Artificial Intelligence Programming

Heuristic Search

Chris Brooks

Department of Computer Science
University of San Francisco
4-0: Overview

- Heuristic Search - exploiting knowledge about the problem
- Heuristic Search Algorithms
 - “Best-first” search
 - Greedy Search
 - A* Search
 - Extensions to A*
- Constructing Heuristics
Previous algorithms were able to find solutions, but were very inefficient.

- Exponential number of nodes expanded.

By taking advantage of knowledge about the problem structure, we can improve performance.

Two caveats:

- We have to get knowledge about the problem from somewhere.
- This knowledge has to be correct.
4-2: Best-first Search

- Recall Uniform-cost search
 - Nodes were expanded based on their total path cost
 - A priority queue was used to implement this.

- Path cost is an example of an evaluation function.
 - We’ll use the notation $f(n)$ to refer to an evaluation function.

- An evaluation function tells us how promising a node is.

- Indicates the quality of the solution that node leads to.
Best-first Search

- By ordering and expanding nodes according to their f value, we search the “best” nodes “first”.
- If f was perfect, we would expand a straight path from the initial state to the goal state.
 - Arad, Sibiu, Rimnicu Vilcea, Pitesti, Bucharest
- Of course, if we had a perfect f, we wouldn’t need to solve the problem in the first place.
- Instead, we’ll try to develop heuristic functions $h(n)$ that help us estimate $f(n)$.
Best-first Pseudocode

enqueue(initialState)
do
 node = dequeue()
 if goalTest(node)
 return node
 else
 children = successor-fn(node)
 for child in children
 insert-with(child, f(child))

where insert-with orders our priority queue accordingly.
4-5: Greedy Search

- Let’s start with the opposite of uniform-cost search
- UCS used the solution cost to date as an estimate of f
- *Greedy search* uses an estimate of distance to the goal for f.
- Rationale: Always pick the node that looks like it will get you closest to the solution.
- Let’s start with a simple estimate of f for the Romania domain.
 - $h(city) =$ Straight-line distance between that city and Bucharest.
Notice that there wasn’t anything in the problem description about straight-line distance or the fact that that would be a useful estimate.

We used our knowledge about the way roads generally work.

This is sometimes called *common sense* knowledge.
4-7: Greedy Search Example

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Arad</td>
<td>366</td>
<td>Mehadia</td>
<td>241</td>
</tr>
<tr>
<td>Bucharest</td>
<td>0</td>
<td>Neamt</td>
<td>234</td>
</tr>
<tr>
<td>Craiova</td>
<td>160</td>
<td>Oradea</td>
<td>380</td>
</tr>
<tr>
<td>Dobreta</td>
<td>242</td>
<td>Pitesti</td>
<td>100</td>
</tr>
<tr>
<td>Eforie</td>
<td>161</td>
<td>Rimnicu Vilcea</td>
<td>193</td>
</tr>
<tr>
<td>Fagaras</td>
<td>176</td>
<td>Sibiu</td>
<td>253</td>
</tr>
<tr>
<td>Giurgiu</td>
<td>77</td>
<td>Timisoara</td>
<td>329</td>
</tr>
<tr>
<td>Hirsova</td>
<td>151</td>
<td>Urziceni</td>
<td>80</td>
</tr>
<tr>
<td>Iasi</td>
<td>226</td>
<td>Vaslui</td>
<td>199</td>
</tr>
<tr>
<td>Lugoj</td>
<td>244</td>
<td>Zerind</td>
<td>374</td>
</tr>
</tbody>
</table>

- \(A = 336 \)
- (dequeue A) \(S = 253, T = 329, Z = 374 \)
- (dequeue S) \(F = 176, RV = 193, T = 329, A = 336, Z = 374, O = 380 \)
- (dequeue F) \(B = 0, RV = 193, S = 253, T = 329, A = 336, Z = 374, O = 380 \)
- dequeue B - solution: A -> S -> F -> B

- We found a solution quickly, but it was not optimal.
- What was the problem with our approach?
4-8: Issues with Greedy Search

- Sometimes the optimal solution to a problem involves moving ‘away’ from the goal.

- Would greedy search work to solve the fox and chickens problem?

- Greedy search has many of the same appeals and weaknesses as DFS.
 - Expands a linear number of nodes
 - Is not complete or optimal

- Its ability to cut toward a goal is appealing - can we salvage this?
A* search is a combination of uniform cost search and greedy search.

A node’s $f(n) = g(n) + h(n)$
- $g(n) =$ current path cost
- $h(n) =$ heuristic estimate of distance to goal.

Favors nodes that have a cheap solution to date and also look like they’ll get close to the goal.

If $h(n)$ satisfies certain conditions, A* is both complete (always finds a solution) and optimal (always finds the best solution).
A* example - Romania

\(h = \text{straight-line distance} \)

- Arad = 0 + 366 = 366

(dequeue A: \(g = 0 \))

- (dequeue S: \(g = 140 \)) RV = 220 + 193 = 413, F = 239 + 176 = 415, T = 118 + 329 = 447, Z = 374 + 75 = 449, A = 280 + 336 = 616, O = 291 + 380 = 671,

(dequeue RV: \(g = 220 \))

- (dequeue F: \(g = 239 \)) P = 317 + 100 = 417, T = 118 + 329 = 447, Z = 374 + 75 = 449, C = 366 + 160 = 526, S = 300 + 253 = 553, A = 280 + 336 = 616, O = 291 + 380 = 671

\begin{tabular}{|l|l|l|}
\hline
Arad & 366 & Bucharest & 0 \\
Craiova & 160 & Neamt & 234 \\
Dobrota & 242 & Oradea & 380 \\
Eforie & 161 & Pitesti & 100 \\
Fagaras & 176 & Rmnicu Vilcea & 193 \\
Giaci & 77 & Sibiu & 253 \\
Hirsova & 151 & Timisoara & 329 \\
Iasi & 226 & Urziceni & 80 \\
Lugoj & 244 & Vaslui & 199 \\
\hline
\end{tabular}
4-11: A* example - Romania

(dequeue P: g = 317) T = 118 + 329 = 447, Z = 374 + 75 = 449, B = 518 + 0 = 518, C = 366 + 160 = 526, B = 550 + 0 = 550, S = 300 + 253 = 553, S = 338 + 253 = 591, RV = 414 + 193 = 607, C = 455 + 160 = 615, A = 280 + 336 = 616, O = 291 + 380 = 671

(dequeue T: g = 118) Z = 374 + 75 = 449, L = 229 + 244 = 473, B = 518 + 0 = 518, C = 366 + 160 = 526, B = 550 + 0 = 550, S = 300 + 253 = 553, A = 236 + 336 = 572, S = 338 + 253 = 591, RV = 414 + 193 = 607, C = 455 + 160 = 615, A = 280 + 336 = 616, O = 291 + 380 = 671

(dequeue Z: g = 75) L = 229 + 244 = 473, A = 150 + 336 = 486, B = 518 + 0 = 518, O = 146 + 380 = 526, C = 366 + 160 = 526, B = 550 + 0 = 550, S = 300 + 253 = 553, A = 236 + 336 = 572, S = 338 + 253 = 591, RV = 414 + 193 = 607, C = 455 + 160 = 615, A = 280 + 336 = 616, O = 291 + 380 = 671
4-12: A* example - Romania

(dequeue B: g = 518) solution. A -> S -> RV -> P -> B
A* is optimal (finds the shortest solution) as long as our h function is *admissible*.

- Admissible: always underestimates the cost to the goal.

Proof: When we dequeue a goal state, we see $g(n)$, the actual cost to reach the goal. If h underestimates, then a more optimal solution would have had a smaller $g + h$ than the current goal, and thus have already been dequeued.

Or: If h overestimates the cost to the goal, it’s possible for a good solution to “look bad” and get buried further back in the queue.

In our Romania example, SLD always underestimates.
Notice that we can’t discard repeated states.

- We could always keep the version of the state with the lowest g

More simply, we can also ensure that we always traverse the best path to a node first.

- a *monotonic* heuristic guarantees this.

A heuristic is monotonic if, for every node n and each of its successors (n'), $h(n)$ is less than or equal to $\text{stepCost}(n, n') + h(n')$.

- In geometry, this is called the triangle inequality.
SLD is monotonic. (In general, it’s hard to find realistic heuristics that are admissible but not consistent).

Corollary: If h is consistent, then f is nondecreasing as we expand the search tree.

Alternative proof of optimality.

Notice also that UCS is A* with $h(n) = 0$

A* is also *optimally efficient*

- No other complete and optimal algorithm is guaranteed to expand fewer nodes.
4-16: **Pruning and Contours**

- Topologically, we can imagine A^* creating a set of contours corresponding to f values over the search space.
- A^* will search all nodes within a contour before expanding.
- This allows us to *prune* the search space.
 - We can chop off the portion of the search tree corresponding to Zerind without searching it.
4-17: *Building Effective Heuristics*

- While A* is optimally efficient, actual performance depends on developing accurate heuristics.
- Ideally, h is as close to the actual cost to the goal (h^*) as possible while remaining admissible.
- Developing an effective heuristic requires some understanding of the problem domain.
4-18: Effective Heuristics - 8-puzzle

- **h1** - number of misplaced tiles.
 ▲ This is clearly admissible, since each tile will have to be moved at least once.

- **h2** - *Manhattan distance* between each tile’s current position and goal position.
 ▲ Also admissible - best case, we’ll move each tile directly to where it should go.

- Which heuristic is better?
4-19: Effective Heuristics - 8-puzzle

- h2 is better.
 - We want h to be as close to h^* as possible.

- If $h_2(n) > h_1(n)$ for all n, we say that h_2 dominates h_1.

- We would prefer a heuristic that dominates other known heuristics.
So how do we find a good heuristic?

Solve a relaxed version of the problem.

- Cost of an optimal solution to the relaxed version is an admissible heuristic for the original problem.
- 8-puzzle - allow tiles to move over each other.
- Fox and chickens - remove constraint that chickens outnumber foxes.

Solve subproblems

- Cost of moving one tile, getting one fox moved.
- Often, these subproblems (and their solutions) are then cached.

Learning from experience
A* has one big weakness - Like BFS, it potentially keeps an exponential number of nodes in memory at once.

Iterative deepening A* is a workaround.

Rather than searching to a fixed depth, we search to a fixed f-cost.

- If the solution is not found, we increase f and start again.

Works in worlds with uniform, discrete-valued step costs.
Recursive best-first search
- Combination of DFS and A*.
- Do DFS, but keep the f-cost of all fringe nodes.
- If expansion leads to a node worse than something in the fringe, backtrack.

Improvement over A*, but not spectacular.

Both IDA* and RBFS throw away too much.
4-23: Improving A*

- SMA*
- Regular A*, plus a fixed limit on memory used.
- When memory is full, discard the node with the highest \(f \) value.
- Value of discarded node is assigned to the parent.
 - This allows SMA* to 'remember' the value of that branch.
 - If all other branches get a higher \(f \) value, this child will be regenerated.

- SMA* is complete and optimal.

- On very hard problems, SMA* can wind up repeatedly deleting and regenerating branches.
 - Moral: Often, memory requirements make our problem intractable before time requirements.
Problem-specific heuristics can improve search.

Greedy search

A*

Developing heuristics
 - Admissibility, monotonicity, dominance

Memory issues
4-25: Next time ...

- Local search
 - Discard path info
 - Local optima

- Algorithms: hill-climbing, simulated annealing, genetic algorithms.

- Project 1 released (joy!)