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Abstract—Predictability of home energy usage forms the
basis of many home energy management and demand-response
systems. While existing studies focus on designing more accu-
rate prediction algorithms, a comprehensive energy management
solution requires a broad understanding of prediction accuracy
at different granularities, for example appliance and home, as
well as different time horizons, for example an hour, day, or
week into the future. In this paper, we undertake an analysis
of predictability of power draw of appliances and whole-home
energy consumption at four different time horizons: an hour,
a quarter-day, a day, and a week in the future. Our analysis
presents two research contributions. Our first contribution is
a diverse dataset, GreenHomes, that includes appliance power
draw and whole-home energy consumption data from seven
homes across three states in the United States over a two-
year period. Our second and primary contribution is a set
of insights into the predictability of home energy usage. We
show that simple statistic-based algorithms perform as well as
sophisticated machine learning algorithms and time-series based
predictors. These simple algorithms can considerably reduce the
computational need for large-scale predictive analysis of home
energy data. We also show that appliance-level power draw is
more predictable than whole-home energy consumption at shorter
time horizons while home-level energy consumption is more
predictable at longer time horizons. Finally, we show that there is
large variation in predictability across homes. This variation may
be attributed to home type and points to the need for personalized
energy management systems.

I. INTRODUCTION

The ability to predict future energy requirements is a criti-
cal component of a variety of applications that seek to conserve
or improve management of energy resources. Utilities, for
example, use forecasting of future demand to determine how
to manage energy generation. With the recent widespread
deployment of the smart grid, forecasting at the scale of
individual homes and even appliances becomes necessary for
enabling effective demand response systems and user-side en-
ergy management. A system that is able to accurately estimate
energy requirements at the scale of individual appliances in the
home, for example, can enable feedback and recommendations
to support load shifting to reduce peak demand or help home
owners better understand how they can modify usage to
minimize electricity bills.

Building predictive models for time series data is a well
studied area [1], however, most prior efforts in the domain
of home energy have focused on designing better models
for a small subset of scenarios [2], [3], [4], [5]. There is
research, for example, on better prediction of appliance energy

usage at short time horizons like an hour into the future [6].
Similarly, some research efforts have focused on whole home
energy consumption predictions at time frames of a day in the
future [7], [8]. A comprehensive energy management solution,
however, requires a broad understanding of prediction accuracy
at different granularities, for example appliance and home, as
well as different time horizons, for example an hour, day, or
week into the future. A broad understanding of predictability
may be used to inform the design of energy management
solutions by allowing a designer to tune the system to tolerate
prediction error, or to make smart decisions about integrating
or excluding appliances known to have unpredictable usage
patterns.

In this paper, we undertake a comprehensive study to
answer the following question: how predictable is home energy
usage? Our goal is not to design a new prediction algorithm,
a topic that has been comprehensively studied in the litera-
ture [9], [8], but to instead derive insights into the predictability
of home energy usage with application to demand-response
systems in particular and home energy management in general.
To answer the above question, we study the predictability
of energy consumption at the scale of individual appliances,
and single homes. We also compare the prediction accuracy
at the time horizons of an hour into the future, a quarter
day into the future, a day into the future, and a week into
the future. For our analysis, we leverage three well-known
machine learning predictors: k-nearest neighbor, a bayesian
predictor, and support vector machine and a time-series based
predictor (ARMA(1,1)). We compare these predictors with a
simple algorithm that uses the energy consumed in the last time
frame as the predicted energy consumed in the next time frame.
Finally, we compare the performance of power feature average
power consumed with time-of-day features such as hour of
the day and day of the week. The quantitative analysis of the
predictive models presents two novel research contributions.

Our first contribution is a diverse, longitudinal dataset
on home energy consumption—the GreenHomes dataset. The
dataset consists of power consumption data from appliances
and whole home energy consumption data collected over a
period of three years (on a rolling basis) from seven homes.
The homes in the dataset are diverse: rentals and user owned
homes; an off-grid home and a home partially powered by
solar panels; and homes that are powered completely by the
grid. The residents of the homes vary from graduate students
(low income group) to professionals (middle and high income
group), single-user and family homes, and include buildings in
Arkansas, Maryland, and California. The dataset is the basis
of our analysis and overcomes the shortcomings of publicly978-1-4799-6177-1/14/$31.00 c�2014 IEEE



available datasets that are either collected over a short period
of time [10], sometimes do not include data for both appliances
and the whole home [11], and are often collected in one
geographic region [11], [10].

Our second and primary contribution is a set of insights
that provide a comprehensive understanding of energy usage
and can inform the design of demand-response and energy
management systems. We show, for example, that simple
algorithms that use basic power features like power consumed
in the previous time frame have comparable performance
to sophisticated machine learning algorithms and time series
predictors. These simple algorithms can considerably reduce
the computational need for large scale predictive analysis of
home energy data. We also show that appliance-level energy
usage is more predictable than whole home energy at shorter
time horizons while home level energy consumption is more
predictable at longer time horizons like a week. Finally, we
show that there is a large variation in predictability across
homes that can be attributed to home type.

II. GREENHOMES DATASET

The goal of our work is to gain a comprehensive un-
derstanding of the predictability of home energy usage. To
achieve this goal, we impose the following three requirements
for the dataset that serves as the basis for our analysis. First, it
must provide data at different granularities including appliance
power draw data as well as whole-home energy consumption
data. Second, it must be longitudinal to enable derivation of
predictability results that are significant, especially for longer
time horizons like a week. Third, the dataset must be diverse,
for example with respect to number of home occupants, in
order to derive general insights into home energy usage.
There exist several publicly available datasets on home energy
consumption, however all suffer from drawbacks that make
them unfit for our study. REDD is a popular dataset used in
energy disaggregation research [10]. The dataset consists of
highly granular appliance-level power draw data, however, the
publicly available dataset released has only 30 days of usage
data. While the Smart⇤ dataset [11] is richer and provides
circuit, home, and micro-grid data at a fine granularity, it
consists of data from only three homes. Moreover, it does not
include appliance power consumption data.

The GreenHomes dataset is a comprehensive home energy
consumption dataset that our group has been collecting from
seven deployments on a rolling basis over a period of 2
years. The characteristics of the collected data are illustrated
in Table 1. Our deployments are diverse and include an off-
grid home powered entirely by solar panels, a grid-tied house
partially powered by solar, and five houses that are powered
solely by the grid. Our deployments span houses in Arkansas,
Maryland, and California, and hence include a large spectrum
of weather zones. Four of our subjects own their homes
while three houses are rental apartments. Our dataset includes
data from more than 80 appliances and includes refrigerators,
cooking appliances (microwave and ovens), entertainment ap-
pliances (televisions and gaming consoles), lighting, and wash-
ers/dryers. Two of our subjects (site 1 and site 4) moved during
the span of our data collection and the 21 and 14 appliances
noted in Table 1 include two distinct sets of appliances for
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Fig. 2. Feature extraction for one hour scale.

the two locations. As shown in the table, our data set includes
5–20 months of data per site.

A. Data Collection System

We use off-the-shelf energy meters [12] to collect power
draw information from several devices in each home. Our
seven deployments measure a variety of appliances includ-
ing televisions, lamps, microwaves, and computers. In some
homes, we use a meter [13] to directly collect whole-home
energy usage data.

In each home, we have deployed a low-power FitPC [14]
that runs a client component built on the HomeOS [15]
platform. The client periodically (once every 30 seconds) polls
a dual-radio gateway [16] that retrieves instantaneous power
draw readings from each individual meter. This information
is then pushed to a centralized server where it is stored in a
standard mysql database. Our current deployments focus on
data collection, however our server does implement a secure,
RESTful API that provides access to the raw data. We also
provide users with an iPhone application that displays graphs
of usage data as well as the ability to control individual
appliances remotely [17]. We have prototypes of both a web
application and an Android application. We have also tested
a prototype that collects contextual information such as when
the user is home and what the user is doing (activities like
cooking, entertainment, chores, and work) when energy usage
is high [18]. As future work, we plan to use this additional
contextual information to inform our prediction algorithms.

B. Data Cleaning and Feature Extraction

The raw data collected by our system consist of power-
draw values in Watts and corresponding timestamps. These
data points must be processed into usable form for our predic-
tion analysis. The first step is simply to remove impossible
values: raw data points with wattages less than zero for
instance are removed. Moreover, we have found that close
to 22% of the time our meters malfunctioned or reported
stale data. This is likely due to wireless transmission failures
or power-outages. We do not use those time periods for our
predictions.

For each appliance and home we monitor, our system
collects instantaneous power draw every 30 seconds, however
to make predictions about energy use we aggregate these



Site# # of Appliances Home data # of months # of occupants Type of home
Site 0 8 Yes 12 2 rental, on-grid
Site 1⇤ 21 Yes 5 1 rental, on-grid
Site 2 11 12 2 owned, on-grid
Site 3 9 Yes 18 1 owned, on-grid
Site 4⇤ 14 20 2 rental, on-grid
Site 5 6 14 3 owned, grid-tied
Site 6 10 Yes 5 2 owned, off-grid

Fig. 1. Characteristics of the GreenHomes dataset. Our dataset includes data from a wide range of homes. Site 1 and Site 4 subjects moved during the course
of the data collection.

(timestamp, power draw) values into a set of labeled data.
For each home or appliance, we first compress the data into
hour-, six-hour-, day-, or week-long units, depending on the
scale at which we wish to make predictions, by calculating the
mean power draw of the device in that time period. Figure 2
demonstrates this process on the hour scale. Note that the
average power draw times the length of this time period is the
energy use for that time period. Using the starting time for each
of these time periods, we calculate time-based features: hour
of the day, day of the week, and quarter of the day. Using the
average power draws we calculated, we select power features
such as the average power use in the immediately prior time
period. The features we select and calculate are assembled
into ordered sequences to be used as feature vectors in our
prediction algorithms.

III. PREDICTION ALGORITHMS

For our analysis, we use three machine learning algo-
rithms and one time series-based predictor : Naive Bayes
Predictor [19], K-Nearest Neighbor predictor [20], Support
Vector Machine predictor [21], and autoregressive and moving
average predictor of order (1,1) [22]. The machine learning
algorithms output a predicted class of power draw while the
ARMA predictor outputs a continuous power draw value.
To divide the power consumption values into classes, we
cluster the average power draw for different time horizons
into clusters using an unsupervised clustering algorithm similar
to DBSCAN [23]. The predicted power consumption for the
machine learning algorithms, therefore, is the power consump-
tion value corresponding to the centroid of the predicted class.
While the above set of algorithms used in our analysis is not
exhaustive, they represent samples for a wide spectrum of
learning and time-series based algorithms used popularly in
demand-response systems. For instance, the Naive Bayes Pre-
dictor is a probabilistic predictor that assumes independence of
features and SVM is a non-probabilistic algorithm that models
dependencies between features. Auto-regressive and Moving
Average prediction (ARMA) is a time-series-based predictor
that builds a polynomial model for the system using a mix of
regression and moving average models.

IV. INSIGHTS AND RESULTS

In this section, we discuss the insights inferred from our
prediction analysis and their implications to home energy
management and demand-response systems.

A. Experimental Setup

Algorithms: Our analysis considers four prediction algo-
rithms: 5 Nearest-Neighbor (5NN), Naive Bayes predictor
(Bayesian), Support Vector Machine (SVM), Auto-regressive
and moving average model (ARMA(1,1)) outlined in §III, and
a simple statistic-based algorithm (SIMPLE). SIMPLE gives us
a baseline for comparison and uses the average power draw in
the previous time cycle as the predicted average power draw in
the next time cycle. It does not perform any training or feature
aggregation, for instance, the average power draw predicted
from 9AM-10AM is simply the average power draw between
8AM-9AM. The machine learning algorithms and the time
series predictor train on two weeks of prior data and, unless
otherwise noted, use a single feature: the power draw in the
previous time cycle. Our analysis also considers the features
time of the day, day of the week, and quarter (6-hour block)
of the day.

Time Horizons: To understand how far in advance energy
needs may be forecasted, we consider four time horizons: next
hour, next quarter of the day (6 hours), next day (24 hours),
and next week.

Prediction Accuracy: The primary metric we consider is
Prediction Accuracy. In our analysis, a prediction is considered
accurate if the difference between the predicted and actual
power draw value is within 5% of the maximum power draw
ever observed for the appliance. Consider a TV that draws 0
Watts when off, 30 Watts when in a low-power, suspended
state, and 150 Watts when on. If the TV is in the suspended
state drawing 30 Watts and the algorithm predicts 35 Watts the
prediction will be considered accurate—it is within 7.5 Watts
(150⇥ .05) of the maximum power draw of the device.

B. Insights Derived

Insight 1: Simple statistics yield prediction accuracies
comparable to sophisticated machine learning algorithms
and time series predictors

Figure 3(a) shows the mean prediction accuracy for the
power draw of 80 appliances in our seven deployment sites.
The error bars are the standard deviations in accuracy for
the appliances. Similarly, Figure 3(b) illustrates the prediction
accuracy for the whole-home energy consumption averaged
over four homes where whole-home energy consumption data
was available (see Table 1). The figures show that the machine
learning algorithms have comparable performance. Though
SVM and Bayesian perform best for time horizons of an hour,
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Fig. 3. (a) Prediction Accuracy for three machine learning algorithms, a time series predictor, and a simple statistic-based predictor for
appliances for four time horizons. The graph shows the average prediction accuracy for 80 appliances in seven homes. The error bars depict
the standard deviation across appliances. The simple statistic-based algorithm performs comparably to the machine learning algorithms and
the time-series predictor. (b) Prediction Accuracy for three machine learning algorithms, a time series predictor, and a simple statistic-based
predictor for whole-home energy consumption for the four time horizons. Again, the simple statistic-based algorithm performs comparably to
the more sophisticated algorithms.

quarter-day, and a day, 5NN performs best at a longer predic-
tion horizon of a week. The time series model, ARMA (1,1),
performs best across all algorithms. The salient result from
the figures, however, is that the performance of SIMPLE is
similar to the three sophisticated machine learning algorithms
and close to the performance of the time series predictor. For
a prediction horizon of an hour, for instance, the SIMPLE
algorithm has a average accuracy of 82%, compared to the 85%
accuracy that the SVM algorithm provides. The performance is
comparable for time horizons of a quarter-day, day, and a week,
as well as for predicting the whole-home energy consumption.

To understand why a simple statistic-based algorithm per-
forms as well as the machine learning-and time-series based
predictors, we perform another set of experiments. These ex-
periments evaluate the following two advantages that learning
and time-series based predictors provide over simple statistics-
based schemes like SIMPLE. First, they allow building predic-
tive models based on a set of training data, for example, if the
feature for training the predictive model is the average power
draw in the last hour, the training set for the machine learning
algorithm or the ARMA predictor uses a collection of samples
of the form < P�1, P0 > where P�1 is the power draw in
the last hour and P0 is the power draw in the present hour.
The model parameters are estimated as an aggregate fit for the
set of training samples while minimizing an error metric like
mean-squared error. Secondly, machine learning algorithms
allow aggregation of disjoint features, for example, a learning
algorithm can consider, in addition to power features, time-of-
day features such as hour of the day and day of the week. A
machine learning algorithm may then aggregate features using
basis functions like radial basis [24]. We observe, however,
that predictive models built for energy consumption data in
our dataset do not benefit from these advantages.
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Fig. 4. The figure compares the average prediction accuracy for all
appliances in Site 3 for different training set sizes. We used the SVM
and Bayesian algorithms for this experiment. As the training size is
increased, change in accuracy is minimal.

To understand the benefit of using several prior data points
for training, in Figure 4 we vary the training size from 1 sample
to 50 samples and test the accuracy of predicting appliance
usage for SVM and Bayesian (the highest-performing machine
learning algorithms) using time horizons of an hour and a
day across the appliances in Site 3. We used Site 3 for this
experiment since our dataset has both appliance power draw
and whole-home energy consumption data from this home over
18 months. We find that an increase in the training size does
not change accuracy much. In fact, the net change is less than
5%, confirming that training a model using prior data points
are unlikely to be advantageous.

Next, Figure 6 considers whether combining the power
draw feature with the additional features such as time of the
day, day of the week, and quarter of the day improves predic-
tion performance for appliances usage and the home energy



Appliance Feature dist-covariance ts
Lamp (hour) Power 0.426 1738.68
Lamp (hour) Time 0.142 555.97
Lamp (week) Power 0.016 0.659

Television (day) Power 0.548 53.15
Television (day) Time 0.024 3.13

Television (week) Power 0.365 6.97
Washer (week) Power 0.059 2.53
Washer (week) Time 0.085 2.84
Home (hour) Power 0.801 2139.08
Home (hour) Time 0.005 16.95
Home (week) Power 0.497 14.34

Two Homes (hour) Power 0.800 353.19
Two Homes (week) Power 0.824 5.49

Fig. 5. The table compares the dependence between the power and
time features, and the power draw for appliances and whole-home
energy consumption for different time horizons. To calculate this
dependence, we use distance correlation and test statistic values.

usage. In this experiment, we use SVM and consider the results
for all sites. Again, the results show that using additional
features does not improve performance. Additionally, Figure 6
shows that our models achieved greatest accuracy when based
only on information about prior power measurements; adding
the time-based features did not improve accuracy.

To understand this artifact further, we used a statistical
metric, distance-correlation [25] to quantify the dependence
between features and home energy consumption and appli-
ance power draw. Distance-correlation models the dependence
between two random vectors. If the feature vector is denoted
by X and the power draw of an appliance is denoted by Y ,
and A and B denote the standard matrix of euclidean distances
with rows or column means subtracted and grand mean added,
the distance covariance dCov

2 = (1/n2) ·
P

i,j Aij · Bij .
and the distance correlation R

2 = dCov(X,Y )2/(dCov(X) ·
dCov(Y )). The distance correlation is a normalized value
between 0 and 1, where a result of 0 means the two random
vectors being compared are fully independent, and a higher
value implies a higher degree of statistical dependence. We
also present the value of the test statistic (ts) [25] that also
models the dependence between the two random vectors. The
test statistic is similar to distance correlation, and though not
bounded, a higher test statistic implies a greater statistical
dependence between two sequences. Table 5 presents the
distance correlation and ts values for a set of appliances for
a single site (site 3), the whole-home energy consumption
of the site, and the aggregate energy consumption of two
homes. While the test statistic shows that the power and
time features have some dependence on the power draw of
appliances, the distance correlation values are higher for power
features. This provides evidence of a stronger tie between
power features and home and appliance energy consumption. A
more qualitative argument for this observation is that the power
features encapsulate more information than the time of the
day features. For instance, the power draw by an appliance in
the last quarter-day encapsulates a time parameter, the 6-hour
quarter-of-day block, and a power parameter, the power draw
during that time. Unfortunately, a time feature like quarter of
the day is single dimensional and encodes sparser information.
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Fig. 7. Comparison of prediction accuracy for SVM for whole-home
energy consumption, aggregate energy consumption of two homes,
and per-appliance power draw for four different time horizons.

Overall, these results suggest that there is an inherent
unpredictability and randomness associated with energy usage
and provide evidence that using machine learning or time-
series predictors for appliance- or home-level forecasting is
unlikely to be successful, overall. We note, however, that these
results provide an aggregate view across all appliances and
later in this section we consider whether specific appliance
categories are more predictable.

Implication to Energy Management: Demand-response sys-
tems rely heavily on predictive models for appliance usage
as well as home and neighborhood energy consumption. Most
demand-response systems must, in realtime, determine future
energy usage and make adaptive decisions for balancing de-
mand with supply or load balancing demand. One of the impli-
cations of Insight 1 is the feasibility of replacing sophisticated
learning algorithms with simple statistics for prediction. Since
a simple statistic-based algorithm that keeps track of the power
draw in the last time cycle has low computational and storage
needs, it can substantially reduce the cost and improve the
performance of demand-response systems.

Insight 2: Predictions of appliance usage are more accurate
than prediction of home energy usage at short time
horizons while predictions of home energy usage are more
accurate at longer prediction horizons

In our next set of experiments, we compare the prediction
accuracy of appliance power draw and whole-home energy
consumption for the four time scales. For this experiment, we
use the SVM algorithm and use only the power draw feature.
The results, shown in Figure 7, demonstrate that at shorter time
horizons—hour, quarter-day, and day—the prediction accuracy
for appliance usage is higher than for whole-home energy
consumption. However, at the longer horizon of a week the
algorithm has a higher prediction accuracy for the whole-home
energy consumption. The prediction accuracy for the energy
consumed by a collection of two homes does not show any
trends.

To quantitatively understand this behavior, we again con-
sider the distance-correlation between the power features and
average power draw. Table 5 presents the results for a subset
of appliances and the whole home for short and long time
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Fig. 6. The graphs show experiments performed using SVM. (a) Comparison of the prediction accuracy for appliances using power features
and a combination of power and time-of-day features. (b) Comparison of the prediction accuracy for home energy consumption using power
features and a combination of power and time-of-day features.

horizons for site 3. The table shows that for the power features
the distance correlation values are higher for appliances at
shorter horizon than whole-home energy consumption, but
is lower for longer horizons. The test statistic values also
show the same trend. A more qualitative argument for the
above behavior can be made based on the factors that affect
appliance and whole-home energy consumption. To predict
the power draw by a device an hour in advance, our model
uses a single feature: the power draw in the previous hour.
This approach works well for appliances whose use is highly
context dependent. For instance, the power use of a lamp
likely depends on room occupancy and incoming sunlight. If
a room is occupied and there is little sunlight in one hour,
it is likely to be occupied and have little sunlight in the
next hour resulting in similar use of the lamp in both hours.
A whole home, on the other hand, has multiple concurrent
users, a large number of potential values for its instantaneous
power draw, and a high volume of relevant contexts to cause
a specific amount of energy use in a given moment. These
differences suggest that our predictor, when predicting a whole
home’s energy consumption, will show different accuracies for
the same timeframes. This is borne out by our experiments.
We only achieve 70% accuracy when predicting whole home
energy use for one hour, versus 85% for predicting a single
appliance. At longer timeframes, a week for instance, accuracy
of whole home is better than appliances—42% compared to
30%. This is because the users have the tendency of performing
the same set of activities over time frames of a week. For
instance, washing and drying will be performed once a week,
although not necessarily on a particular day of the week.
Therefore, for homes the cumulative usage of all appliances
show more predictability over longer time horizon of a week.

Implications to Energy Management: The above result has
strong implications to the way demand-response systems must
be designed. Since the prediction accuracy for longer time
horizons, both for appliances usage and whole-home energy
consumption, is close to 50%, a demand-response system must
account for this error in prediction. An approach to account
for this error is to use stochastic optimization frameworks [26]
where the predicted power draw is probabilistic. Moreover,

proposed recommendation systems that utilize optimization
frameworks to balance demand with supply or balance demand
with a user-defined goal [27] must leverage the high prediction
accuracy of homes at longer time horizons and high prediction
accuracy of appliances at shorter time horizons. A method of
leveraging this dichotomy would be to determine the energy
savings required over a longer time horizon like a week, but
make energy saving recommendations for changing appliance
usage over shorter time horizons. For example, if the goal
of a homeowner is to reduce his electricity bill by 20%
in a week, the system can predict the home energy usage
over a week to determine the energy usage goal, and then
make recommendations for reducing usage of appliances like
televisions or lighting at short horizons such as one hour.

Insight 3: There is large variance in predictability across
appliance types

In our next set of experiments, we perform an exhaus-
tive analysis on the predictability of different appliance and
home types. For our analysis, we first divide all the home
appliances into seven categories: (1) Computers (PCs, laptops,
desktops); (2) Cooking appliances (microwaves, ovens); (3)
Entertainment appliances (televisions, gaming consoles); (4)
Lighting (lamps); (5) Fridges (including mini-fridges); (6)
WashingDrying (clothes washers and dryers); and (7) Miscel-
laneous (Keezers, Sonos, treadmills, and other appliances).

Figure 8 compares the prediction accuracy for the seven
appliance categories for all five algorithms. The predictions
are made for a time frame of one hour in the future. Fig-
ure 8(a) shows the prediction accuracy for all predictions and
Figure 8(b) illustrates the prediction accuracy for instances
when the power draw of the device was positive (i.e., the
device was on). We can draw several conclusions from the
figure. First, unlike Insight 1, we find that for certain appli-
ance types, using machine learning algorithms and time-series
predictors does yield better prediction results. The SIMPLE
algorithm, for instance, has a poor accuracy of 15% and 60%
for refrigerators and lighting while the SVM algorithm has
better accuracy of 60% and 91%. For other appliance types,
such as cooking appliances, computers, and washers/dryers, the
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Fig. 8. (a) The accuracy of predicting the power draw of seven appliance types across seven sites in the GreenHomes dataset. (b) The accuracy
of predicting the power draw of seven appliance types when the devices had a positive power draw. For both graphs the predictions were
performed for a time horizon of one hour in the future.
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Fig. 9. The prediction accuracy for the seven appliance types for
different time horizons using the SVM predictor.

SIMPLE algorithm performs as well as the other algorithms.
This implies that there is some variation in the correlation
between the power draw by appliances like lighting between
hours t and t � 1. A training set, therefore, helps in better
prediction of these appliance types. Our second observation is
that certain appliance types are more predictable than others.
Computers and cooking appliances have fairly high accuracy
of prediction while entertainment and lighting have medium or
low prediction accuracies. There is high chance that a computer
or cooking appliance will be used in time t if it is used in the
previous hour. Washers and dryers shows high accuracy for
prediction in Figure 8 (a), however, that is because they are
switched off most of the time. As Figure 8 (b) shows, the
accuracy of prediction for washers/dryers when they are on is
less than 50%.

At the time horizon of one hour computers and cooking
appliances are more predictable than refrigerators, washers,
and lighting. Figure 9 compares the predictability of different
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Fig. 10. A comparison of the prediction accuracies of whole-home
energy consumption for user-owned and rental apartments for four
time horizons. We use SVM for this experiment.

appliance types for all four time horizons using SVM. As
described in Insight 2, appliances have poor predictability
at longer time horizons, and the predictability monotonically
degrades from hour to week. The drop in accuracy is most
visible for cooking appliances. The accuracy drops from 95%
to 15%, as the prediction horizon changes from an hour to a
week, demonstrating that power draw of cooking appliances in
the last week is not an accurate predictor and usage changes
from week to week.

Insight 4: There is a large variation in predictability
across homes and predictability is impacted by number
of occupants, home type (off-grid, grid-tied, or on-grid),
and home ownership type (rental or personally owned)

We next compare the predictability of whole-home energy
consumption for four sites in our study. The homes in our study
include off-grid, grid-tied, on-grid, rentals, and user-owned
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Fig. 12. (a) Accuracy as a function of tolerance averaged over all appliances in the dataset. (b) Accuracy as a function of tolerance averaged
over all homes where the dataset has whole-home energy consumption data.
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Fig. 11. A comparison of appliance power draw prediction accuracies
for the seven sites in our deployment.

homes. Figure 10 compares the predictability of the whole-
home energy consumption for the four different time horizons
for rentals and user-owned apartments. The figure shows a
general trend where rental apartments are less predictable
than user-owned houses. We conjecture that this is due to
the difference in incentives towards saving energy in user-
owned homes and rental apartments. In rental apartments, the
electricity bill is often included in the monthly bill (that is
true for the two sites in the figure), and hence residents do not
have the incentive to follow regular schedules for appliance
usage to save electricity. On the other hand, for user-owned
homes, the homeowner is responsible for his electricity bill,
and hence the households follow more regular schedules of
appliance usage. As future work, we plan to further validate
this conjecture through a usability study.

Figure 11 compares the predictability of all appliances for
all seven sites using SVM. There is large variance in the
predictability of appliances across homes. Site 3 shows the
highest predictability for appliance usage for the four time
horizons. Site 3 is a user-owned house that is occupied by

a single user, and therefore, is more predictable. Site 5, a
house that is grid-tied and partially powered by solar panels,
also shows high predictability of appliances. Site 0 and Site 4
are rental apartments that show lower predictability. The off-
grid and grid-tied homes have more regular appliance usage,
and are more predictable, than the on-grid home appliances.
The figure, overall, shows that there is a large variation in
predictability across homes, and there are several factors like
house type and number of occupants that affect predictability
of energy usage.

Implications to Energy Management: Insights 3 and 4
demonstrate the need for personalized energy management
systems. The predictability of usage varies considerably across
homes and appliance types. It is imperative, therefore, that
any energy saving recommendation system or demand man-
agement system should be fine-tuned to the household. Insight
3 also demonstrates that certain appliance types have more
predictable usage, which should be considered when designing
a demand-response system. We hypothesize, for example, that
the user may be most likely to reduce usage of appliances
that show lower predictability at shorter time horizons, for
example Entertainment appliances. The reasoning behind this
conjecture is that low predictability shows use patterns that are
already irregular and, thus, may be changed with little impact.
A notable exception, however, would be Refrigerators, which
show low predictability at all time horizons. In this case, the
salient insight is that for this class of appliance alternative to
predictive modeling such as asking the user is necessary to
determine energy needs.

C. Discussion

Our prior insights assume that precisely accurate prediction
is necessary for demand response and energy management.
There are, however, applications where a more coarse-grained
definition of accuracy might suffice, for instance, certain appli-
cations might be interested in predicting whether an appliance
is on or off [7], and other applications for demand response
and load balancing might be more tolerant to the actual error
between the predicted and actual energy consumption. We
conclude with an experiment that explores the tradeoff between



this tolerance and accuracy of prediction for a broader class
of applications. Recall that our previous definition of accuracy
considered a prediction accurate if the predicted power draw
was within a 5% of the maximum observed power draw of
the appliance. In this case, the tolerance is 5%. For this
experiment, we vary the tolerance from 5% to 50%, and
show the accuracy of prediction of appliances and whole-
home energy consumption for two prediction horizons—hour
and week (Figure 12 (a) and (b)). The figure shows that if
the definition of tolerance is relaxed and the application can
tolerate higher errors, SVM can have an accuracy of close to
90% for longer horizons. Hence, such applications can reliably
use appliance and whole-home energy consumption predictions
for longer horizons.

V. RELATED WORK

Our work builds on previous work on forecasting al-
gorithms applied to various application domains, predictive
models for home energy usage, and general demand-response
systems. Here we compare and contrast our work with the
most relevant literature.

Forecasting Algorithms: Forecasting and developing predic-
tive models is a well studied area with applications to weather
monitoring [28], modeling predicted energy harvesting [29],
and traffic forecasting [30]. Forecasting algorithms include
time-series based algorithms like autoregressive and moving
average models, kalman filters [31], [2] and machine learning
algorithms such as Bayesian predictors [32] and support vector
machines [33]. Our work is complimentary to the algorithms
developed for forecasting. Our goal is to use existing algo-
rithms to understand how predictable home energy usage is.
For our analysis we use the k-nearest neighbor, support vector
machine, a bayesian predictor, and a ARMA predictor. Our
study can inform the design of demand response systems for
homes.

Predictive models for home energy usage: This paper builds
on previous work on developing predictive models for home
energy usage. Most of the focus in this area has been on
developing prediction algorithms that produce the accuracy
required for specific applications like matching demand and
supply in homes. The algorithms developed include auto-
regressive models [6], and machine learning algorithms [4],
[34], and consider contextual data like weather in conjunction
with home energy consumption data. Since the papers written
on predictive models has focussed on specific applications,
there is a lack of studies that perform a comparison analysis
of predictability of energy usage of appliances, homes, and a
collection of homes at different timeframes such as an hour,
quarter-day, day, and week into the future. The goal of this
paper is to draw insights on predictability of energy usage at
different granularities and time horizons.

Demand-response and Energy Management: Insights into
predictability of energy usage in the home can inform demand-
response systems in particular and home energy management
in general. Hence, our predictive analysis is complementary
to several demand-response systems in homes [27], [35] and
can be used to improve their performance. These include
systems that flatten peak energy consumption [36], methods
to predict energy generation and consumption [37], balance

energy demand with supply [38], and minimize whole building
energy consumption. The GreenHomes dataset is an useful
addition to rich datasets like REDD [10] and Smart⇤ [11] that
provide publicly available energy consumption data for homes,
appliances, and micro-grids.

VI. CONCLUSION

In this paper, we study the predictability of home energy
consumption through a analysis of appliance power draw and
whole-home energy consumption in seven homes in the United
States. Our dataset, GreenHomes, consists of data on appliance
power draw and home energy consumption over a period of 2
years. Our predictive analysis, using three machine learning
algorithms, a time-series predictor, and a simple statistic-
based algorithm, presents several interesting insights that have
implications to the design of home energy management and
demand-response systems. We show that simple algorithms
that use basic power features like power consumed in the pre-
vious timeframe have comparable performance to sophisticated
machine learning algorithms and time series predictors. These
simple algorithms can considerably reduce the computational
need for large-scale predictive analysis. We also show that
appliance-level energy usage is more predictable than whole-
home energy at shorter time horizons while home-level energy
consumption is more predictable at longer time horizons.
Moreover, there is a large variation across appliance types and
homes, and depends on the type of home. This insight calls for
the need for personalized home energy management solutions.
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