increases by 200 to
300 items. Moreover, the maximum size is reached when only 7 serving peers
are available. Therefore, increasing the number of serving peers has a very

manageable impact on the schedule size metric.

6.5.4 Summary

Pizie introduces a new model for supporting content exchange. From a

134

10SP —9SP —8SP —7SP —<-6SP —~5SP 4 SP
3SP =2SP —+1SP

7400

7200 +

7000 +

6800 -

6600

6400 -

Schedule (number of items)

6200 -

6000

— N M O W0 o M O
N 0 O M ©O© W «d ™M
I <4 N N N N MO ™

Time (minutes)

~ M o
N 0 N~

105
131
365
391
417
443
469

Figure 6.10: Total size of schedule over time for varied serving peers.

user’s perspective, Pizie means that information exchange is no longer simply
pull-based. Interesting information is actually pushed to the end user generat-
ing a browsable, local catalogue of the most popular content available in the
network.

Our experiments and analysis demonstrate that the benefit of the schedule
is affected by a number of factors. The more heavily loaded the network,
the more absolute benefit the schedule provides. However, the relative benefit
remains reasonably stable. Moreover, the object delivery time has a significant
effect on the performance of Pizie search. The longer it takes to deliver an
object, the more likely it is that a user can find an item of interest in the
schedule. This same benefit could also be achieved by implementing a timeout
period that indicates how long an item should remain in the schedule (possibly
longer than the object delivery time). However, the tradeoff in either case is
the size of the schedule. Finally, the most significant factor contributing to the
metrics evaluated in this section is the Zipf request distribution. We compared
the performance using a Zipf request distribution to the performance using a

uniform request distribution and discovered that the found metric drops from

135

about 60% to about 3% and the aggregated metric drops from about 50% to
about 1.25%. While Pizie may not be suitable for applications where users
have uniformly distributed interests, the overlap in user interest observed in
peer content exchange networks makes a push-based data location strategy

useful.

6.6 Evaluating the Overhead of
Schedule Maintenance

The previous section demonstrates the benefit of using Pizie for data loca-
tion in peer networks. The schedule abstraction provides a number of benefits
including reduction of the number of searches performed in the network. How-
ever, Pixie also incurs the overhead of updateSchedule messages which must
be delivered to all peers in order to maintain the distributed schedule. This
section examines the overhead of sending updateSchedule messages and the

tradeoff between search and update messages in a variety of networks.

6.6.1 Metrics

To evaluate the benefit versus overhead tradeoff of Pizie, we are interested

in two metrics:

1. Number of Search Messages Processed - Number of Search Mes-
sages Processed indicates how many search messages are processed at a
single peer in the network. This metrics provides a quantification of the
search overhead incurred by Pixie versus the search overhead incurred

using a straightforward search scheme.

2. updateSchedule Message Overhead - updateSchedule Message Over-
head quantifies the overhead of distributing updateSchedule messages
throughout the network. This metric provides an idea of the cost as-

sociated with using the Pizie scheme.

136

6.6.2 Setup

This set of experiments is conducted using the same setup used for the
experiments in the previous section. When a request is made, it is processed

according to the same algorithm:

if the requested item is scheduled
record as FOUND
if the distribution has started
schedule on next available server according
to shortest wait first
send updateSchedule message to entire network
else
send search message
schedule at current time + 1 minute delay
send updateSchedule message to entire network

As in the previous set of experiments, we use a Zipf distribution [85] to
model user behavior. Unless otherwise noted, we assume a network size of
15,000 peers, a catalogue of 400,000 items, object distribution time between 1
and 500 seconds, and the experiment is run for a simulated period of 8 hours.

We vary three parameters:

1. Load - As in the previous experiment, we look at the system behavior
under different load conditions by varying the number of requests per

second made across the network from 20-90.

2. Number of Servers - Also, as in the previous experiment, we look at
the behavior of the system as the number of serving peers available to

serve each piece of content varies. We consider 1 to 7 serving peers.

3. Network Size - We also look at the system behavior as the network size
(i.e., number of participating peers) varies. We look at a small network

of 500 nodes and a large network of 50,000 nodes.

137

‘—o—CentraIized Search —s— Centralized Pixie Search

3000

2500

2000 l

1500

processed

1000 -[MMymetpemanstongasgs ot Prees Mnsnnst, R,
g Ty ety B atea g et i anpan Cagt w wag

Number of messages

500

= e - = s e =
Mm © O N I 0 d < N~ O
I = = N N N ™M

331
361
391
421
451

Time (mintues)

Figure 6.11: Number of search messages processed in a centralized scheme.

‘—o—FIooding Search —s— Flooding Pixie Search ‘

40000000
35000000
30000000
25000000
20000000
15000000 —srsmuntuastemyetnnmen Fueyty™ e et gt otungs o e g pees sy e mgsa ongl
10000000
5000000

0

processed

Number of messages

™M WO N~ o
- N N «

Time (minutes)

33
65
97

129

161
9
2
5
8

321

353

385

417

449

Figure 6.12: Number of search messages processed in a flooding scheme.

6.6.3 Results

To quantify the search savings in Pirie, Figures 6.11, 6.12, and 6.13, illus-
trate the number of search messages that are processed in Pizie versus three
standard search schemes. In each case, we assume that Pizie runs over the
corresponding group management scheme we compare against. For example,
in Figure 6.11, we assume that Pizie runs on top of a centralized group man-
agement protocol, and compare against a straightforward centralized protocol
such as Napster. We assume a network size of 15,000 nodes which is consistent

with recent studies of the Gnutella network [65].

138

—e— Document Routing Search —s— Document Routing Pixie Search

25000

@ 20000
[=))
I
0 o
2 © 15000
E 3
5 O
Sgloooom
L Q
Qo
5 5000 -
=4
0
R T o T e R e IO e T e O e B N o O I e S e T e TR e B e R, |
M ©O© O N 1N 0 d <~ O M O OO N W
I <4 <4 N N N O O M MO < <

Time (mintues)

Figure 6.13: Number of search messages processed in a document routing
scheme.

First, we compare Pizie to a Napster-style, centralized search scheme.
In the centralized case, we assume that each search requires that one search
message is sent and processed by the centralized entity. Next, we compare
Pizie against a Gnutella-style, flooding search scheme where each search re-
quires that a message be flood throughout the network and processed by every
peer. Therefore, the cost of a single search is equal to the number of peers in
the network. Finally, we compare Pizie against a document routing search
scheme such as Chord. In this scheme, we assume that each search message is
processed by log N peers where N is the total number of peers in the network.

Our first observation is that Pizie reduces the total number of search mes-
sages processed by over half. In a centralized network, the savings is about
1,400 messages per minute. However, in a document routing network the
savings is roughly 14,000 messages per minute, and in a flooding scheme, the
savings is over 21,000,000 messages per minute. The disparity can be explained
by the fact that each search scheme requires a different number of peers pro-
cess each search message. Given our network size of 15,000 nodes, using Pizie
instead of a flooding scheme saves approximately 24 messages per second per
peer.

We also observe that the shapes of the curves for the three classes of search

139

scheme are nearly identical. This is the result of using the same trace data
for each experiment. However, as previously observed, the scale of the results
varies for each scheme. A flooding scheme generates significantly more traffic
overall than a centralized scheme. Therefore, Pizie is more beneficial in the
flooding case.

Our final observation is that all schemes are very stable. The stability of
the centralized, flooding, and document routing schemes can be explained by
the fact that we assume that the network is stable, and we assume that the
same number of messages are processed for each search. In reality, factors such
as network instability, user behavior, and network configuration could affect
the stability of these schemes. However, we also observe that Pizie is nearly
as stable as the schemes we compare against. Therefore, in a stable network,

Pizie is likely to be well behaved and consistently perform well.

- 80 Requests/Second ~ 60 Request/Second
- 40 Requests/Second —~- 20 Requests/Second

40

35]\ "\(K A AVH WW)«)‘*\/\

30 ~

25

20 i A
15 +

10 [*MW’VVWWWMW‘”’W

second per node

Average updateSchedule per

R B D 0.0 B > T Vo TR o N A B . BN > N o T N A B 4 BN @ > B o T e BN A 4 p N @)}
N 1D~ O MWW 0 O M O 0 d M © O dJd I ©O
N d 4 N N NN OO O S 3 <

Time (minutes)

Figure 6.14: Number of updateSchedule messages processed at each node per
minute.

While Pizie dramatically reduces the number of search messages processed
in a P2P network, Pizie does incur the cost of additional updateSchedule mes-
sages that are flooded throughout the network for every scheduled distribution.
In Figure 6.14, we examine the number of updateSchedule messages processed

at each node in the network. We vary the load from 20 requests per second

140

to 80 requests per second and look at the average number of updateSchedule
messages per second processed at each node for every one minute time interval.

Our first observation is that the more heavily loaded the network, the
more overhead incurred. This follows from the fact that a more heavily loaded
network will have more scheduled distributions and hence more updates. How-
ever, we notice that even in a heavily loaded network supporting 80 requests
per second, fewer than half the requests result in an updateSchedule message.
Moreover, in a moderately loaded network of 40 requests per second, each
node sees fewer than 20 updates per second. We believe this to be a reason-
able tradeoff for the search savings and enhanced user experience gained by
using the Puizie scheduling scheme.

We further observe that the number of updateSchedule messages sent re-
mains stable throughout the 480 minute run of the experiment. Therefore, we

can conclude that in a stable network, Pizie will remain stable as well.

| ~7SP +6SP =5SP - 4SP 3SP = 2SP +1SP]

23

N
[y

second per node
N
o

i
©

Juny
[ee]

updateSchedule messages per

[
~

Time (minutes)

Figure 6.15: Number of updateSchedule messages processed at each node per
minute.

In Figure 6.15, we fix the load at 40 requests per second and illustrate how
the number of updateSchedule messages varies as the number of serving peers

increases. As the number of serving peers increases the number of updates sent

141

and processed in the network increases as well. This is because more peers
are available to distribute content, thus more distributions are scheduled and
must be advertised. However, the average number of updateSchedule messages
processed by each peer still remains reasonably low, less than 22 per second.
Finally, the number of updateSchedule messages does not increase after the
number of servers reaches 6.

Our final set of experiments further examines the tradeoff between the
search savings gained by using Pizie and the overhead required by the up-
dateSchedule messages. We present, the number of search messages processed
in a straightforward flooding search (FS) and the total number of search mes-
sages plus the number of updateSchedule messages (overhead) processed in a
Pizie flooding search scheme (P+0). We vary the load from 20 requests per
second to 90 requests per second and look at the total number of messages
processed network wide during each one minute time interval. In Figure 6.16
we assume a small network of 5,000 nodes and in Figure 6.17 we assume a large
network of 50,000 nodes. We omit the results of the same experiment run on
a medium-sized network of 15,000 nodes for clarity of presentation. However,
the results were as expected.

Again, we use the same trace data for each experiment and thus observe
the same phenomenon we observed in Figures 6.11, 6.12, and 6.13. Our curves
are consistent, however, the larger the network, the more absolute savings.
We see about a ten fold increase in savings from roughly 1,200,000 messages
per minute to roughly 12,000,000 messages per minute from the 5,000 node
network to the 50,000 node network.

We further observe that the more heavily loaded the network, the greater
the disparity between Pizie and the flooding search scheme. Therefore, the
more heavily loaded the network, the more benefit we gain by using Pizie.
Even in a lightly loaded network, Pizie requires roughly an equivalent num-
ber of total messages to the flooding scheme. Further, we contend that up-

dateSchedule messages require less processing and therefore, even in a lightly

142

~FS-90 —P+0-90 - FS-40 = P+0-40 —FS-20 ~ P+0-20
3.00E+07

2.50E+07

2 00E+07 WMM“W./\[\/\/V\P\MA

1.50E+07

1.00E+07

5.00E+06 -

Number of messages processed

0.00E+00
4 O N~ M Ao
T © O N © O
o H H N NN®

- O N
N D ©

113
337
365
393
421
449
477

Time (minutes)

Figure 6.16: Search and search plus overhead in a small network.

loaded network, we benefit from using Pizze.

Figure 6.18 compares the 40 requests per second results illustrated in Fig-
ure 6.17 to the results of P+O as the number of servers increases. The number
of Pizrie search and overhead messages increases as the number of servers in-
creases. However, the value of P4-O reaches a maximum with 6 servers and
remains well below the number of messages processed in the flooding search.
Therefore, even with a large number of available servers for each piece of con-

tent, Pizie reduces the overhead of performing a flooding search.

6.6.4 Summary

Not surprisingly, there is a tradeoff between the search savings in Pizxie,
and the overhead incurred by the updateSchedule messages. Pixie reduces
approximately 60% of searching overhead, but about 50% of requests incur
the updateSchedule cost. Compared to a centralized network like Napster, the
search and update overhead of Pixie is significant. However, Pizie outperforms
a flooding search network like Gnutella. Moreover, compared to the cost of
delivering content in a peer network, the cost of maintaining the schedule is

quite manageable. Therefore, we conclude that Pizie search provides a new

143

~FS-90 —P+0-90 - FS-40 - P+0-40 —FS-20 ~ P+0-20
3.00E+08

2.50E+08

2 00E+08 WMM“W./\[\/\/V\P\MA

1.50E+08

1.00E+08

5.00E+07 -

Number of messages processed

0.00E+00

L 22 T e Ue T o B B)}
< © O N 1 0 O
I d 4 N N N M

- O N
N D ©

113
337
365
393
421
449
477

Time (minutes)

Figure 6.17: Search and search plus overhead in a large network.

and effective user service and incurs a manageable cost.

6.7 Evaluating Improved Resource Usage us-
ing Simulation

Recall that Pizrie has two unique properties. The previous two sections
have examined the benefit of using the Pizie model for improved data location
in peer networks. This section evaluates the second property of Pizie; the
use of aggregation and one-to-many data distribution protocols to improve
the performance of content delivery. We assume the existence of an efficient
one-to-many content delivery solution such as native or application-layer mul-
ticast. In this section, we examine an aggregation algorithm designed to batch
overlapping requests at the serving peer such that they can be serviced simul-

taneously.

6.7.1 Metrics

We are interested in evaluating two primary metrics that demonstrate the

tradeoffs of request aggregation:

144

—FS +~7SP +<6SP «~5SP - 4SP 3SP = 2SP - 1SP

1.30E+08

1.10E+08 [t

Number of messages processed

9.00E+07
- 2 ~ o M o
- N & N

Time (minutes)

Figure 6.18: Search and search plus overhead as the number of serving peers
varies.

1. Wait Time - In order to evaluate the benefit aggregation provides to
the client, or requesting peer, we look at wait time. Wait time describes
the amount of time the client must wait from the time it requests a piece

of content until the distribution begins.

2. Number Serviced per Distribution - To evaluate the benefit aggre-
gation provides to the serving peer, we look at the number of clients
satisfied with each distribution. Using this metric, we can extrapolate

on the resource savings of using an aggregation scheme.

6.7.2 Setup

To evaluate these metrics, we have simulated a set of peers that store
the same piece of content. If a request is made for the piece of content, the
schedule is consulted. If the content is scheduled on one of the peers in the
set, but the distribution has not begun, the request is aggregated and will be
serviced by the already-scheduled distribution. If the request is for content

that is not scheduled or all scheduled distributions are already in progress,

145

the peer schedules a new distribution of the requested content according to
a shortest wait first algorithm. The requesting peer selects the serving peer
with the shortest wait time and schedules a new distribution of the content.
We compare three scheduling schemes with respect to our target metrics.

We generate our traces using the parameters outlined the previous section.
Unless otherwise noted, experiments are run for 480 minutes, item distribution
time is between 1 and 500 seconds, 40 requests per second are made across
the entire network, and the serving peer stores one piece of moderately pop-
ular content. Of the 40 requests per second made across the network, only
those requests for the content stored on the serving peers will be processed.
All scheduling is done first come first served with respect to the requests for

content. We discuss each of the scheduling schemes evaluated in more detail:

e FCF'S - This is the base case, first come, first served, no aggregation-no
delay scheme. Distribution is one-to-one as is the case is current P2P

systems and requests are serviced as soon as they are received.

e AGG-<DELAY> - This is an aggregation-delay scheme. Multicast
distributions of requested content are scheduled with delay <DELAY >,

specified in minutes.

e DF-<DELAY>-<MAXDIST> - This is a digital fountain - delay -
mazimum distribution time scheme. Digital fountain style distributions
[12], as described in Section 6.4, are scheduled with delay <DELAY> as
in the previous scheme. In addition, since the digital fountain scheme
can cause starvation if requests for the same content continue to arrive,
<MAXDIST> is a variable that specifies the maximum number of times

a single distribution can be extended.

In addition to varying the scheduling scheme, we vary the following char-

acteristics to evaluate system behavior:

1. Load - As in the previous sections, we look at behavior under varied

load. We look at loads of 40 and 90 requests per second across the

146

system. Additionally, we look at the behavior of the system during a

spike in load.

2. Peer Characteristics - Also, as in the previous sections we look at
the system behavior based on peer characteristics with regard to the
distribution time for each item. In addition, we vary the type of content
stored on the serving peer between popular (many requests made for the

content) and unpopular (few requests made for the content).

3. Number of Servers - Again, as in the previous sections, we vary the
number of servers that store a particular piece of content. We consider

values from 1 to 18.

6.7.3 Results

We present the results of five experiments. In the first experiment we look
at our target metrics in the average case. The second experiment evaluates
variations in load and peer characteristics by varying the number of requests
per second made across the network as well as the popularity of the content
stored on the serving peer. In the third experiment we take a slightly different
look at the wait time metric while varying the load across the network. In
the forth experiment, we look at both metrics with respect to the peer char-
acteristics by increasing the time required for distributing a single piece of
content. Finally, in the last experiment we look at both metrics as the number
of serving peers varies.

Figure 6.19 plots the number of requests that experience each given wait
time throughout the 480 minute experiment. In the FCFS case, many requests
are made, queued, but not serviced within the 480 minute window. This is a
common occurrence and illustrates the instability of the system using a FCFS
scheme. Unserviced requests will remain in the queue of waiting requests at
the end of the 480 minutes and we do not report on them here. We have
truncated the FCFS data for presentation, but what happens in the FCFS

case is that most of the serviced requests are issued in the first few timesteps.

147

——DF11 ——AGG5 —— AGG 1 ——FCFS

=
o
o

80

40

Number of requests

O I ¥ MO0 NN 4 O O ©
< N O M O O NSO
— - M ™

- O O ©
M 1 ©
N N N N ™M

117
407
436
465
494
523

Wait time (seconds)

Figure 6.19: Number of requests experiencing each wait time at 40 requests
per second.

Number serviced

AGG 1

30

25

20 ——

15 + —

10 ——
5 4 Al - v 14

O TTTT T I T T T T T T T T T T T T T T T T T T T I TTT T T

A N~ M O O d NN 00 O W A N~ M 0O Wm0~ M
H\—INO’)O’)##LOLO@I\I\Q)CDCDS

Distribution
AGG 5
30
©
o 25 A AA
< 20 11 1]
D 15 |
g 10 4 I b b]
€ 5
2 O TTTTTTT T T T T T I T T T T I T T T I T T T I T I T T T T T T T T T T T I T T I T T T T I T T I T I T T T T T T T T T T T T I T T T T T T T T T ITTTTTT

A N~ M O O d N M0 O W oA N~ M 0O Wm0~ M
HHNMO’)Q’Q‘LOQO@I\I\GJQOQ

Distribution

Figure 6.20: Number of requests serviced with each distribution at 40 requests
per second.

148

Because they are serviced sequentially, each request waits from the beginning
of the experiment until the time it is serviced and the time waited increases
linearly for each serviced request. In fact, the final request serviced waits for
25,487 seconds.

While the FCFS wait times increase linearly, in all aggregation schemes
compared, the wait time remains relatively constant. Using aggregation, no
request ever waits for greater than 500 seconds because, in the worst case,
a request will be issued just as a distribution is starting, hence the request
will have to wait the duration of the distribution. This worst case would be
affected if the serving peer stored more than one piece of content. In the worst
case, a peer storing N pieces of content would schedule them sequentially,
1, 2,...,N. If a request for 1 was issued right after the distribution began,
the request would have to wait Zfil distribution_time; seconds until I was
scheduled again. A peer could potentially distribute multiple pieces of content
simultaneously, but the time to complete each distribution is still restricted
by the peer’s outgoing bandwidth. Additionally, we suggest that by enabling
users to browse a schedule of content, requests are likely to be influenced by
content already scheduled.

Another observation of Figure 6.19 is that the spikes at wait times 0, 61,
and 301 indicate that the largest number of requests wait for the amount of
time specified by the delay of the aggregation scheme. This is because the
system is somewhat lightly loaded and relatively few requests arrive between
the time that a distribution is scheduled and when it begins. While a longer
delay implies a longer average wait time, the tradeoff is that a longer delay
scheme utilizes fewer resources at the serving peer.

Finally, the difference between straightforward aggregation and a digital
fountain-style aggregation scheme is minimal. This is primarily because we
delay any new distributions by 1 minute and because we restrict the number
of times the distribution can be extended to 1. In fact, since our serving peer

in this experiment stores only one piece of data, in an unrestricted digital

149

fountain scenario we would achieve 0 wait time for all requests. If a peer
was stable, likely to remain available, and stored only 1 or a few pieces of
popular content, using an unrestricted digital fountain scheme would be the
best choice.

Figure 6.20 illustrates the number of peers serviced for each distribution
scheduled during the 480 minute run using the same parameters used for the
experiment shown in Figure 6.19. We omit the results of the DF 1 1 scheme
for presentation since the results were similar to the AGG 1 scheme. We also
omit the results of FCFS because it always services one request.

We notice that the aggregation schemes manage to service up to 30 requests
per distribution. We also notice that the AGG 5 scheme never services less than
7 requests per stream while the AGG 1 scheme often services fewer. Because
AGG 5 consistently services more requests than the lower delay scheme, fewer
distributions are required. This is simply because more requests are aggregated
prior to the beginning of a given distribution. What this implies is that there
is a tradeoff between the resources used at the serving peer and the wait time
experienced by the client. By incurring an average wait time penalty of 33
seconds with the AGG 5 scheme, we gain roughly a 25% resource savings at
the serving peer. Our final observation is that by using aggregation we gain an
advantage in terms of disk space required across the network. For the FCFS
scheme to achieve the same performance of the AGG 5 scheme, content would
have to be replicated up to 30 times throughout the network.

Figures 6.21 and 6.22 illustrate the number of requests experiencing each
wait time and the number of requests serviced per distribution respectively
for 40 and 90 requests per second and for the 40 requests per second case
when more popular content is stored at the serving peer. For the aggregation
scheme, increasing the number of requests per second or the popularity of the
content has a similar effect. Varying these parameters does not increase the
worst case wait time experienced for each request, but rather simply increases

the number of requests that experience each given wait time. Based on our

150

—— AGG 5-40 reqg/sec-popular—— AGG 5-90 reqg/sec —— AGG 5-40 reg/sec

100
80
60
40
20

Number of requests

Wait time (seconds)

Figure 6.21: Comparison of the number of requests experiencing each wait
time at 40 and 90 requests per second.

—— AGG 5-40 reqg/sec-popular—— AGG 5-90 reqg/sec —— AGG 5-40 req/sec‘

250

3 5 N S

Sl A ol A I M\
8 0 e ARRA S Y PG A
O e e e

- © «H © +Hd O d O +Hd © «+d © «+d © «H ©O© «H ©
I 4 N N O MO0 < F 0N .NOH © © N~ N~ 00

Distribution

Figure 6.22: Comparison of the number of requests serviced with each distri-
bution at 40 and 90 requests per second.

151

evaluation technique, the results of the FCFS case would not change greatly
between the 40 and 90 request per second cases, or when the content becomes
more popular, because all requests serviced would be issued near the beginning
of the experiment. What would change is that the queue of waiting requests
would be much larger, though we do not evaluate this metric here.
Additionally, as more requests are issued we can see a clearer pattern.
There is an even distribution of wait time from 0 to the amount of delay
used in the aggregation scheme. This is largely because requests arrive at a
constant rate and are queued until distribution begins. The few requests that
experience a wait time greater than the delay are those that arrive while a
distribution is in progress and must the remainder of the current distribution.
In Figure 6.22 we observe that the number of requests serviced per dis-
tribution becomes much larger when the load is heavier. Again, increasing
the number of requests per second and increasing the popularity of the stored
content has a similar effect. Over 12,200 requests are satisfied using and AGG

5 dwarfing the less than 120 requests that can be satisfied in a FCFS case.

—— FCFS-SPIKE —— FCFS-NOSPIKE
AGG 1-SPIKE ——AGG 1-NOSPIKE

8000
6000

4000 frﬁ&&ﬂhﬂ&xﬂ,‘w/- -
2000 : ; E ff?i; ’“vfﬁ#ﬂj’”

L 2 L]
0l i f
D R B e TR o T o TR e AR e A e B e A e A e R o A o HO e O o |
I N M < IO © N~ 0 O O «H N M <

L T B B B |

Wait time (seconds)

o
L

Distribution

Figure 6.23: Wait time for each request serviced with load surge.

In Figure 6.23 we store an unpopular piece of content on the serving peer
and demonstrate a spike in load from 40 to 90 requests per second. The

figure illustrates the wait time experienced under these conditions. While

152

wait time with the FCFS scheme continues to grow, even without the load
spike, wait time using the aggregation scheme remains stable over all requests.
Such behavior is especially important when a new, popular piece of content is
introduced into the peer network. In the best case FCFS scheme, distributing
a single piece of content throughout the entire network would be logarithmic
with respect to the number of peers. Using aggregation, the same distribution

occurs in constant time.

| ——AGG 5—+—AGG 1—— FCFS |

o 5
B
3]
g 4
g 3
5
5 2
81
E
20
- © 4 © +d O d © +H O 4 O +d O +H O «d O «d O
N 4 © N I~ M 0 g O O © 4N~ N 0 M O <
N IO~ O N IO NN O ANW 0O O MWW o O M 1
- d 4 4 N N N N OO oo o035 5 5

Wait time (seconds)

Figure 6.24: Number of requests experiencing each wait time for content with
3800-4300 second distribution time.

|——AGG 5—+— AGG 1 —— FCFS |

250

e)
'8 200 W
S
150
& /
o 100
Ke)
E 50 /
< 0
T
1 2 3 4 5 6 7
Distribution

Figure 6.25: Number of requests serviced with each distribution for content
with 3800-4300 second distribution time.

Figures 6.24 and 6.25 illustrate the effect of extending the amount of time a

single distribution takes to complete. This would be the result of distributing

153

larger files and/or using a slower connection. What we notice is that, overall,
wait time for the aggregation schemes increases to be, at most, nearly the
length of the distribution. This is simply because requests made when a dis-
tribution is already in progress must wait until the distribution finishes. With
FCFS, the behavior is nearly the same as in previous cases with the maxi-
mum wait being nearly the length of the experiment (480 minutes). Looking
at Figure 6.25, we notice that in the FCFS case, only a total of 7 requests
are serviced while over 150 requests are serviced with each distribution in the
other schemes. The disk space savings Pizie achieves becomes clearer in this
case. Assuming files of 5 MBytes, a conservative estimate for for content such
as video, we can achieve a savings of nearly 1GByte. In a wireless and/or
small device environment where bandwidth and disk space are scarce and dis-
tribution can be lengthy, an aggregation scheme provides a clear benefit over

a straightforward FCFS technique.

[+7SP =6SP 5SP - 4SP = 3SP = 2SP +~1SP|

Percentage of Requests

N < K~ M O 1 o~ M O
O M 1N 0 O M © W < M
I a4 a4 <4 N N N N O ™

Wait Time (seconds)

365
391
417
443
469

Figure 6.26: Cumulative distribution of wait times using AGG 1.

Figures 6.26, 6.27, and 6.28 illustrate the reduction in client peer wait time
as the number of serving peers available to serve the requested item increases.

Figure 6.26 illustrates the cumulative distribution of wait time incurred using

154

18SP - 17SP 16 SP = 15SP —14SP —13SP — 12 SP
11SP 10SP

Requests
o
o282y
'—'T\N""w

0.6 -
B 05
oy
S04
c
g 0.3 +—
e
o 0.2 —
o
0.1 4
|
0
AT N O M © O N O AT N~NO MO O N W ®
W O MOModoo 0 ©F ®MAdo ® O F N o O N
A MO NOOONT O MO JdMmMWLN~NOO AN I
4 d o ddadAdNNNNNO®O®

Wait Time (seconds)

Figure 6.27: Cumulative distribution of wait times using FCFS.

AGG-4SP —FCFS-13SP +~ AGG-3SP
—AGG-1SP FCFS - 11 SP

3
\ X
|

Requests
o
[o)]
e

500 / P

Percentag
o O O O
R N W s

Il

. o

0
AN MO WL d ML NN N MO
— S © 0o 49N F oK O OAN YLK ®
" d +d4 A 4 dd N NN NN

Wait Time (seconds)

Figure 6.28: Cumulative distribution of wait times using AGG 1 and FCFS
schemes.

155

the AGG 1 scheduling scheme. Our first observation is that as the number
of serving peers increases, the cumulative wait time decreases. This is not
surprising since a requesting peer is more likely to find a non-occupied serving
peer to schedule a distribution rather than waiting for a currently occupied
peer to finish a distribution in progress. Additionally, the cumulative wait
time reaches a minimum when six peers are available to serve the same piece
of content. This indicates that no more than six parallel requests are unable to
be aggregated at any given time. However, this result would change if a peer
could take advantage of an already-scheduled scheme, but chose to schedule a
new distribution instead.

We also observe that, even in the best case, some requests still experience
up to 60 seconds of wait time. This is the result of the 60 second scheduling
delay used in the aggregation algorithm. The requesting peers that initiate
the scheduling of a new distribution will always wait for at least 60 seconds.

In contrast, Figure 6.27 illustrates the cumulative distribution of wait time
incurred using a FCF'S scheduling scheme. In the FCFS case, the wait time will
theoretically go to zero when the maximum amount of parallelism is achieved.
But, even with 12 available peers, the cumulative wait time is greater than the
cumulative wait time for one peer using the AGG 1 scheme.

To further compare the FCFS and AGG 1 schemes, Figure 6.28 illustrates
selected results from the two previous figures. AGG 1 with 1 server performs
considerably better than FCFS with 11 servers. However, AGG 1 with 4
servers achieves nearly the minimal wait time for the AGG 1 scheme, and is
outperformed by FCFS with 13 servers about 75% of the time. To achieve a
wait time comparable to AGG 1 in any case, the FCFS case requires at least
13 peers.

Recall, the tradeoff with respect to wait time is the level of aggregation
achieved at the serving peer. Figure 6.29 illustrates the cumulative distribution
of the number of requests serviced with each distribution (level of aggregation)

as the number of servers increases. Similar to the wait time metric, with 6

156

‘+GSP+5SP =4SP 3SP «~2SP =~1SP

o.sla p =l

o/

os |1

0.1 ‘//
/.

0 1 T

— [92) [Te] N~ (] — ™ Te] N~ (<] - [s¢]
— — — — — N N

Aggregation (number of requests)

Percentage of Distributions

o~
SN

Figure 6.29: Cumulative distribution of aggregation per distribution.

serving peers the level of aggregation is minimized as well. Again, this indicates
that the maximum level of parallelism is achieved with 6 available serving
peers. In the case of 6 serving peers, about 50% of distributions aggregate
fewer than 4 requesting clients. While a smaller level of aggregation can still
be useful in terms of reducing the resources used at the serving peer, clearly
aggregation is most beneficial when only a small number of serving peers are
available.

Finally, Figure 6.30 compares the total number of requests serviced by the
AGG 1 and FCFS schemes at the end of the 8 hour simulation. While the AGG
1 scheme always services all requests, the FCFS scheme requires at least 12
serving peers to match the performance. Especially in a network where peers
frequently join and leave, aggregating requests and batching content delivery

can have a positive impact on overall performance.

6.7.4 Summary

The aggregation algorithm employed by Pizie is highly effective. The level

of batching achieved is significant and can yield a large resource savings in a

157

= AGG 1 -—FCFS

1400

1200 A

1000 -
800 |

600

400 /

200 /

—

Total Number of Requests Serviced

1 2 3 4 5 6 7 8 9 10 11 12
Number of Serving Peers

Figure 6.30: Total number of requests serviced as the number of serving peers
varies.

peer content exchange network. Moreover, the tradeoff with respect to client
peer wait time is minimal. As previously discussed in the chapter, load and
object delivery time play a crucial role in the level of batching Pizie is able
to achieve. However, the most significant factor is still the distribution of
user requests. Pizxie is effective primarily because of the significant overlap in
user interest seen in peer networks. As we have demonstrated, by leveraging
that property, we can provide new and more efficient peer content exchange

services.

6.8 Discussion

Supporting content exchange for content-driven applications, such as P2P
file sharing, in next-generation environments will be greatly more challenging
than supporting the same applications in the traditional wired Internet. In
contrast to desktop computers, devices such as PDAs have limited resources,
such as bandwidth. Moreover, users of pervasive computing devices can be

mobile making user participation highly transient. These properties make

158

traditional protocols for searching and downloading inappropriate. Protocols
to support content exchange in next-generation environments must reduce
resource usage while accounting for the dynamic nature of the environment.
Pizie provides a more efficient solution for search and content delivery
in peer networks. The Pizrie search protocol can reduce the bandwidth and
processing resources necessary to locate content while incurring minimal and
manageable overhead. Additionally, by batching requests and using one-to-
many distribution, Pizie provides more efficient and faster delivery of content.
As content-driven applications evolve to include exchange of content between
mobile users carrying small, resource-constrained devices, Pirie can be used to

solve many of the challenges inherent in the pervasive computing environment.

159

Chapter 7

Concluding Remarks

The underlying goal of this dissertation has been to develop and evaluate
techniques that can be used to support current content-driven applications,
such as web surfing and peer file sharing, in the next-generation computing
environment where computing devices may have severe resource limitations.

We have introduced three novel techniques to meet this goal:

Non-traditional Content Access. The MakerFactory realizes a model for
automatically generating multimodal interface components from a schema def-
inition. The feasibility of this model is demonstrated by the implementation of
AXL. Using AXL, we have been able to automatically generate usable speech-
based interfaces that provide access to XML content. The MakerFactory model
and AXL implementation demonstrate that we can provide access to informa-

tion, such as web content, using devices with constrained display capabilities.

Resource-Aware Content Management. Our architecture for resource-
aware content management proposes a new model for integrating the dimension
of resource availability into a content management scheme. Focusing on bat-
tery lifetime as a primary constrained resource, our experimental evaluation
has shown that the lifetime of a collection of devices can be greatly extended
by monitoring energy levels and migrating content accordingly. These results

demonstrate that it is feasible to use a collection of devices in a cooperative

160

manner to overcome the resource constraints of a single device and prolong

content-based services.

Efficient Content Location and Distribution. Pizie introduces an ar-
chitecture for providing new and more resource-efficient services in peer net-
works. Pizie integrates existing communication and content delivery tech-
niques which, we have demonstrated, can reduce searching overhead and im-
prove serving peer resource usage while minimizing client wait time. Using
the Pizie model, content exchange is more viable in large-scale environments

where resources are scarce.

As next-generation computing environments become more commonplace,
current applications will evolve and new applications will emerge to take ad-
vantage of new functionality. Factors such as increased user mobility, de-
creased device size, and ubiquitous deployment will enable new applications
such as large-scale environmental sensing. Similarly, existing applications such
as digital classrooms, web access, and peer file sharing will change to lever-
age available functionality. However, a fundamental challenge that we must
address in order to achieve this vision and enable these kinds of applications
is to overcome the inherent resource constraints of the future computing envi-
ronment. This dissertation proposes three techniques to address the resource
constraints that deter the fundamental functionality that these kinds of ap-
plications require; content access, management, and distribution. By using
these techniques, we can support a wide range of advanced, content-driven

applications in the next-generation computing environment.

161

Bibliography

1]

2]

3]

[4]

[5]

[6]

[7]

8]

G. Abowd. Classroom 2000: An experiment with the instrumentation of

a living educational environment. IBM Systems Journal, 38(4), 1999.

M. Abrams, C. Phanouriou, A. Batongbacal, S. Williams, and J. Shuster.
UIML: an appliance-independent XML user interface language. In Pro-

ceedings of the eighth international conference on the World Wide Web,
Toronto, Canada, May 1999.

E. Adar and B. Huberman. Free riding on gnutella. First Monday, 5(10),
October 2000.

M. Albers. Auditory cues for browsing, surfing, and navigating. In Pro-
ceedings of ICAD 1996, pages 85-90, Santa Fe, NM, USA, 1996.

K. Almeroth and M. Ammar. The interactive multimedia jukebox (imj):
A new paradigm for the on-demand delivery of audio/video. In WWW?7,
Brisbane, Australia, April 1998.

Y. Amir, A. Peterson, and D. Shaw. Seamlessly selecting the best copy
from internet-wide replicated web servers. In International Symposium

on Distributed Computing, Andros, Greece, September 1998.

B. Arons. Hyperspeech: Navigating in speech-only hypermedia. In Pro-
ceedings of Third Annual ACM Conference on Hypertext, pages 133-146,
San Antonio, TX, USA, December 1991.

S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable application
layer multicast. In Sigcomm, Pittsburgh, PA, August 2002.

162

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

S. Barrass. Auditory Information Design. PhD thesis, Australian National
University, 1997.

E. Bergman and E. Johnson. Towards accessible human-computer inter-

action. Advances in Human-Computer Interaction, 5, 1995.

S. Brewster. Providing a Structured Method for Integrating Non-Speech
Audio into Human-Computer Interfaces. PhD thesis, University of York,
York, Great Britain, August 1994.

J. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digital fountain
approach to reliable distribution of bulk data. In Sigcomm, pages 56-67,
Vancouver, British Columbia, September 1998.

A. Chankhunthod, P. Danzing, C. Neerdaels, M. Schwartz, and K. Wor-
rell. A hierarchical internet object cache. In Useniz Annual Technical

Conference, San Diego, CA, USA, January 1996.

I. Clarke, O. Sandberg, B. Wiley, and T. Hong. Freenet: A distributed
anonymous information storage and retrieval system. In Designing Pri-

vacy Enhancing Technologies: International Workshop on Design Issues

in Anonymity and Unobservability, Berkeley, CA, USA, July 2000.

F. Dabek, M. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area
cooperative storage with CFS. In SOSP 2001, Banff, Canada, October
2001.

C. Ellis. The case for higher-level power management. In HotOS, Rio
Rico, AZ, USA, March 1999.

K. Farkas, J. Flinn, G. Back, D. Grunwald, and J. Anderson. Quantifying
the energy consumption of a pocket computer and a java virtual machine.

In Sigmetrics 00, pages 252-263, Santa Clara, CA, USA, June 2000.

163

18]

[19]

[20]

[21]

22]

[23]

[24]

[25]

[26]

L. Feeney and M Nilsson. Investigating the energy consumption of a
wireless network interface in an ad hoc networking environment. In IN-

FOCOM 01, pages 1548-1557, Anchorage, Alaska, USA, April 2001.

J. Flinn and M. Satyanarayanan. Energy-aware adaptation for mobile ap-
plications. In SOSP 99, pages 4863, Kiawah Island, SC, USA, December
1999.

A. Fox, S. Gribble, Y. Chawathe, E. Brewer, and P. Gauthier. Cluster-
based scalable network services. In SOSP 97, Saint-Malo, France, October
1997.

E. Glinert, R. Kline, G. Ormsby, and G.B. Wise. Unwindows: Bring-
ing multimedia computing to users with disabilities. In Proceedings of
IISF/ACMJ International Symposium on Computers as Our Better Part-
ners, pages 34-42, Tokyo, March 1994.

S. Goel, M. Singh, D. Xu, and B. Li. Efficient peer-to-peer data dissemi-
nation in mobile ad-hoc networks. In ICPPW, Vancouver, B.C., Canada,
August 2002.

S. Gribble, M. Welsh, E. Brewer, and D. Culler. The multispace: An
evolutionary platform for infrastructural services. In Useniz, Monterey,
CA, USA, January 1998.

P. Havinga. Mobile Multimedia Systems. PhD dissertation, University of
Twente, Department of Computer Science, February 2000.

W. Heinzelman, J. Kulik, and H. Balakrishnan. Adaptive protocols for
information dissemination in wireless sensor networks. In MobiCOM 99,
pages 174-185, Seattle, WA, USA, August 19909.

D. Helder and S. Jamin. End-host multicast communication using switch-
tree protocols. In Workshop on Global and Peer-to-Peer Computing on

Large Scale Distributed Systems, Berlin, Germany, May 2002.

164

[27]

28]

[29]

[30]

[31]

32]

33]

[34]

[35]

[36]

T. Hodes and R. Katz. A document-based framework for internet ap-
plication control. In Proceeding of the Second USENIX Symposium on
Internet Technologies and Systems, Boulder, CO, USA, October 1999.

C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: A
scalable and robust communication paradigm for sensor networks. In

MobiCOM 2000, pages 5667, Boston, MA, USA, August 2000.

F. James. Lessons from developing audio html interfaces. In Proceedings

of ASSETS 1998, pages 1517, Marina Del Rey, CA, USA, April 1998.

F. James. Representing Structured Information in Audio Interfaces: A
Framework for Selecting Audio Marking Techniques to Represent Docu-
ment Structures. PhD thesis, Stanford University, Palo Alto, CA, USA,
June 1998.

M. Kempa and V. Linnemann. On XML objects. In Programming Lan-
guage Technologies for XML, Pittsburgh, PA, October 2002.

G. Krasner and S. Pope. A cookbook for using the model-view-controller
user interface paradigm in smalltalk-80. Journal of Object-Oriented Pro-

gramming, 1(3):26-49, 1988.

R. Kravets, C. Carter, and L. Magalhaes. A cooperative approach to user
mobility. ACM Computer Communications Review, 31, 2001.

R. Kravets and P. Krishnan. Power management techniques for mobile
communication. In MobiCOM 98, pages 157-168, Denver, Colorado, USA,
September 1998.

M. Krell and D. Cubranic. V-lynx: Bringing the world wide web to sight
impaired users. In Proceedings of ASSETS 1996, pages 23-26, Vancouver,
British Columbia, April 1996.

J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and

165

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

B. Zhao. Oceanstore: An architecture for global-scale persistent storage.
In ASPLOS, Cambridge, MA, USA, November 2000.

L. Lamport. Latex: A Document Preparation System. Addison-Wesley,
Reading, Mass., 1986.

K. Luyten and K. Coninx. An xml-based runtime user interface descrip-
tion language for mobile computing devices. In International Workshop
on Design, Specification, and Verification (DSV-IS 2001), Glasgow, Scot-
land, UK, June 2001.

S. Maes and T.V. Raman. A single authoring programming model for the

next web. In Scientific Emphasis Proceedings, June 2001.

D. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne,
B. Richard, S. Rollins, and Z. Xu. Peer-to-peer computing. Technical
Report HPL-2002-57, Hewlett Packard Laboratories, 2002.

N. Mitrovic and E. Mena. Adaptive user interface for mobile devices.
In 9th International Workshop on Design, Specification, and Verification
(DSV-IS 2002), Rostock, Germany, June 2002.

S. Morley, H. Petrie, A.M; O’Neill, and P. McNally. Auditory navigation
in hyperspace: Design and evaluation of a non-visual hypermedia system
for blind users. In Proceedings of ASSETS 1998, pages 100-107, Marina
Del Rey, CA, USA, April 1998.

A. Mueller, T. Mundt, and W. Lindner. Using xml to semi-automatically
derive user interfaces. In Second International Workshop on User Inter-
faces to Data Intensive Systems (UIDIS’01), Zurich, Switzerland, May
2001.

M. Neary, S. Brydon, P. Kmiec, S. Rollins, and P. Cappello. Javelin+-:

Scalability issues in global computing. In Java Grande, pages 171-180,
San Francisco, CA, USA, June 2000.

166

[45]

[46]

[47]

48]

[49]

[50]

[51]

[52]

[53]

[54]

M. Neary, S. Brydon, P. Kmiec, S. Rollins, and P. Cappello. Javelin+-:
Scalability issues in global computing. Concurrency: Practice and Ezpe-
rience, 12:727-753, 2000.

T. Oogane and C. Asakawa. An interactive method for accessing tables in
html. In Proceedings of ASSETS 1998, pages 126-128, Marina Del Rey,
CA, USA, April 1998.

A. Oram, editor. Peer to Peer Harnessing the Power of Disruptive Tech-

nologies. O’Reilly and Associates, first edition, 2001.

M. Papadopouli and H. Schulzrine. Network connection sharing in an ad
hoc wireless network among collaborative hosts. In NOSSDAV 99, Bell
Labs, New Jersey, USA, June 1999.

M. Papadopouli and H. Schulzrinne. Seven degress of separation in mobile

ad hoc networks. In Globecom, San Francisco, CA, USA, November 2000.

S. Portigal. Auralization of document structure. Master’s thesis, Univer-

sity of Guelph, Canada, 1994.

T.V. Raman. Audio System for Technical Readings. PhD thesis, Cornell
University, Itica, NY, USA, May 1994.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scal-
able content-addressable network. In Sigcomm 2001, San Diego, CA,
USA, August 2001.

M. Ripeanu, I. Foster, and A. Tamnitchi. Mapping the gnutella network:
Properties of large-scale peer-to-peer systems and implications for system
design. IEEE Internet Computing Journal, Special Issue on Peer-to-Peer
Networking, 6(1), 2002.

S. Rollins. Audio XmL: Aural interaction with xml documents. Master’s
thesis, University of California at Santa Barbara, Santa Barbara, CA,
USA, 2000.

167

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

S. Rollins and K. Almeroth. Deploying an infrastructure for technologi-
cally enhanced learning. In ED MEDIA, Denver, CO, USA, June 2002.

S. Rollins and K. Almeroth. Pixie: A jukebox architecture to support effi-
cient peer content exchange. In ACM Multimedia, Juan-Les-Pins, France,
December 2002.

S. Rollins, K. Almeroth, D. Milojicic, and K. Nagaraja. Power-aware
data management for small devices. In Workshop on Wireless Mobile

Multimedia (WoWMoM 2002), Atlanta, GA, USA, September 2002.

S. Rollins, R. Chalmers, J. Blanquer, and K. Almeroth. The active in-
formation system (ais): A model for developing scalable web services.

In Internet Multimedia Systems and Applications, Kauai, Hawaii, USA,
August 2002.

S. Rollins and N. Sundaresan. AVoN calling: AXL for voice-enabled web
navigation. In The Ninth International World Wide Web Conference,
Amsterdam, The Netherlands, May 2000.

S. Rollins and N. Sundaresan. A framework for creating multi-modal

interfaces for xml documents. In The International Conference on Multi-

media and Ezpo, New York, NY, USA, July 2000.

M. Roussopoulos, P. Maniatis, E. Swierk, K. Lai, G. Appenzeller, and
M. Baker. Person-level routing in the mobile people architecture. In
USITS, Boulder, Colorado, USA, October 1999.

A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object
location and routing for large-scale peer-to-peer systems. In Middeware,

Heidelberg, Germany, November 2001.

A. Rowstron and P. Druschel. Storage management and caching in PAST,
a large-scale, persistent, peer-to-peer storage utility. In SOSP 2001,
Canada, November 2001.

168

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

A. Rudenko, P. Reiher, G. Popek, and G. Kuenning. Saving portable
computer battery power through remote process execution. Mobile Com-

puting and Communications Review, 2(1):19-26, 1998.

S. Saroiu, P. Gummadi, and S. Gribble. A measurement study of peer-
to-peer file sharing systems. In MMCN, San Jose, CA, USA, January
2002.

M. Satyanarayanan, J. Kistler, L. Mummert, M. Ebling, P. Kumar, and
Q. Lu. Experience with disconnected operation in a mobile computing en-
vironment. In USENIX Symposium on Mobile and Location-Independent
Computing, Cambridge, MA, USA, August 1993.

M. Satyanrayanan. Pervasive computing: Vision and challenges. IFEE

Personal Communications, August 2001.

S. Sheu, K. Hua, and T. Hu. Virtual batching: A new scheduling tech-
nique for video-on-demand servers. In DASFAA, pages 481-490, Mel-
bourne, Australia, April 1997.

B. Shneiderman, M. Alavi, K Norman, and E. Borkowski. Windows of
opportunity in the electronic classroom. Communications of the ACM,

38(11):19-24, November 1995.

T. Starner. The role of speech input in wearable computing. IEEE Per-
vasive Computing, 1(3):89-93, 2002.

M. Stemm and R. Katz. Measuring and reducing energy consumption of
network interfaces in hand-held devices. IEICE Transactions on Commu-

nications, August 1997.

I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrisnan. Chord:
A scalable peer-to-peer lookup service for internet applications. In Sig-

comm 2001, San Diego, CA, USA, August 2001.

169

73]

[74]

[75]

[76]

[77]

78]

[79]

[80]

[81]

[82]

E. Swierk, E. Kiciman, N. Willams, T. Fukushima, H. Yoshida, V. La-
viano, and M. Baker. The roma personal metadata service. In IEEFE
Workshop on Mobile Computing Systems and Applications, December
2000.

D. Tsichritzis. Reengineering the university. Communications of the
ACM, 42(6):93-100, June 1999.

M. Weiser. The computer for the 21st century. Scientific American,
265(3), September 1991.

C.M. Wilson. Listen: A data sonification toolkit. Master’s thesis, Uni-
versity of California at Santa Cruz, Santa Cruz, CA, USA, 1996.

D. Wu, A. Swan, and L. Rowe. An Internet MBone broadcast manage-
ment system. In Proceedings of Multimedia Computing and Networking
1999, San Jose, CA, USA, January 1999.

D. Xu, M. Hefeeda, S. Hambrusch, and B. Bhargava. On peer-to-peer
media streaming. In ICDCS, Vienna, Austria, July 2002.

T. Ye, H. Jacobson, and R. Katz. Mobile awareness in a wide area network
of info-stations. In MobiCOM 1998, pages 109-120, Denver, Colorado,
USA, September 1998.

C. Yoshikawa, B. Chun, P. Eastham, A. Vahdat, T. Anderson, and
D. Culler. Using smart clients to build scalable servics. In Useniz Annual

Technical Conference, Anaheim, CA, USA, January 1997.

M. Zajicek and C. Powell. Building a conceptual model of the world wide
web for visually impaired users. In Proceedings of Ergonomics Society

1997 Annual Conference, 1997.

M. Zajicek, C. Powell, and C. Reeves. A web navigation tool for the blind.
In Proceedings of ASSETS 1998, Marina Del Rey, CA, USA, April 1998.

170

[83] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An infrastruc-

ture for fault-tolerant wide-area location and routing. Technical Report
UCB/CSD-01-1141, UC Berkeley, April 2001.

[84] S. Zhuang, B. Zhao, A. Joseph, R. Katz, and J. Kubiatowicz. Bayeux: An
architecture for scalable and fault-tolerant wide-area data dissemination.
In NOSSDAV, Port Jefferson, NY, USA, June 2001.

[85] G. Zipf. Human Behavior and the Principle of Least Effort. Addison-
Wesley, Reading, MA, 1949.

171

