FTP, SMTP and DNS

FTP: separate control, data connections
- FTP client contacts FTP server at port 21, specifying TCP as transport protocol
- Client obtains authorization over control connection
- Client browses remote directory by sending commands over control connection.
- When server receives a command for a file transfer, the server opens a TCP data connection to client
- After transferring one file, server closes connection.

Scenario: Alice sends message to Bob
1) Alice uses UA to compose message and "to" bob@someschool.edu
2) Alice’s UA sends message to her mail server; message placed in message queue
3) Client side of SMTP opens TCP connection with Bob’s mail server
4) SMTP client sends Alice’s message over the TCP connection
5) Bob’s mail server places the message in Bob's mailbox
6) Bob invokes his user agent to read message
Mail access protocols

- **SMTP**: delivery/storage to receiver's server
- Mail access protocol: retrieval from server
 - **POP**: Post Office Protocol [RFC 1939]
 - authorization (agent <-> server) and download
 - more features (more complex)
 - manipulation of stored msg on server
 - **IMAP**: Internet Mail Access Protocol [RFC 1730]
 - more features (more complex)
 - manipulation of stored msg on server
 - **HTTP**: Hotmail, Yahoo! Mail, etc.

DNS: Domain Name System

- **People**: many identifiers:
 - SSN, name, passport #
- **Internet hosts, routers**:
 - IP address (32 bit) - used for addressing datagrams
 - "name", e.g., www.yahoo.com - used by humans
- **Q**: map between IP addresses and name?

DNS and Applications

- **Which applications use DNS?**
 - **HTTP**
 - Browser extracts hostname
 - Sends hostname to DNS
 - DNS does lookup and returns IP address
 - Browser sends HTTP GET to IP address

DNS

- **Why not centralize DNS?**
 - single point of failure
 - traffic volume
 - distant centralized database
 - maintenance
 - doesn’t scale!

Distributed, Hierarchical Database

- **Client wants IP for www.amazon.com**: 1st approx
 - Client queries a root server to find com DNS server
 - Client queries com DNS server to get amazon.com DNS server
 - Client queries amazon.com DNS server to get IP address for www.amazon.com

DNS: Root name servers

- contacted by local name server that can not resolve name
- root name server:
 - contacts authoritative name server if name mapping not known
 - gets mapping
 - returns mapping to local name server

13 root name servers worldwide
TLD and Authoritative Servers

- **Top-level domain (TLD) servers**: responsible for com, org, net, edu, etc, and all top-level country domains uk, fr, ca, jp.
 - Network solutions maintains servers for com TLD
 - Educause for edu TLD
- **Authoritative DNS servers**: organization’s DNS servers, providing authoritative hostname to IP mappings for organization’s servers (e.g., Web and mail).
 - Can be maintained by organization or service provider

Local Name Server

- **Does not strictly belong to hierarchy**
- Each ISP (residential ISP, company, university) has one.
 - Also called “default name server”
- When a host makes a DNS query, query is sent to its local DNS server
 - Acts as a proxy, forwards query into hierarchy.

Example

- Host at cis.poly.edu wants IP address for gaia.cs.umass.edu

Recursive queries

- **recursive query**: puts burden of name resolution on contacted name server
 - heavy load?
- **iterated query**: contacted server replies with name of server to contact
 - “I don’t know this name, but ask this server”

DNS: caching and updating records

- once (any) name server learns mapping, it caches mapping
 - cache entries timeout (disappear) after some time
 - TLD servers typically cached in local name servers
 - Thus root name servers not often visited
- update/notify mechanisms under design by IETF
 - RFC 2136

DNS records

DNS: distributed db storing resource records (RR)
RR format: (name, value, type, ttl)

Type: A
 - name is hostname
 - value is IP address
Type: NS
 - name is domain (e.g. foo.com)
 - value is IP address of authoritative name server for this domain

Type: CNAME
 - name is alias name for some “canonical” (the real) name
 - value is canonical name
Type: MX
 - value is name of mailserver associated with name