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Abstract—Managing energy in the home is key to creating
a sustainable future for our society. More tools are increasingly
available to measure home energy usage, however these tools
provide little insight into questions such as why an appliance
consumes more energy than normal or what kinds of behavioral
changes might be most likely to reduce energy usage in the
home. To answer these questions, a deeper understanding of
the causal factors that influence energy usage is necessary. In
this work, we conduct a broad study of factors that influence
energy consumption of individual devices in the home. Our first
contribution is collection of a context-rich data set from six homes
across the United States. The second contribution of this work
is a set of insights into key factors influencing energy usage
derived by the novel application of a rule mining algorithm to
identify significant associations between energy usage and four
key features: hour of the day, day of the week, use of other
appliances in the home, and user-supplied annotations of activities
such as working or cooking. Our analysis confirms our hypothesis
that, though most devices show a regular pattern of daily or
weekly use, this is not true for all devices. Associations that relate
use of two different devices in the same home are often stronger,
and are observed for nearly 25% of device uses. Overall, we
observe that the associations derived from the first five weeks of
data in our data set are sufficient to explain nearly 70% of the
device uses in the subsequent five weeks of data, and over 90%
of the associations identified during the first five weeks recur in
the latter portion of the data set. The associations identified by
our approach may be used to to aid in end-user applications
that heighten awareness and encourage energy savings, improve
energy disaggregation algorithms, or even detect anomalous uses
that may signal problems in aging-in-place homes.

I. INTRODUCTION

A key component of creating a sustainable world is manag-
ing energy in the home. Pervasive technologies such as smart
meters and home energy measurement tools are poised to
transform energy management by identifying energy waste and
optimizing usage. Presently, these tools provide a plethora of
information, though users must still draw their own insights
about usage based on analysis of raw data such as power
consumption readings. Ad hoc analysis by users combined
with application of static recommendations, such as reducing
the temperature of a home heating system, can reduce energy
consumption. Providing a less burdensome mechanism for a
user to understand why consumption is high or low at a given
time, however, is necessary to fully realize the potential of the
home energy management domain.

In this work, we undertake a study of the causal factors that
impact energy usage at the granularity of individual appliances

in the home. Understanding how the energy consumption of an
appliance is related to the activity that the user is performing,
the time at which it is used, or other devices that may be used
concurrently is a key element of many applications that seek
to help users reduce or better understand energy usage. It has
been demonstrated, for example, that users better understand
context-annotated energy data in comparison to raw energy
consumption data [1], [2]. Augmenting an interface such as
FigureEnergy [1]—a web interface that helps users to better
understand energy usage—with contextual cues can lead to
heightened awareness and future changes to energy usage
patterns. As another example, it has been shown that having
apriori knowledge of devices that are used concurrently can
improve the accuracy of energy disaggregation algorithms [3].
Automatically deriving causal ties between devices such as
a washer and dryer, therefore, is a promising approach to
improve non-intrusive load monitoring. Finally, connecting use
of a device to the time when it is normally used can help a
user to conceptualize how she could use the appliance less,
either fewer hours per day or fewer times per week or month.
Moreover, the ability to automatically derive information about
the normal usage of a device can also enable more intelligent
systems that alert users of anomalous behavior. Such systems
can also be applied to aging-in-place and assistive healthcare
facilities, where it is critical to automatically infer abnormal
patient behavior [4], [5].

The first contribution of this work is the collection of
a broad and context-rich data set that provides a novel set
of features used for our analysis and evaluation. We have
instrumented six homes, located in three different areas of
the United States, with appliance-level energy meters that
collect raw power readings and report them to a server for
postprocessing. From this raw data set we are able to extract
features such as time of use and day of use. Because time-
based features are not applicable to all appliances, we also
propose the use of two additional, user-centric, contextual
features: we explore the relationship between use of different
appliances in the home and we also collect in situ activity
annotations from users via a smart phone application. These
annotations connect usage of appliances to the activities, for
example cooking or working, that are accomplished through
use of the appliance.

The second contribution of this work is set of key insights
into the factors affecting energy consumption derived by apply-
ing a rule mining approach in this domain. Our algorithm uses
the information-theoretic metric of JMeasure [6] to identify





attached to a power strip that powers several devices including
a television and a cable box. When the television is on, the
power consumption of the strip can increase by more than 20
watts when the user changes channels on his television.

To address this challenge, our power profiling algorithm
uses the DBSCAN clustering algorithm [11] to produce a
unique profile for each device in our study. DBSCAN is a
density-based algorithm that identifies clusters while excluding
noise. DBSCAN is an ideal choice for this application as it
does not require the number of clusters to be provided as
input and it can be implemented very efficiently, particularly
for one-dimensional data such as ours. The algorithm takes
as input two parameters—eps specifies the neighborhood of a
point, which in our case represents the minimum number of
watts separating two distinct power states. We experimentally
determined that 2 watts yields the best results. The second
parameter is minpts, which represents the minimum number of
points required to form a cluster. We use 10 in our algorithm.

The power profiles generated describe from 2–5 different
states for the devices in the study. Lamps, for example, often
have two states: 0, and a second state with a range of about
10 watts from the low end to the high end of the state.
The television and cable box setup described above has five
states: 0, 45–65, 81–90, 146–264, and 274–296 watts. This
likely identifies idle and active states for each of the devices
connected to the power strip. Anecdotally, this approach is
able to capture significant changes in state while excluding
fluctuations that occur during the time a device is active and
in use.

Once the profile is generated, we execute a final step of
the algorithm to evaluate whether a device is non-interactive
and represents only background load for the user. In the case
of a refrigerator, for example, the transition into a higher
power state likely does not indicate a change in user context.
A refrigerator might run twice per hour every hour of the
day, hence it is useful to exclude a non-interactive device
from notifications. To identify background loads, we apply a
heuristic that will classify a device as non-interactive if in
more than 80% of the hours for which data was reported for
the device there was a change in power state for the device.
Effectively, if a device transitions between power states in more
than 19 hours of the day then the device is likely not manually
controlled by the user and will not trigger notifications. The
notification component also determines whether it is necessary
to retrain to produce an updated power profile. Retraining will
occur if the number of power draw readings that fall outside of
the states identified in a device’s current power profile exceeds
a threshold, in our current implementation 25, or if a state in
the power profile should be eliminated because it has not been
visited for two weeks.

Though our data collection is ongoing, we have extracted
traces from a ten-week period from November 1, 2012 through
February 9, 2013 to use for the analysis in this work. Table I
provides an overview of the features of this data set, and
we note that subjects 4–6 are researchers involved with this
project. However, since the goal of this paper is to perform
a broad study of contextual cues and appliance energy con-
sumption, we believe that data collected from subjects involved
in the project minimally impacts our conclusions. We collect
data from a broad set of devices including lamps, which are

likely to have regular usage patterns, DVRs, which have very
consistent usage patterns, refrigerators, which are regular and
out of the user’s control, and clothes washers, which are used
relatively infrequently and with varying consistency. The mean
number of daily notifications per home varies and is impacted
both by the number and type of devices measured in each
home. In effect, the number of daily notifications indicates
that we are able to identify between three and eight important
energy consumption events each day. We present the mean
daily annotations for the first five weeks of the data collection
period separate from the last five weeks as our analysis uses
the first half of the data to train our rule mining algorithm,
described in the next section, and the remaining five weeks
to evaluate the algorithm. We note that while the number
of annotations provided by subjects during the test weeks is
consistent with other approaches for collecting annotations [1],
the number of annotations declined over time. This suggests
that this approach for collecting annotations is effective for a
short period, but may need to be augmented, for example with
a web-based interface to provide after-the-fact annotations,
in order to encourage ongoing use. Even so, we are able to
effectively use the set of annotations collected to demonstrate
the feasibility of using context to understand appliance usage
patterns.

III. USING RULE MINING TO UNDERSTAND DEVICE

USAGE

In this section, we first describe our data preprocessing
methods and then describe our rule mining approach for
extracting causal rules between context and device usage. For
our analysis, we consider associations between device usage
the following contextual features: hour of the day, day of
the week, other devices used concurrently, and user activities
collected using the annotation system described in §II.

A. Data preprocessing and context extraction

We collect appliance-level data at a fine granularity of once
every 30 seconds using our measurement infrastructure, how-
ever this resolution is too fine grained for extracting association
rules. Moreover, our raw data contain several instances of
erroneous readings uploaded by malfunctioning energy meters.
We, therefore, first perform a data cleaning and data chunking
step illustrated in Figure 2 (a). In this step, we filter out
instances when data points were missing, and only consider
contiguous data chunks for our analysis. Additionally, we filter
any negative power consumption values and any power values
above 2KW. We have confirmed that none of the devices in
our deployment are rated above 2KW, thus any readings in
this range are erroneous.

Using only the valid and contiguous raw power readings,
we next chunk data into one hour windows and create a profile
for each device that specifies whether it is on or off during each
window. To determine whether a device is on during a time
slot we apply a simple heuristic: in the given hour, if the mean
power draw of a device exceeds the overall hourly mean by
5% the device is considered on, otherwise it is considered off.
Note that even if a device is used for only a small portion of
the one-hour window this approach does identify the on state,
provided the device is not used for a small portion of every
one-hour window in the data set.





we employ JMeasure [6], an information-theoretic significance
metric. JMeasure for a rule of the form X =⇒ Y

quantifies the mutual information I(Y ;X = 1) expressed by
the following equation:

JMeasure (X =⇒ Y ) = P (X ∧ Y ) · log(P (Y |X)
P (Y ) ) +

P (X ∧ Y ′) · log(P (Y ′|X)
P (Y ′) )

There are two reasons JMeasure is appropriate for our
application. First, the value of JMeasure depends on the
direction of the rule. Since our goal is to understand what
context has a strong association with device usage, the rule
direction is an important consideration. Second, and more
importantly, JMeasure for a rule X =⇒ Y does not solely
depend on the frequency of co-occurrence of X and Y or
the conditional probability P (X|Y ). In fact, it is a product of
the frequency of co-occurrence (P (X ∧ Y ) and P (X ∧ Y ′))
and a measure of whether the occurrence of X improves the

chance of occurrence of Y (log(P (Y |X)
P (Y ) ) and log(P (Y ′|X)

P (Y ′) )),
an entropy measure. Hence, it accounts for cases where X

and Y do not occur often, but when they do occur they occur
together, like the washer/dryer example described above. It also
accounts for cases when the conditional probability is low but
frequency of co-occurrence is high. We use a default threshold
of 0.01 to filter significant rules from non-significant ones. The
intuition behind using the cut-off is similar to that used in
previous network rule mining approaches [12], however, we
evaluate the inferred rules for different JMeasure thresholds in
§IV.

IV. ASSOCIATIONS IMPACTING ENERGY CONSUMPTION

In this section, we present the rich and diverse set of
associations we have discovered by applying our rule mining
approach across the data collected from the homes in our study.

A. Experimental Setup

The experiments in this section use the ten weeks of data
collected from six homes as discussed in §II. The first five
weeks of raw power measurements and user annotations are
used as the training set from which a set of associations are
identified. The last five weeks are then used as a test set to
verify that the associations discovered are, in fact, associations
that recur. For this analysis, we discard any devices for which
there are not at least ten uses during the testing period or ten
uses during the training period. In most cases, these devices
simply reported a power draw of 0 during the entire experiment
period, though this also filtered out a DVR that is always on
but has a power draw that is always within 5% of the mean.

During the test period, if a device X is identified as on
we consult the rules to determine whether any of the known
associations apply. We first look for hour of day and day of
week associations. If there is no association h =⇒ X and
no association d =⇒ X for the given hour h and day d,
then we consider whether an annotation rule applies. If there
is a rule A =⇒ X and the user has provided the annotation
A during the test period, then we apply the annotation rule.
If no annotation rule applies then we consider device rules
Y =⇒ X for all devices Y .
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Fig. 3. For all significant rules (JMeasure > 0.01) of the form X =⇒ Y ,
the figure plots the joint probability of X and Y, probability of occurrence
of X, and probability of occurrence of Y. The grey dots correspond to rules
that were applied at least once in the testing data and blue stars correspond
to rules that were not applied. Several of the applied rules correspond to low

values of P (X ∧Y ) and low values of P (X|Y ) =
P (X∧Y )
P (Y )

, which implies

that metrics that just consider frequency of co-occurrence or conditional
probabilities will miss important associations.

B. Results

We first consider whether the rule mining approach we
employ is able to identify useful associations for the devices
in our study. Figure 3 presents, for all rules X =⇒ Y where
JMeasure > 0.01, P (X), P (Y ), and P (X ∧ Y ). A grey dot
corresponds to an association that was identified during the
training period and was also seen during the testing period.
Our primary finding from this figure is that over 90% of
the associations we identify as important during the training
period are subsequently observed during the testing period,
demonstrating that the JMeasure-based approach is able to
extract meaningful and recurring associations. Moreover, a
large portion of the used rules have P (Y ) < .5 and P (X)
and P (X ∧ Y ) significantly less than .5, demonstrating that
our approach is able to identify associations between events
even when the probability that either event will occur is low.
As a more specific example, a microwave in our study has a
probability of use of only 8% and the annotation cooking

has a probability of occurrence of only 2% in the home
where the microwave is located. The probability that they will
occur together is only 1%, however our algorithm identifies
the association between the microwave and cooking and
observes this association twice during the testing period.

Subject Time Annotation Device

1 100 14.3 57

2 100 0 80

3 100 43 100

4 57 43 86

5 83 33 33

6 100 100 100

TABLE II. THE TABLE SHOWS THE PERCENTAGE OF DEVICES THAT

YIELD ASSOCIATIONS OF EACH TYPE FOR EACH HOME.

Table II provides a more comprehensive view of the
types associations identified for the devices in each home.
The table shows, for each subject, the percentage of devices
in the home that have associations with each of the three
features considered: Time, Annotation, and Device. Note that



we have grouped the day of the week and hour of the day
features into the Time column. The data demonstrates that
a wide range of associations are discovered and there is
variation across homes with respect to the types of associations
found. Unsurprisingly, time associations are the most common.
Almost all devices in the study show a regular daily or weekly
usage pattern. Subject 4, however, demonstrates much less
predictable time-based patterns than other subjects with only
57% of devices having an association with either a day of
week or hour of day. Associations with annotations are the
least common, though this is likely impacted by the limited
number of annotations that we were able to collect in our
pilot study. Finally, a significant portion of devices in the study
are frequently used in concert with other devices in the same
home, demonstrating that our approach may be used to identify
ensembles of devices useful for better understanding energy
requirements and waste, as well as aiding in problems such as
energy disaggregation.
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Fig. 4. Histogram of the number of associations identified for the devices
across all homes.

While Table II shows that a significant portion of devices
in each home have associations of all three types, Figure 4
provides a closer look at the total number of associations
identified for each device in the study. The figure shows a
histogram of the number of devices that have a given number
of associations. Our first observation is that most devices have
a small number of associations. Commonly, devices have fewer
than five associations, reiterating the finding that our approach
extracts only the most meaningful associations. Devices that
have large numbers of associations are those such as the PC of
subject 1; in this case the device has 15 hour associations, three
day associations, two annotation associations, and two device
associations. We are currently exploring extensions to our
approach that will further prioritize the associations identified
for these kinds of devices.

Our final experiment considers which types of associations
are observed most frequently. Recall that over 90% of associ-
ations identified during the training period are also observed
during the testing period. In Figure 5 we report, for each

use during the test period, the type of association identified
for the use. The leftmost bar, for example, shows that nearly
70% of uses during the testing period exhibit an association
identified during the training period. The majority of device
uses show time-based associations, however associations with
use of other devices are also frequently observed. Recall that
our algorithm first looks for a time-based association, therefore
if a device use exhibits both a time-based and a device-based
association only the time-based association will be reported
here. Figure 5 also explores the impact of the JMeasure
threshold. As we would expect, as the JMeasure threshold
increases, fewer associations are discovered by our algorithm.
The time-based associations decrease much more dramatically,
though the device-based associations actually show an increase
for some values of the JMeasure threshold. In these cases,
the device associations existed but were not reported for
lower values of JMeasure threshold because a time-based
association existed. This demonstrates that associations that
relate use of two devices are are much stronger than time-
based associations.

We note that Figure 5 shows that annotation associations
are rarely observed. This is not surprising given the low
number of annotations in our data set, however we hypothesize
that annotation associations are most likely to be present
for devices that are used irregularly. To test this hypothesis,
Figure 6 compares the associations observed during testing for
all devices and for infrequently used devices—those that have
a probability of use less than 10% during the training period.
The results confirm our hypothesis: for devices that are used
infrequently, annotation-based associations occur more often.

C. Case Study

To more clearly illustrate the types of associations extracted
by our approach, Figures 7 and 8 provide a graphical repre-
sentation of the extracted associations for subjects 1 and 4.
Each figure shows the devices measured in the subjects’ home
and, for each device, any associations identified. A directional
arrow from X to Y corresponds to an association X =⇒ Y .
The text next to each device shows any annotation associations
identified. Finally, blue shaded boxes illustrate associations
between use of the device and the given day or hour. For
example, a blue shaded box in the first square of the Hour
row indicates an association between the hour midnight to
1AM, and the use of the device. Though we have included
associations from only two homes, other homes show similar
patterns.

As ongoing work, we are looking at how to apply these
associations to applications including energy disaggregation,
energy awareness and conservation, and detection of abnor-
mal energy consumption. First, prior work has demonstrated
that energy visualizations [1], particularly those that integrate
contextual information [1], [2], heighten awareness and un-
derstanding of home energy consumption, which can lead to
decreased overall usage. As a simple example, we can use an
association such as chores =⇒ washer and dryer to
help the user to better understand how much energy is typically
consumed by this activity rather than showing the underlying
devices used to accomplish the task. Similarly, an association
between cooking and microwave can be used to demonstrate,
for instance, that energy used for the cooking activity is





environmental context such as temperature, humidity, weather
conditions and ambient light. Collecting these additional di-
mensions of data require deploying additional sensors [21],
[22], [23], [24], [25]. Activities such as cooking, entertainment,
and work have also been shown to be directly related to home
energy consumption and provide additional usage context [26].
Users can relate to and understand such activities [1] and
energy conservation recommendations made akin to these
activities have a higher chance of being adopted. Our goal
in this work is, therefore, to collect a rich context-annotated
dataset and use a rule mining approach that derives insights
into causal links between such context and appliance usage.

Energy annotations: Collecting annotated energy traces and
providing energy usage feedback are active research areas
in the human-computer interaction community. Eco-feedback
systems use visualization techniques to engage the user in
the conservation process [27], [28], [29]. A primary goal is
to make the user cognizant of potential energy bottlenecks.
Costanza et al. [1] propose a time series-based web interface
called FigureEnergy where users can label their activities.
They also provide a visualization interface where users can
understand the impact of performing certain activities on the
total home energy consumption. Unfortunately, the annotations
are based on the user remembering the activities he performed
during the day. Our system uses monitoring and in situ
notification to prompt the user to log activities. Additionally,
our primary goal is to use the activities and other context to
automatically mine associations. These rules can then augment
a visualization system like FigureEnergy to show users where
and why they might have used energy.

Rule mining: Rule mining is a common data mining tech-
nique that is used to find associations between two or more
random variables. It has been used extensively in relational
databases [30], semantic web applications [31], and network
trace mining [12]. There are also efforts to integrate the rule
mining approach with classification algorithms [32], and de-
sign privacy preserving rule mining techniques [33]. Our work
applies the rule mining approach to the area of home energy
management, similar to the preliminary work of Ong, Berges,
and Noh [34]. We, however, derive significant underlying
associations between several contextual factors including hour
of the day, day of the week, and user activities with normal
usage of appliances and show a broad set of insights based
on our context-rich data set. Finally, similar to the network
mining systems [12], we illustrate that JMeasure [6] is a good
measure of significance for the derived rules in the home
energy management domain.

Demand-response in homes: A primary goal of the Green
Homes project is to devise techniques that balance energy
supply with demand, especially in renewable energy driven
homes. To this end, deriving associations between user context
and appliance energy consumption can provide better ways
to understand energy demand and provide timely energy
saving recommendations to home users. Hence, our proposed
approach is complementary to several demand-response sys-
tems in homes [35], [36] and can be used to improve their
performance. These include systems that flatten peak energy
consumption [37], methods to predict energy generation and
consumption [38], balance energy demand with supply [7], and
minimize whole building energy consumption.

VI. FUTURE WORK AND CONCLUSION

This paper presents a novel approach for understanding
the causal factors that influence energy consumption in the
home. By applying a rule mining algorithm to a context-
rich data set collected from six homes across the United
States we are able to extract a broad set of associations
between device usage and hour of the day, day of the week,
activities performed by the user, and use of other devices in the
home. Our analysis confirms that while time-based associations
are observed most frequently, associations between devices
are common and often stronger than time-based associations.
Moreover, associations with activities performed by the user
are most common for devices that have a sporadic usage
pattern. The associations derived by our approach can aid in
energy disaggregation, end-user energy saving systems, and
even aging-in-place applications.

We are currently pursuing several areas related to this
work. First, we are exploring whether useful insights may be
derived by applying alternate machine learning algorithms. In
particular, we have considered whether it is feasible to predict
hours when appliances will be used based on observation
of past use. Early results indicate that complex machine
learning algorithms such as Support Vector Machines suffer
from poor accuracy and simpler algorithms such as KNN show
similarly poor results—in the range of less than 30% for some
appliances such as refrigerators. These early results suggest
that using a simple metric such as JMeasure, which captures
relationships even in case the probability of both observations
is low, is a superior approach.

We are also planning to collect data from additional homes,
as well as expand our data collection in each home. We
anticipate that in homes where a large number of devices are
measured we will see similar time-based and annotation-based
relationships, however we may need to refine our algorithm
to extract appropriate device-to-device relationships. We are
exploring the impact of varying the JMeasure threshold used
in identifying device-to-device associations, and we are also
exploring how to identify device groups, for example by
location in the home, that may assist with narrowing the scope
of which devices may show associations.

Acknowledgments

We wish to thank all of our study participants. We also
thank Kevin Moran, Neal Xiong, Lazeeb Choudhury, David
Lachut, and Simon Piel for their contributions to Green Homes.
This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 1115798, 1308723,
1314024, and 1305099, and a Microsoft SEIF award. Any
opinions, findings, and conclusions are those of the authors
and do not necessarily reflect the views of the NSF.

REFERENCES

[1] Enrico Costanza, Sarvapali D. Ramchurn, and Nicholas R. Jennings.
Understanding domestic energy consumption through interactive visu-
alisation: a field study. In Proceedings of the 2012 ACM Conference

on Ubiquitous Computing, UbiComp ’12, pages 216–225, New York,
NY, USA, 2012. ACM.

[2] Gwendolyn Brandon and Alan Lewis. Reducing Household Energy
Consumption: A Qualitative and Quantitative Field Study. Journal of

Environmental Psychology, 19(1):75 – 85, 1999.



[3] Hyungsul Kim, Manish Marwah, Martin F. Arlitt, Geoff Lyon, and
Jiawei Han. Unsupervised disaggregation of low frequency power
measurements. In SDM, pages 747–758. SIAM / Omnipress, 2011.

[4] Sweta Sneha and Upkar Varshney. Enabling ubiquitous patient monitor-
ing: Model, decision protocols, opportunities and challenges. Decision

Support Systems, 46(3):606 – 619, 2009. Wireless in the Healthcare.

[5] Diane J. Cook and Sajal K. Das. How smart are our environments? an
updated look at the state of the art. Pervasive and Mobile Computing,
3(2):53 – 73, 2007. Design and Use of Smart Environments.

[6] Gregory Piateski and William Frawley. Knowledge Discovery in

Databases. MIT Press, Cambridge, MA, USA, 1991.

[7] Nilanjan Banerjee, Sami Rollins, and Kevin Moran. Automating Energy
Management in Green Homes. In ACM Sigcomm Workshop on Home

Networks, August 2011.

[8] David Lachut, Simon Piel, Lazeeb Choudhury, Yucheng Xiong, Sami
Rollins, Kevin Moran, and Nilanjan Banerjee. Minimizing intrusiveness
in home energy measurement. In Proceedings of the Fourth ACM

Workshop on Embedded Sensing Systems for Energy-Efficiency in

Buildings, BuildSys ’12, pages 56–63, New York, NY, USA, 2012.
ACM.

[9] http://micasaverde.com/vera.php. Micasaverde vera 2.

[10] Sami Rollins, Nilanjan Banerjee, Lazeeb Choudhury, and David Lachut.
Poster Abstract: An In Situ System for Annotation of Home Energy
Data. In ACM Workshop On Embedded Systems For Energy-Efficiency

In Buildings, November 2013.

[11] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu.
A density-based algorithm for discovering clusters in large spatial
databases with noise. In Proc. of 2nd International Conference on

Knowledge Discovery and Data Mining (KDD-96), pages 226–231,
1996.

[12] Srikanth Kandula, Ranveer Chandra, and Dina Katabi. What’s going
on?: learning communication rules in edge networks. In Proceedings

of the ACM SIGCOMM 2008 conference on Data communication,
SIGCOMM ’08, pages 87–98, New York, NY, USA, 2008. ACM.

[13] Julien Blanchard, Fabrice Guillet, Regis Gras, and Henri Briand. Using
information-theoretic measures to assess association rule interesting-
ness. In Proceedings of the Fifth IEEE International Conference on

Data Mining, ICDM ’05, pages 66–73, Washington, DC, USA, 2005.
IEEE Computer Society.

[14] J. Froehlich, E. Larson, S. Gupta, G. Cohn, M. Reynolds, and S. Patel.
Disaggregated end-use energy sensing for the smart grid. Pervasive

Computing, IEEE, 10(1):28 –39, jan.-march 2011.

[15] Georgina Corte Franco, Floriane Gallay, Marc Berenguer, Christine
Mourrain, and Pascal Couturier. Non-invasive monitoring of the
activities of daily living of elderly people at home a pilot study of the
usage of domestic appliances. Journal of Telemedicine and Telecare,
14(5):231–235, 2008.

[16] Corinna Fischer. Feedback on household electricity consumption: a tool
for saving energy? Energy Efficiency, 1:79–104, 2008.

[17] Geraldine Fitzpatrick and Greg Smith. Technology-enabled feedback
on domestic energy consumption: Articulating a set of design concerns.
IEEE Pervasive Computing, 8(1):37–44, January 2009.

[18] Tom Hargreaves, Michael Nye, and Jacquelin Burgess. Making energy
visible: A qualitative field study of how householders interact with
feedback from smart energy monitors. Energy Policy, 38(10):6111 –
6119, 2010.

[19] James Pierce, Chloe Fan, Derek Lomas, Gabriela Marcu, and Eric
Paulos. Some consideration on the (in)effectiveness of residential
energy feedback systems. In Proceedings of the 8th ACM Conference

on Designing Interactive Systems, DIS ’10, pages 244–247, New York,
NY, USA, 2010. ACM.

[20] Yolande A.A. Strengers. Designing eco-feedback systems for everyday
life. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, CHI ’11, pages 2135–2144, New York, NY, USA,
2011. ACM.

[21] Thomas Schmid, David Culler, and Prabal Dutta. Meter any wire,
anywhere by virtualizing the voltage channel. In BuildSys, 2010.

[22] Jay Taneja, David Culler, and Prabal Dutta. Towards cooperative grids:

Sensor/actuator networks for promoting renewables. In SmarGrid-

Comm, 2010.

[23] Vijay Srinivasan, John Stankovic, and Kamin Whitehouse. WaterSense:
Water Flow Disaggregation using Motion Sensors. In BuildSys, 2011.

[24] Shwetak N. Patel, Sidhant Gupta, and Matthew S. Reynolds. The design
and evaluation of an end-user-deployable, whole house, contactless
power consumption sensor. In Proceedings of the 28th international

conference on Human factors in computing systems, CHI ’10, pages
2471–2480, New York, NY, USA, 2010. ACM.

[25] Timothy W. Hnat, Vijay Srinivasan, Jiakang Lu, Tamim I. Sookoor,
Raymond Dawson, John Stankovic, and Kamin Whitehouse. The
hitchhiker’s guide to successful residential sensing deployments. In
Proceedings of the 9th ACM Conference on Embedded Networked

Sensor Systems, SenSys ’11, pages 232–245, New York, NY, USA,
2011. ACM.

[26] S. Szewcyzk, K. Dwan, B. Minor, B. Swedlove, and D. Cook. An-
notating smart environment sensor data for activity learning. Technol.

Health Care, 17(3):161–169, August 2009.

[27] Jon Froehlich, Leah Findlater, Marilyn Ostergren, Solai Ramanathan,
Josh Peterson, Inness Wragg, Eric Larson, Fabia Fu, Mazhengmin Bai,
Shwetak Patel, and James A. Landay. The design and evaluation
of prototype eco-feedback displays for fixture-level water usage data.
In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, CHI ’12, pages 2367–2376, New York, NY, USA,
2012. ACM.

[28] Jon Froehlich, Leah Findlater, and James Landay. The design of eco-
feedback technology. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, CHI ’10, pages 1999–2008, New
York, NY, USA, 2010. ACM.

[29] Yolande A.A. Strengers. Designing eco-feedback systems for everyday
life. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, CHI ’11, pages 2135–2144, New York, NY, USA,
2011. ACM.

[30] Sunita Sarawagi, Shiby Thomas, and Rakesh Agrawal. Integrating as-
sociation rule mining with relational database systems: alternatives and
implications. In Proceedings of the 1998 ACM SIGMOD international

conference on Management of data, SIGMOD ’98, pages 343–354, New
York, NY, USA, 1998. ACM.

[31] Xin Jin, Yanzan Zhou, and Bamshad Mobasher. Web usage mining
based on probabilistic latent semantic analysis. In Proceedings of the

tenth ACM SIGKDD international conference on Knowledge discovery

and data mining, KDD ’04, pages 197–205, New York, NY, USA, 2004.
ACM.

[32] Albrecht Zimmermann and Luc Raedt. Corclass: Correlated association
rule mining for classification. In Einoshin Suzuki and Setsuo Arikawa,
editors, Discovery Science, volume 3245 of Lecture Notes in Computer

Science, pages 60–72. Springer Berlin Heidelberg, 2004.

[33] Y. Saygin, V.S. Verykios, and A.K. Elmagarmid. Privacy preserving
association rule mining. In Research Issues in Data Engineering:

Engineering E-Commerce/E-Business Systems, 2002. RIDE-2EC 2002.

Proceedings. Twelfth International Workshop on, pages 151–158.

[34] Leneve Ong, Mario Bergés, and Hae Young Noh. Exploring sequential
and association rule mining for pattern-based energy demand charac-
terization. In Proceedings of the 5th ACM Workshop on Embedded

Systems For Energy-Efficient Buildings, BuildSys’13, pages 25:1–25:2,
New York, NY, USA, 2013. ACM.

[35] Tanuja Bapat, Neha Sengupta, Sunil K. Ghai, Vijay Arya, Yedendra B.
Shrinivasan, and Deva Seetharam. User-sensitive scheduling of home
appliances. In GreenNets, 2011.

[36] Thomas Weng, Bharathan Balaji, Seemanta Dutta, Rajesh Gupta, and
Yuvraj Agarwal. Managing plug-loads for demand response within
buildings. In In Proceedings of the ACM Workshop on Embedded

Sensing Systems For Energy-Efficiency, Seattle, October 2011.

[37] Sean Barker, Aditya Mishra, David Irwin, Prashant Shenoy, and Jeannie
Albrecht. SmartCap: Flattening Peak Electricity Demand in Smart
Homes. In IEEE International Conference on Pervasive Computing

and Communications, March, 2012.

[38] Ting Zhu, Aditya Mishra, David Irwin, Navin Sharma, Prashant Shenoy,
and Don Towsley. The case for efficient renewable energy management
for smart homes. In BuildSys, 2011.


